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Abstract

The recent widespread application of whole-genome sequencing (WGS) for microbial disease investigations has spurred the

development of new bioinformatics tools, including a notable proliferation of phylogenomics pipelines designed for infectious

disease surveillance and outbreak investigation. Transitioning the use of WGS data out of the research laboratory and into

the front lines of surveillance and outbreak response requires user-friendly, reproducible and scalable pipelines that have

been well validated. Single Nucleotide Variant Phylogenomics (SNVPhyl) is a bioinformatics pipeline for identifying high-

quality single-nucleotide variants (SNVs) and constructing a whole-genome phylogeny from a collection of WGS reads and a

reference genome. Individual pipeline components are integrated into the Galaxy bioinformatics framework, enabling data

analysis in a user-friendly, reproducible and scalable environment. We show that SNVPhyl can detect SNVs with high

sensitivity and specificity, and identify and remove regions of high SNV density (indicative of recombination). SNVPhyl is able

to correctly distinguish outbreak from non-outbreak isolates across a range of variant-calling settings, sequencing-coverage

thresholds or in the presence of contamination. SNVPhyl is available as a Galaxy workflow, Docker and virtual machine

images, and a Unix-based command-line application. SNVPhyl is released under the Apache 2.0 license and available at

http://snvphyl.readthedocs.io/ or at https://github.com/phac-nml/snvphyl-galaxy.

DATA SUMMARY

1. Simulated sequence reads used to evaluate SNVPhyl (both
for variant identification and contamination) have been
deposited in FigShare: https://doi.org/10.6084/m9.figshare.
4294838.

2. Code used to perform the SNVPhyl evaluations for this
study is available on GitHub/Zenodo: https://github.com/apet-
kau/snvphyl-validations; DOI: 10.5281/zenodo.439977.

INTRODUCTION

The high-efficiency and cost-effectiveness of whole-genome
sequencing (WGS) using next-generation sequencing tech-
nologies is transforming the biomedical landscape. Entire

microbial genomes can be rapidly sequenced and subse-
quently queried with nucleotide-level resolution, an exciting
new ability that far outstrips other traditional microbial typ-
ing methods. This powerful new ability has the potential to
advance many fields, including in particular the field of
infectious disease genomic epidemiology. A number of
landmark studies have demonstrated the power of WGS for
molecular epidemiology. One notable study is the investiga-
tion into the 2010 Haiti cholera outbreak [1–3], where WGS
and epidemiological data were used in support of the
hypothesis that cholera was introduced to Haiti from
United Nations peacekeepers originally infected in Nepal.
WGS has supported the investigation of outbreaks of organ-
isms as diverse as Mycobacterium tuberculosis [4, 5],
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Escherichia coli [6] and Legionella pneumophila [7]. These
high-profile successes have motivated public-health institu-
tions and food-regulatory agencies to incorporate WGS into
their routine microbial infectious disease surveillance and
outbreak investigation activities. The GenomeTrakr net-
work used by the Centers for Disease Control and the Food
and Drug Administration agencies in the USA [8], PulseNet
International (http://www.cdc.gov/pulsenet/next-genera-
tion.html), Statens Serum Institut in Denmark [9], and Pub-
lic Health England [10] are leading the charge in this area,
and have incorporated a variety of analytical approaches to
integrate WGS into their infectious disease surveillance
activities. Two approaches in particular have emerged as
feasible methods for bacterial genomic epidemiology: gene-
by-gene methods, which extend the idea of multilocus
sequence typing (MLST) to encompass a given organism’s
entire genome (whole-genome MLST, wgMLST) or core
genome (core genome MLST, cgMLST) [11, 12]; and single
nucleotide variant (SNV)-based methods (also called single
nucleotide polymorphism- or SNP-based methods), which
identify variants by comparing a population of target
genomes against a reference [13, 14]. Gene-by-gene meth-
ods are promising as they are more amenable to assigning
consistent sequence types using standardized MLST sche-
mas, but these schemas must be developed, validated, and
maintained for each organism. SNV-based methods are
popular as they do not require development of MLST sche-
mas, but the variability in SNV-identification methods and
reference genome selection means they do not yet produce
standard sequence types useful for global communication of
circulating infectious disease [12, 14]. Where applicable,
these two methods are often combined [15].

A growing number of SNV-based pipelines have been devel-
oped (Table 1) and are distributed in the form of web serv-
ices [16], command-line software [17] or both [14]. Web
services provide a user-friendly method of running large-
scale analyses, but require the uploading of sequence reads
and rely on third-party computing infrastructure, which
may be inadequate for the analysis of typically large datasets
or due to data privacy concerns. Locally installed pipelines
avoid the transfer of large datasets to third-party websites,
offer greater control over the execution environment for
reproducibility and allow for the incorporation into pre-
existing bioinformatics analysis environments. However,
locally installed pipelines may require considerable expertise
to operate and can have substantial computing require-
ments. Additionally, for many SNV-based pipelines, recom-
bination detection and removal may require pre-analysis to
identify phage and genomic islands in the reference genome,
or post-analysis with computationally intensive recombina-
tion-detection software such as Gubbins [18] or ClonalFra-
meML [19] to identify and mask possible recombinant
regions. While a large choice of pipelines is available, a sys-
tematic comparison of popular SNV pipelines has demon-
strated that they generally produce highly concordant
phylogenetic trees, but with variation in the particular SNVs
identified [20, 21]. However, variation in the installation

procedures and execution environments of these pipelines
proves challenging for integration into a larger bioinformat-
ics analysis system.

Galaxy [22] is a web-based biological data analysis platform
that can be accessed through a publicly available website, a
locally installed instance linked to a high-performance com-
pute cluster or a cloud-based environment. Galaxy provides
a user-friendly web interface for the construction of data
analysis workflows using a mixture of built-in or commu-
nity developed bioinformatics tools. Additionally, Galaxy
provides an API (application programming interface) for
automated workflow execution or other automations via
external software. These features have encouraged some
software developers to integrate Galaxy within larger data
analysis systems. Examples of such analysis systems include
Integrated Rapid Infectious Disease Analysis (IRIDA; http://
irida.ca), the Refinery Platform (www.refinery-platform.
org/) and the Genomics Virtual Laboratory [23].

The Single Nucleotide Variant Phylogenomics (SNVPhyl)
pipeline provides a reference-based SNV discovery and phylo-
genomic tree-building pipeline along with ancillary tools
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integrated within the Galaxy framework. SNVPhyl can quickly
analyse many genomes, identify variants and generate a maxi-
mum-likelihood phylogeny, an all-against-all SNV distance
matrix, as well as additional quality information to help guide
interpretation of the results. The pipeline has been under con-
tinuous development and refinement at Canada’s National
Microbiology Laboratory since 2010; it is currently being used
for outbreak investigations and will be part of the validated
suite of tools used by PulseNet Canada for routine foodborne
disease surveillance activities. Here, we describe the overall
operation of SNVPhyl, survey its advanced features such as
repeat and recombination masking, and demonstrate its SNV-
calling and phylogenomic tree building accuracy using simu-
lated and real-world datasets.

METHODS

SNVPhyl pipeline

The SNVPhyl pipeline (Fig. 1a, b) consists of a set of pre-
existing and custom-developed bioinformatics tools for ref-
erence mapping, variant discovery and phylogeny construc-
tion from identified SNVs. Each stage of the pipeline is
implemented as a separate Galaxy tool and the stages are
joined together to construct the SNVPhyl workflow. Distri-
bution of the dependency tools for SNVPhyl is managed
through the Galaxy Toolshed [24]. Scheduling of each tool
is managed by Galaxy, which provides support for execution
on a single machine, high-performance computing environ-
ments utilizing most major scheduling engines (e.g. Slurm,
TORQUE, Open Grid Engine) or cloud-based environments.

Input

SNVPhyl requires as input a collection of microbialWGS data-
sets, a reference genome and an optional masking file defining
regions on the reference genome to exclude from the analysis.
Each set of sequencing data consists of either single-end or
paired-end reads from an isolate. The reference genome can be
a high-quality draft or finished genome, chosen typically to

have high similarity with the collection of genome sequences
under analysis. The masking file stores the sequence identifier
of the reference genome and the coordinates for any regions
where SNVs should be excluded from analysis.

Architecture

Execution of SNVPhyl begins with the ‘Repeat Identifica-
tion’ stage. This stage identifies internal repeat regions on
the reference genome using MUMmer (v3.23) [25] and gen-
erates a masking file containing the locations of repetitive
regions to exclude from analysis. This file is concatenated to
the user-supplied masking file, if defined, and used in later
analysis stages.

The ‘Mapping/Variant Calling’ stage (detailed in Fig. 1b)
aligns the supplied reads to the reference genome using the
appropriate mapping mode (paired-end or single-end). Ref-
erence mapping is performed using SMALT

(version 0.7.5; https://sourceforge.net/projects/smalt/),
which outputs a read pileup. In the ‘Mapping Quality’ stage,
SNVPhyl evaluates each pileup for the mean coverage across
a user-defined proportion of the reference genome (e.g. 10�
coverage across at least 80% of the genome). Any sequenced
genomes that do not meet the minimum mean coverage
threshold are flagged for further assessment.

The variant calling stages of SNVPhyl use two independent
variant callers, FreeBayes (version 0.9.20) [26], and the SAM-
tools and BCFtools packages [27, 28]. FreeBayes is run using
the haploid variant calling mode and the resulting variants are
filtered to remove insertions/deletions and split complex vari-
ant calls. SAMtools and BCFtools are run independently of
FreeBayes and are used to confirm the FreeBayes variant calls
and generate base calls for non-variant positions.

The ‘Variant Consolidation’ stage combines both sets of
variant and non-variant (polymorphic and monomorphic)
calls into a merged file, flagging mismatches between variant
callers. Base calls below the defined minimum read coverage

Table 1. A comparison of whole-genome phylogenetic software

Name Input* Parallel computing† Distribution‡ Interface§ Reference

CFSAN SNP pipeline sr mn, mt Local cl [17]

CSI phylogeny sr, ag NA Web gui [16]

kSNP sr, ag mt Local cl [44]

Lyve-SET sr, agr mn, mt Local cl [21]

NASP sr, ag mn, mt Local cl [20]

Parsnp ag mt Local cl [45]

PhaME sr, ag mt Local cl [46]

REALPHY sr, ag mt Web, local gui, cl [14]

Snippy sr, agr mt Local cl https://github.com/tseemann/snippy

SNVPhyl sr mn, mt Local gui, cl http://snvphyl.readthedocs.io/

*ag, assembled genome; agr, assembled genome supported by generating simulated reads; sr, sequence reads.

†mn, multi-node – provides capability to execute across multiple compute nodes; mt, multi-thread – provides multi-threading capability; NA, not appli-

cable (not locally installable).

‡Local, locally distributed and installable software; web, software provided as a web service.

§cl, command-line interface; gui, graphical user interface.
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are identified and flagged. The merged base calls are

scanned for positions that do not pass the minimum relative

SNV abundance (proportion of reads supporting the SNV

with respect to the depth of coverage at a site) and mini-

mum mean mapping quality. These base calls are removed

from the merged base calls file. The remaining base calls

that pass all these criteria are defined as either a high-quality

SNV (hqSNV) or a high-quality non-variant base call. The
hqSNVs are optionally scanned to identify high-density

SNV regions. These regions are identified by passing a slid-

ing window of a given size along the genome and counting

the number of SNVs within the window that exceed a given

SNV density threshold. The high-density SNV regions are

recorded in a tab-delimited file and used to mask potential

recombinant regions.

The ‘SNV Alignment Generation’ stage examines the

merged base calls to generate a table of identified variants,

and an alignment of hqSNVs and the corresponding high-

quality non-variant bases. The hqSNVs are evaluated and
assigned a status using the base calls at the same reference
genome position for every isolate. A status of ‘valid’ is
assigned when the base calls from all isolates in the same
position pass the minimum criteria (hqSNVs or high-
quality non-variants). These base calls are incorporated into
the SNV alignment used for phylogeny generation. A status
of ‘filtered-coverage’ is assigned when one or more isolates
fail the minimum base coverage threshold at a particular
position and the failed isolates’ base calls are annotated as
‘�’ (indicating no nucleotide or a gap). A status of ‘filtered-
mpileup’ is assigned when one or more isolates have con-
flicting base calls between FreeBayes and SAMtools/
BCFtools and the conflicting isolates’ base calls are anno-
tated as ‘N’ (indicating any nucleotide non-specifically). A
status of ‘filtered-invalid’ is assigned when the identified
hqSNV overlaps one of the masked locations. The hqSNVs,
base calls and assigned status are recorded in the SNV table
and saved for later inspection. The SNV table can be used to
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Fig. 1. (a) Overview of the SNVPhyl pipeline. Input to the pipeline is provided as a reference genome, a set of sequence reads for each

isolate and an optional list of positions to mask from the final results. Repeat regions are identified on the reference genome and ref-

erence mapping followed by variant calling is performed on the sequence reads. The resulting files are compiled together to construct

a SNV alignment and list of identified SNVs, which are further processed to construct a SNV distance matrix, maximum-likelihood phy-

logeny and a summary of the identified SNVs. Individual software or scripts are given in the parenthesis below each stage. (b) An over-

view of the Mapping/Variant Calling stage of SNVPhyl. Variants are called using two separate software packages and compiled

together in the Variant Consolidation stage. As output, a list of the validated variant calls, regions with high-density SNVs, as well as

quality information on the mean mapping coverage, are produced and sent to further stages.
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re-generate the downstream SNV alignment and phyloge-
netic tree without re-running the computationally intensive
reference mapping and variant calling steps.

Output

The final phylogeny is generated using the SNV alignment
consisting of hqSNVs with a ‘valid’ status (i.e. the polymor-
phic positions passing our quality thresholds). This align-
ment is run through PhyML [29] with the GTR+g model as
default and tree support values estimated using PhyML’s
approximate likelihood ratio test [30]. The SNV alignment
is also used to generate an all-against-all SNV distance
matrix. This matrix lists the pair-wise SNV distances
between every isolate, using only the valid hqSNVs.

Additional files are provided to assist in evaluating the qual-
ity of the SNVPhyl analysis. The ‘SNV Filter Stats’ stage
summarizes the quality and counts of the identified SNVs.
The SNV Alignment Generation stage summarizes the pro-
portion of the reference genome passing all the necessary fil-
ters for every isolate – the (non-masked) core genome
consisting of both polymorphic and monomorphic posi-
tions – as well as the portion of the genome failing any fil-
ters or excluded by the masking file.

Simulated data

We evaluated SNVPhyl’s sensitivity and specificity for SNV
identification using simulated mutations derived from a refer-
ence genome. The closed and finished E. coli strain Sakai
(NC_002695), along with the two plasmids (NC_002128 and
NC_002127), was chosen as the reference genome (combined
length of 5 594 477 bp). We constructed a variant genome by
randomly mutating 10 000 base locations on the reference
genome. We repeated the procedure, using the same 10 000
base locations but different mutations, to generate a total of
three variant genomes. We included the unmodified reference
genome in the test set to serve as a positive control. The simu-
lated variants for each genome were recorded in a table for
later comparisons. The constructed genomes were run
through art_illumina (version ChocolateCherryCake) [31] to
generate paired-end reads with 2�250 bp length and 30�
mean coverage. The resultant reads along with the reference
genome were run through SNVPhyl with repeat masking
enabled, but with no SNV density filtering.

The SNV table produced by SNVPhyl was compared to the
table of simulated variants to determine their sensitivity and
specificity. We define a true positive (TP) as a matching row
in both variant tables, where both the position as well as
base calls for each simulated genome is identical. A variant
detected by SNVPhyl not matching the criteria for a TP is a
false positive (FP). A true negative (TN) is defined as all
non-variant positions that were excluded by SNVPhyl. A
false negative (FN) is defined as a row in the simulated vari-
ant table where either the position or a base call did not
match any corresponding entry in the table of detected var-
iants by SNVPhyl. Using these definitions, sensitivity is cal-
culated as TP/(TP+FN), while specificity is calculated as
TN/(TN+FP).

SNV density filtering evaluation

We evaluated SNVPhyl’s ability to mask recombination by
comparing the resultant phylogenetic trees and identified
SNVs to those detected and removed by the recombination
detection software package Gubbins [18]. Our test data con-
sisted of 11 Streptococcus pneumoniae genomes along with
the reference genome ATCC 700669 (FM211187) that had
previously been published [32] and made available as
sequence reads by the National Center for Biotechnology
Information (NCBI; Table S1, available in the online Sup-
plementary Material) and as a whole-genome alignment
constructed via mapping reads to the reference genome (the
PMEN1 dataset from https://sanger-pathogens.github.io/
gubbins/). We downloaded this alignment, appended the
reference genome, and processed the resulting file through
Gubbins to identify and mask recombinant SNVs. The iden-
tified SNVs were filtered to remove gaps and masked
recombination (‘�’ and ‘N’ characters) and the resulting
SNVs we defined as the ‘truth’ set used to generate the T/
F P/N values – defined as for the Simulated Data section.
These Gubbins-identified SNVs were also used to construct
a phylogenetic tree with PhyML and compared with
SNVPhyl’s phylogenetic trees numerically using K tree
scores [33] and visually using PhyTools [34]. K tree scores
allow for similarity comparisons of many phylogenetic trees
against a single reference tree. Each tree is re-scaled by a fac-
tor, K, based on the reference tree size and a score is pro-
duced taking into account differences in both topology and
branch lengths. Comparing the scores of all trees provides a
measure of similarity to the reference tree, with more simi-
lar trees producing a score closer to 0.

We downloaded sequence reads for the test dataset from
NCBI, identifying and combining multiple sequencing runs
for each strain to a single set of sequence reads with the help
of SRAdb [35]. Using the combined sequence reads we ran
SNVPhyl under a number of scenarios. For each scenario,
we compared the SNVs and phylogenetic trees to the ‘truth’
dataset described above. In the first run, we performed no
SNV density filtering. For all subsequent runs, we adjusted
the density-filtering parameters to remove SNVs occurring
at a density of 2 or more within a moving window of 20,
100, 500, 1000 and 2000 bp. We evaluated an additional sce-
nario using a combination of SNVPhyl and Gubbins for
recombination masking. We ran SNVPhyl with no SNV
density filtering and incorporated the identified variants
into the reference genome to generate a whole-genome
alignment consisting of both polymorphic and monomor-
phic positions, but with non-hqSNVs ignored (i.e. positions
with gaps, ambiguous bases or repeats are left as monomor-
phic). The whole-genome alignment was processed with
Gubbins to identify non-recombinant SNVs and to con-
struct a phylogenetic tree.

Parameter optimization

We evaluated SNVPhyl’s parameter settings and resulting
accuracy at differentiating outbreak isolates using a set of 59
sequenced and published Salmonella enterica serovar
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Heidelberg genomes [36], which were previously deposited
in the NCBI Sequence Read Archive (Table S2). We chose
this dataset as it contained sequence data for strains from
several unrelated outbreaks – referred to as ‘outbreak 1’,
‘outbreak 2’ and ‘outbreak 3’ – along with additional back-
ground strains, allowing us to evaluate SNVPhyl’s ability to
differentiate the outbreak strains under different scenarios.
Sequence read data was subsampled with seqtk (https://
github.com/lh3/seqtk) such that the genome with the least
amount of sequence data, SH12-006, was set to 30� mean
coverage (calculated as: mean coverage = count of base pairs
in all reads/length of reference genome). Other genomes
were subsampled to maintain their relative proportion of
mean read coverage to SH12-006. Salmonella Heidelberg
strain SL476 (NC_011083) was selected as the reference
genome. We optimized the SNVPhyl parameters for this
dataset according to the following four scenarios: (1) adjust-
ing the minimum base coverage parameter used to call a
variant, while keeping the number of reads in the dataset
fixed; (2) subsampling the reads of a single WGS sample at
different mean coverage levels, while keeping the minimum
base coverage parameter fixed; (3) adjusting the minimum
relative SNV abundance for calling a variant; and (4) adjust-
ing the amount of contamination in the dataset to deter-
mine its effect on variant calling accuracy.

In the first scenario, we ran the SNVPhyl pipeline using the
default parameters except for the minimum base coverage,
which was adjusted to 5�, 10�, 15� and 20�. In the sec-
ond scenario, we kept the minimum base coverage parame-
ter fixed at 10�, while one of the samples (SH13-001) was
subsampled to mean sequencing coverages of 30�, 20�,
15� and 10�. In the third scenario, the minimum relative
SNV abundance was adjusted to 0.25, 0.5, 0.75 and 0.9. In
the fourth scenario, a sample from outbreak 2 (SH13-001
with mean coverage 71�) was chosen as a candidate for
simulating contamination. A sample from the unrelated
outbreak 1 (SH12-001) was selected as the source of con-
taminant reads. The reads were subsampled and combined
such that SH13-001 (outbreak 2) remained at 71� mean
coverage, but was contaminated with reads from SH12-001
(outbreak 1) at 5, 10, 20 and 30%. All samples were run
through SNVPhyl for each of these contamination ratios.

The phylogenetic trees produced by SNVPhyl were evalu-
ated for concordance with the outbreak epidemiological
data using the following criteria: (1) all outbreak isolates

group monophyletically; and (2) the SNV distance between
any two isolates within an outbreak clade is less than 5
SNVs, a number identified in the previous study [36] as the
maximum SNV distance between epidemiologically related
samples within these particular outbreaks. Both conditions
were tested using the APE package within R [37].

RESULTS

Validation against simulated data

We measured SNVPhyl’s sensitivity and specificity by intro-
ducing random mutations along the E. coli Sakai reference
genome and compared these mutations with those detected
by SNVPhyl (Table 2). Of the 10 000 mutated positions
introduced, SNVPhyl reported 9116 TPs and 0 FPs resulting
in a sensitivity and specificity of 0.91 and 1.0, respectively.

Positions on the reference genome that contain a low-qual-
ity base call or exist in repetitive regions are excluded from
downstream analysis by SNVPhyl. However, lower-quality
variant-containing sites along with variants in repetitive
regions are saved by SNVPhyl in the variant table with a ‘fil-
tered’ status. Evaluating the combination of high-quality
variants along with the additional low-quality variants
recorded by SNVPhyl, we found 457 additional TPs (for a
total of 9573) at the expense of 51 FPs, resulting in a sensi-
tivity and specificity of 0.96 and 1.0 (after rounding). Of the
51 FPs, 48 were considered as FPs due to insufficient read
coverage in one of the samples to call a high-quality variant;
thus, resulting in a call of a gap (‘�’) as opposed to the true
base call. Only three of the FPs were a result of miscalled
bases with sufficient read coverage, and these occurred in
repetitive regions of the genome with high copy numbers
(Table S3).

SNV density filtering evaluation

We compared SNVPhyl’s density filtering against the Gub-
bins software for detection and removal of recombination in
a collection of WGS reads from 11 S. pneumoniae genomes
along with the reference genome ATCC 700669 (Table 3,
Fig. S1). We used a previously generated and published
whole-genome alignment of these genomes, which we ran
through Gubbins to construct a set of 165 non-recombinant
SNV-containing positions, which we defined as the TPs
used for comparison with SNVPhyl. With no SNV density
filtering, SNVPhyl properly identified 142/165 of these
SNV-containing sites (TPs), but included 2159 additional

Table 2. SNV simulation results

Comparison No. of variant

columns simulated

No. of non-variant

columns

No. of true

positives

No. of false

positives

No. of true

negatives

No. of false

negatives

Specificity Sensitivity

Valid SNVs* 10 000 5 584 477 9116 0 5 575 361 884 1.0 0.91

All SNVs† 10 000 5 584 477 9573 51 5 574 853 427 1.0 0.96

*Valid SNVs – the number of SNV-containing sites detected that passed all thresholds to be considered high quality for every isolate.

†All SNVs – all the SNV-containing sites identified by SNVPhyl, including those where at least one isolate did not have a high-quality base call or sites

that were masked by the pipeline.
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SNV sites (FPs). These FPs skewed the resulting phyloge-
netic tree by increasing the length of one of the branches.
The phylogenetic tree was compared with the tree produced
with Gubbins, resulting in a K tree score of 0.419.

We reanalysed the dataset with high-density SNV masking
enabled, using a range of variant density cut-offs. We found
the density-filtering criteria of two SNVs in a 500 bp win-
dow and two SNVs in a 1000 bp window performed near-
equally in producing a phylogenetic tree resembling the tree
produce by Gubbins based on the K tree scores of 0.045 and
0.044, both much lower than the score of 0.419 for no SNV
density filtering. With these filtering criteria, SNVPhyl iden-
tified 133 TPs and 12 FPs (for two SNVs in 500 bp) and 125
TPs and six FPs (for two SNVs in 1000 bp).

We also investigated the effect of generating a whole-
genome alignment – by incorporating SNVPhyl-identified
variants without SNV density filtering into the reference
genome to construct an alignment with both polymorphic
and monomorphic positions – for a more thorough analysis
with the recombination-detection software Gubbins. We
were able to identify 138 TPs in the alignment at the
expense of 10 FPs and a K tree score of 0.037, a result closely
matching the use SNVPhyl’s density filtering criteria.

Parameter optimization

We evaluated SNVPhyl’s capability to differentiate between
epidemiologically related and unrelated samples using a
WGS dataset consisting of 59 Salmonella enterica serovar
Heidelberg genomes from three unrelated outbreaks. We
ran SNVPhyl with this data under a number of scenarios:
(1) varying the minimum base coverage required by
SNVPhyl to call a variant, (2) subsampling the reads of an
individual bacterial sample, (3) varying the minimum
relative SNV abundance, and (4) testing the ability to gener-
ate accurate phylogenetic trees in the presence of contami-
nation. We tested the SNVPhyl results for phylogenetic
concordance to epidemiological data (Table 4, Fig. S2).

For the first scenario, we found that as the minimum base
coverage threshold for calling a variant was increased, the

percent of the reference genome identified as part of the
core genome and number of SNV-containing sites was
reduced (from 95% core and 317 SNVs to 54% core and
165 SNVs). At 15� minimum base coverage (81% core and
262 SNVs) and lower, all three outbreaks grouped into
monophyletic clades. Failure occurred at a minimum base
coverage of 20� (54% core and 165 SNVs), where the out-
break 2 isolates failed to constitute a separate clade.

For the second scenario, one of the samples was subsampled
to reduce the mean coverage relative to all other samples,
while keeping the minimum base coverage parameter of
10� in SNVPhyl fixed. At a mean coverage of 15� (with
242 SNVs identified and 76% core), SNVPhyl grouped all
three outbreaks into monophyletic clades. However, at a
lower mean coverage of 10� (155 SNVs and 47% core),
SNVPhyl failed to group one of the outbreaks into a mono-
phyletic clade. Similar to the first scenario, the percentage of
the reference genome considered core as well as the number
of SNVs identified was reduced as the mean coverage of one
of the samples was lowered.

For the third scenario, the relative SNV abundance – defin-
ing the proportion of SNV-supporting bases needed to iden-
tify a variant as high quality – was adjusted incrementally.
Each set of outbreak isolates grouped into a clade with a
maximum SNV distance less than five SNVs above a pro-
portion of 0.5. At a proportion of 0.5 the maximum SNV
distance within outbreak 2 was exactly five SNVs, while for
a proportion of 0.25 the maximum SNV distance in out-
break 2 was 44 SNVs. The percentage of the reference
genome identified as part of the core genome remained the
same at 92%.

For the fourth scenario, we examined the robustness of
SNVPhyl to cross-contamination of closely related samples.
Current methods of contamination detection often focus on
taxonomic classification of genomic content [38]. However,
contamination by closely related isolates can go undetected,
leading to the usage of such contaminated datasets within
bioinformatics pipelines. To examine the effect of contami-
nation on SNVPhyl’s ability to call hqSNVs, we simulated

Table 3. A comparison of the SNVPhyl variant density filtering algorithm to the Gubbins system for recombination detection

Case No. of true positives No. of false positives No. of true negatives No. of false negatives Sensitivity Specificity K tree score

No DF* 142 2159 2 218 849 23 0.861 0.999 0.419

2 in 20† 142 565 2 220 443 23 0.861 1.000 0.425

2 in 100† 142 155 2 220 853 23 0.861 1.000 0.377

2 in 500† 133 12 2 221 005 32 0.806 1.000 0.045

2 in 1000† 125 6 2 221 019 40 0.758 1.000 0.044

2 in 2000† 111 3 2 221 036 54 0.673 1.000 0.063

Gubbins/

SNVPhyl‡

138 10 2 221 002 27 0.836 1.000 0.037

*No DF – a case of no SNV density filtering by SNVPhyl.

†X in Y – masking regions with a density of X variants in Y bases.

‡Gubbins/SNVPhyl – a whole-genome alignment generated from SNVs identified by SNVPhyl and run through Gubbins.
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contamination for an isolate in outbreak 2 by an isolate in
outbreak 1. We found that SNVPhyl was able to accurately
differentiate all three outbreaks with up to 10% read con-
tamination; however, the number of SNVs dropped from
298 SNVs at 5% contamination, to 260 SNVs at 20% con-
tamination, where the failure was due to removal of the
majority of unique SNVs that differentiated outbreak 1
from the background isolates.

DISCUSSION

The availability of WGS data from microbial genomes rep-
resents a tremendous opportunity for infectious disease sur-
veillance and outbreak response. Emerging analytical
methods, such as gene-by-gene or SNV-based methods,
require that bioinformatics pipelines be designed with
usability by non-bioinformaticians in mind and that can be
easily incorporated into existing systems. An overview of
current phylogenomic methods appears in [39] and a com-
parison of SNVPhyl’s design with that of other popular
pipelines appears in Table 1. A detailed investigation com-
paring the performance of SNVPhyl with other pipelines is
the subject of a separate paper [21]. We designed SNVPhyl
to be both flexible and scalable in its usage in order to meet
the needs and capabilities of most laboratories. SNVPhyl
gains much of this flexibility through its implementation as
a Galaxy workflow, which enables execution in environ-
ments from single machines to high-scale computer

clusters, from third-party web-based environments to local
installations. Galaxy provides a user-friendly interface but
also provides an API, which is used to implement a com-
mand-line interface for SNVPhyl. The SNVPhyl pipeline is
also integrated within the IRIDA platform (http://irida.ca),
which provides an integrated ‘push-button’ system for geno-
mic epidemiology. However, implementing SNVPhyl
through Galaxy has some disadvantages. Notably, Galaxy is
more complex and, thus, more cumbersome to install than a
simpler command-line-based pipeline. To address this, we
have made SNVPhyl available as simple to install virtual
machine and Docker images, although these options are not
straightforward to implement in a high-performance com-
puting environment.

Several factors can influence the ability to accurately call
SNVs when using a reference mapping approach [40]. In
addition, there are aspects of the datasets – such as recombi-
nation and population diversity – that can influence the
phylogenetic analysis of identified SNVs. To assist in select-
ing proper parameters for SNVPhyl and gauging perfor-
mance on different datasets, we have assessed SNVPhyl
under a variety of situations: SNV calling accuracy with
simulated data, recombination masking, and the ability to
differentiate outbreak isolates from non-outbreak isolates
under differing parameters and data qualities.

Our assessment of SNV calling accuracy shows that
SNVPhyl can detect SNVs and produce a SNV alignment
with high sensitivity and specificity (Table 2). Of the var-
iants that went undetected by SNVPhyl, a large proportion
were due to the quality thresholds and masking procedures
implemented by SNVPhyl to remove incorrectly called or
problematic SNVs (e.g. SNVs in internal repeats on the ref-
erence genome). While these quality procedures generate
many FNs, they also eliminate many FP variants – a reduc-
tion of 51 to 0 FPs at a cost of an additional 457 FNs in the
simulated dataset. However, all detected variation across all
genomes is recorded in a table produced by SNVPhyl and
additional software is provided for more detailed analysis of
these variants.

Phylogenetics assumes descent with modification, but
recombination violates this assumption and its presence can
confound the resulting phylogeny leading to misinterpreta-
tions on the clonal relationship of isolates [41]. Recombina-
tion detection software exists and can be used to account for
recombination during the construction of phylogenetic trees
[18, 19, 42]. These programs are most effective for the
detection of recombination in closely related organisms,
such as a collection of bacteria in an epidemiological investi-
gation. However, they require the pre-construction of
whole-genome alignments and can only be run on a single
machine, which limits their utility for routine application to
large collections of WGS reads.

SNVPhyl implements a basic but rapid method for detec-
tion and masking of recombinant sites by searching for
SNV-dense regions above a defined density in a sliding

Table 4. A comparison of the performance of SNVPhyl across a range

of parameters and analysis scenarios

No. Scenario Parameter/
condition

hqSNV %
core*

Differentiated
outbreaks

1 Minimum
coverage

5� 317 95 Yes

10� 301 92 Yes

15� 262 81 Yes

20� 165 54 No

2 Subsample
coverage level

10�† 155 47 No

15�† 242 76 Yes

20�† 276 88 Yes

30�† 299 92 Yes

3 Relative SNV
abundance

0.25 351 92 No

0.5 307 92 No

0.75 301 92 Yes

0.9 291 92 Yes

4 Contamination 5%‡ 298 92 Yes

10%‡ 292 92 Yes

20%‡ 260 92 No

30%‡ 231 92 No

*100% core = 4 888 768 bp (percentage of reference genome identified

as the core genome).

†These represent the mean coverage of one sample after subsampling

reads and not the minimum base coverage parameter of SNVPhyl

(which is fixed at 10�).

‡100% contamination represents complete replacement of reads from

SH13-001 (at 71� coverage) with SH12-001.
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window. We evaluated SNVPhyl’s recombination-masking
method in comparison to the Gubbins software package,
which was run on a previously generated whole-genome
alignment (Table 3, Fig. S1). We found that SNVPhyl
removes the majority of recombinant SNVs (from 2159
SNVs with no recombination masking to six SNVs when
masking regions with two SNVs in a 1000 bp window).
However, SNVPhyl also removes some non-recombinant
SNVs (reduced from 142 SNVs with no masking to 125
SNVs with two SNVs in a 1000 bp window). Removal of a
greater number of recombinant SNVs is possible by increas-
ing the window size, but this removes additional non-
recombinant SNVs and reduces the information available in
the phylogenetic tree and so concordance with other recom-
bination-masking procedures (based on K tree scores).

SNVPhyl’s method of detecting high-density SNV regions
can be executed independently for each genome. Indepen-
dent execution is easily distributed across multiple nodes
within a compute cluster, enhancing the scalability over
large datasets. However, SNVPhyl requires the SNV density
to be set a priori and may not be appropriate for organisms
with complex evolutionary dynamics or for genome sequen-
ces from organisms spanning a large phylogenetic distance.
We suspect that the optimal parameters will vary based on
the particular organism under study and we would caution
against relying on default settings without further evalua-
tion. SNVPhyl does not aim to be a rigorous recombination
detection and removal software package. However,
SNVPhyl provides output files recording all the SNVs
detected, which can be used for further analysis if needed.
In particular, additional tools are provided that can produce
a whole-genome alignment correctly formatted for input
into software such as Gubbins for a thorough detection of
recombination and construction of a phylogenetic tree from
non-recombinant SNVs, although limitations still exist for
highly diverse organisms or older recombination events.

A proper interpretation of the produced phylogenetic trees
and SNV distances for associating closely related isolates
requires knowledge of when to trust the results and when
additional parameter or data adjustments are necessary. To
assist in defining these criteria, we evaluated the perfor-
mance of SNVPhyl at clearly delineating different outbreak
clades across four different scenarios (Table 4, Fig. S2a–d).

In both the first and second scenarios, we examined the
effect of sequencing coverage on identifying enough SNVs
to properly differentiate outbreak isolates. In the first sce-
nario, we adjusted the minimum base coverage required to
call a SNV from 5� to 20� without any additional subsam-
pling of reads. We found that SNVPhyl succeeded in differ-
entiating outbreak isolates at coverages up to 15�, but at a
minimum base coverage of 20� SNVPhyl failed to differen-
tiate the outbreak isolates due to removal of too many SNVs
(from 317 SNVs to 165 SNVs). In the second scenario, we
subsampled one of the isolates along the mean read cover-
age values from 30� to 10�, while keeping the minimum
base coverage parameter in SNVPhyl fixed at 10�. We

found SNVPhyl succeeded in differentiating outbreak iso-
lates at a mean coverage of 15� and above, but failed to dif-
ferentiate outbreak isolates at a mean coverage of 10� due
to removal of too many SNVs (reduced from 299 SNVs to
155 SNVs). Both cases show that a high base coverage
threshold for variant calling relative to the mean coverage of
the lowest sample leads to falsely identifying samples as
being related due to removal of too many SNVs (20� mini-
mum base coverage/30� lowest sample mean coverage for
failure in the first scenario, and 10� minimum base cover-
age/10� lowest sample mean coverage for failure in the sec-
ond scenario). However, a high minimum base coverage
threshold or too little sequencing data can be detected by
examining the percentage of the reference genome consid-
ered as part of the core genome by SNVPhyl. A low value
can indicate either a poorly related reference genome or that
large portions of the genomes are removed from the analysis
(a drop from 95 to 54% in the first scenario and 92 to 47%
in the second scenario). We would recommend searching
for such low values in the percent core to gauge whether or
not base coverage (or possibly reference genome selection)
is an issue for the SNVPhyl results.

In the third scenario (Table 4, Fig. S2c), we adjusted the rel-
ative SNV abundance among values from 0.25 to 0.9. We
found that SNVPhyl successfully differentiated outbreak
isolates above a proportion of 0.5, but at a proportion of 0.5
the maximum SNV distance between isolates within an out-
break exceeded our threshold of less than 5 SNVs. However,
unlike the minimum base coverage value, the percent of the
reference genome identified as the core genome remained
the same (92%). We recommend keeping this setting fixed
at a higher value, with the default set at 0.75.

In the fourth scenario, we simulated contamination between
two closely related isolates from two different outbreaks by
mixing reads at differing proportions (Table 4, Fig. S2d).
Our findings indicate that SNVPhyl is able to handle low
amounts of mixed sample contamination (up to 10%). A
higher proportion of contaminated reads can lead to
removal of SNVs due to not meeting quality thresholds
(from 298 SNVs with 5% contamination to 260 SNVs at
20% contamination where failure occurred) and so incor-
rectly inferring relatedness between samples. Similar to the
third scenario, the percentage of the reference genome iden-
tified as the core genome remained fixed at 92%. While
SNVPhyl is able to differentiate outbreak isolates at low lev-
els of contamination, SNVPhyl cannot be used to evaluate
the degree of contamination. Thus, we would not recom-
mend the straightforward application of SNVPhyl to con-
taminated datasets without further assessment of the degree
of contamination, either through taxonomic identification
software such as Kraken [43] or, for closely related isolates,
through inspection of the variant calling and read pileup
information provided by SNVPhyl.

Our analysis suggests that great care must be taken to
reduce sources of noise in genome-wide SNV analysis.
Some of this noise relates to quality thresholds for calling

Petkau et al., Microbial Genomics 2017;1

9



hqSNVs, of which a careful balance is required to eliminate
FPs without removal of too many true variants. Other sour-
ces include aspects of the WGS datasets or organisms under
study such as the presence of contamination or recombina-
tion. The studied cases highlight how SNVPhyl is able to
produce phylogenetic trees consistent with existing software
and epidemiological data under a wide variety of data quali-
ties, and demonstrate when to be sceptical of the results
based on additional information generated by SNVPhyl.

SNVPhyl provides an easy-to-use pipeline for processing
whole genome sequence reads to identify SNVs and produce
a phylogenetic tree. We have shown that SNVPhyl is capa-
ble of producing results consistent with existing software
and epidemiological data on even very closely related bacte-
rial isolates under a wide variety of parameter settings and
sequencing data qualities. SNVPhyl is distributed as a pipe-
line within Galaxy and is integrated within the IRIDA

platform, providing a push-button system for generating
whole-genome phylogenies within a larger WGS data man-
agement and genomic epidemiology system designed for
use in clinical, public health and food regulatory
environments.

Funding information

This work was supported by the Genomics Research and Development
Initiative, Genome Canada, and Genome British Columbia.

Acknowledgements

The authors would like to acknowledge Cheryl Tarr for initial inspira-
tion and contribution to the design of SNVPhyl as well as Lauren
Slusky and Brian Yeo for their contributions during development of the
pipeline. The authors would also like to acknowledge the Galaxy team
and Galaxy community for their rapid response to issues and feature
requests during the development of SNVPhyl as well as the integration
of some bioinformatics tools within Galaxy that are used by SNVPhyl.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Data bibliography

1. Bekal S, Berry C, Reimer AR, Van Domselaar G, Beaudry G et al.
Sequence Read Archive PRJNA305824 (2015).

2. Bergholz TM, Wick LM, Qi W, Riordan JT, Ouellette LM et al.
GenBank NC_002695.1 (2007).

3. Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J et al.
European Nucleotide Archive ERR016678, ERR016679, ERR016671,
ERR019725, ERR019714, ERR016851, ERR019721, ERR016858,
ERR019732, ERR016859, ERR019733, ERR019722, ERR019734,
ERR019723, ERR016860, ERR019715, ERR019726, ERR016852,
ERR016681, ERR016720, ERR016721 (2011).

4. Croucher NJ, Walker D, Romero P, Lennard N, Paterson GK et al.
GenBank FM211187.1 (2009).

5. Fricke WF, Mammel MK, McDermott PF, Tartera C, White DG et al.
GenBank NC_011083.1 (2011).

6. Makino K, Ishii K, Yasunaga T, Hattori M, Yokoyama K et al. GenBank
NC_002128.1 (1998).

7. Makino K, Ishii K, Yasunaga T, Hattori M, Yokoyama K et al. GenBank
NC_002127.1 (1998).

8. Petkau A, Mabon P, Sieffert C, Knox N, Cabral J et al. FigShare
http://dx.doi.org/10.6084/m9.figshare.4294838 (2016).

9. Petkau A, Mabon P, Sieffert C, Knox N, Cabral J et al. GitHub/Zenodo
https://doi.org/10.5281/zenodo.439977 (2017).

References

1. Hendriksen RS, Price LB, Schupp JM, Gillece JD, Kaas RS et al.

Population genetics of Vibrio cholerae from Nepal in 2010: evi-
dence on the origin of the Haitian outbreak. MBio 2011;2:e00157-
11.

2. Katz LS, Petkau A, Beaulaurier J, Tyler S, Antonova ES et al. Evo-
lutionary dynamics of Vibrio cholerae O1 following a single-source
introduction to Haiti. MBio 2013;4:e00398-13.

3. Frerichs RR, Keim PS, Barrais R, Piarroux R. Nepalese origin of
cholera epidemic in Haiti. Clin Microbiol Infect 2012;18:E158–E163.

4. Gardy JL, Johnston JC, Ho Sui SJ, Cook VJ, Shah L et al. Whole-
genome sequencing and social-network analysis of a tuberculosis
outbreak. N Engl J Med 2011;364:730–739.

5. Roetzer A, Diel R, Kohl TA, Rückert C, Nübel U et al. Whole
genome sequencing versus traditional genotyping for investigation
of a Mycobacterium tuberculosis outbreak: a longitudinal molecular
epidemiological study. PLoS Med 2013;10:e1001387.

6. Holmes A, Allison L, Ward M, Dallman TJ, Clark R et al. Utility of
whole-genome sequencing of Escherichia coli O157 for outbreak
detection and epidemiological surveillance. J Clin Microbiol 2015;
53:3565–3573.

7. S�anchez-Busó L, Comas I, Jorques G, Gonz�alez-Candelas F.

Recombination drives genome evolution in outbreak-related
Legionella pneumophila isolates. Nat Genet 2014;46:1205–1211.

8. Allard MW, Strain E, Melka D, Bunning K, Musser SM et al. Practi-
cal value of food pathogen traceability through building a whole-
genome sequencing network and database. J Clin Microbiol 2016;
54:1975–1983.

9. Franz E, Gras LM, Dallman T. Significance of whole genome
sequencing for surveillance, source attribution and microbial risk
assessment of foodborne pathogens. Curr Opin Food Sci 2016;8:
74–79.

10. Ashton PM, Nair S, Peters TM, Bale JA, Powell DG et al. Identifica-
tion of Salmonella for public health surveillance using whole
genome sequencing. PeerJ 2016;4:e1752.

11. Maiden MC, Jansen van Rensburg MJ, Bray JE, Earle SG, Ford SA

et al. MLST revisited: the gene-by-gene approach to bacterial
genomics. Nat Rev Microbiol 2013;11:728–736.

12. Moura A, Criscuolo A, Pouseele H, Maury MM, Leclercq A et al.

Whole genome-based population biology and epidemiological sur-
veillance of Listeria monocytogenes. Nat Microbiol 2016;2:16185.

13. Kwong JC, Mercoulia K, Tomita T, Easton M, Li HY et al. Prospec-
tive whole-genome sequencing enhances national surveillance of
Listeria monocytogenes. J Clin Microbiol 2016;54:333–342.

14. Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E.

Automated reconstruction of whole-genome phylogenies from
short-sequence reads. Mol Biol Evol 2014;31:1077–1088.

15. Jackson BR, Tarr C, Strain E, Jackson KA, Conrad A et al. Imple-
mentation of nationwide real-time whole-genome sequencing to
enhance listeriosis outbreak detection and investigation. Clin Infect

Dis 2016;63:380–386.

16. Kaas RS, Leekitcharoenphon P, Aarestrup FM, Lund O. Solving
the problem of comparing whole bacterial genomes across differ-
ent sequencing platforms. PLoS One 2014;9:e104984.

17. Davis S, Pettengill JB, Luo Y, Payne J, Shpuntoff A et al. CFSAN
SNP Pipeline: an automated method for constructing SNP matri-
ces from next-generation sequence data. PeerJ Comput Sci 2015;
1:e20.

18. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al.

Rapid phylogenetic analysis of large samples of recombinant bac-
terial whole genome sequences using Gubbins. Nucleic Acids Res

2015;43:e15.

19. Didelot X, Wilson DJ. ClonalFrameML: efficient inference of
recombination in whole bacterial genomes. PLoS Comput Biol

2015;11:e1004041.

20. Sahl JW, Lemmer D, Travis J, Schupp JM, Gillece JD et al. NASP:
an accurate, rapid method for the identification of SNPs in WGS

Petkau et al., Microbial Genomics 2017;1

10

http://dx.doi.org/10.6084/m9.figshare.4294838
https://doi.org/10.5281/zenodo.439977


datasets that supports flexible input and output formats. Microb
Genom 2016;2:e000074.

21. Katz LS, Griswold T, Williams-Newkirk AJ, Wagner D, Petkau A

et al. A comparative analysis of the Lyve-SET phylogenomics pipe-
line for genomic epidemiology of foodborne pathogens. Front

Microbiol 2017;8:375.

22. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D

et al. The Galaxy platform for accessible, reproducible and collab-
orative biomedical analyses: 2016 update. Nucleic Acids Res 2016;
44:W3–W10.

23. Afgan E, Sloggett C, Goonasekera N, Makunin I, Benson D et al.

Genomics virtual laboratory: a practical bioinformatics workbench
for the cloud. PLoS One 2015;10:e0140829.

24. Blankenberg D, Von Kuster G, Bouvier E, Baker D, Afgan E et al.

Dissemination of scientific software with Galaxy ToolShed.
Genome Biol 2014;15:403.

25. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Ver-
satile and open software for comparing large genomes. Genome

Biol 2004;5:R12.

26. Garrison E, Marth G. Haplotype-based variant detection from
short-read sequencing. arXiv 2012; arXiv:1207.3907

27. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The
sequence alignment/map format and SAMtools. Bioinformatics

2009;25:2078–2079.

28. Li H. A statistical framework for SNP calling, mutation discovery,
association mapping and population genetical parameter estima-
tion from sequencing data. Bioinformatics 2011;27:2987–2993.

29. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to
estimate large phylogenies by maximum likelihood. Syst Biol

2003;52:696–704.

30. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W et al.

New algorithms and methods to estimate maximum-likelihood
phylogenies: assessing the performance of PhyML 3.0. Syst Biol
2010;59:307–321.

31. Huang W, Li L, Myers JR, Marth GT. ART: a next-generation
sequencing read simulator. Bioinformatics 2012;28:593–594.

32. Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J et al. Rapid
pneumococcal evolution in response to clinical interventions.
Science 2011;331:430–434.

33. Soria-Carrasco V, Talavera G, Igea J, Castresana J. The K tree
score: quantification of differences in the relative branch length

and topology of phylogenetic trees. Bioinformatics 2007;23:2954–
2956.

34. Revell LJ. Phytools: an R package for phylogenetic comparative
biology (and other things). Methods Ecol Evol 2012;3:217–223.

35. Zhu Y, Stephens RM, Meltzer PS, Davis SR. SRAdb: query and use
public next-generation sequencing data from within R. BMC

Bioinformatics 2013;14:19.

36. Bekal S, Berry C, Reimer AR, van Domselaar G, Beaudry G et al.

Usefulness of high-quality core genome single-nucleotide variant
analysis for subtyping the highly clonal and the most prevalent
Salmonella enterica serovar Heidelberg clone in the context of out-
break investigations. J Clin Microbiol 2016;54:289–295.

37. Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics
and evolution in R language. Bioinformatics 2004;20:289–290.

38. Koren S, Treangen TJ, Hill CM, Pop M, Phillippy AM. Automated
ensemble assembly and validation of microbial genomes. BMC
Bioinformatics 2014;15:126.

39. Lynch T, Petkau A, Knox N, Graham M, van Domselaar G. A
primer on infectious disease bacterial genomics. Clin Microbiol Rev

2016;29:881–913.

40. Olson ND, Lund SP, Colman RE, Foster JT, Sahl JW et al. Best
practices for evaluating single nucleotide variant calling methods
for microbial genomics. Front Genet 2015;6:235.

41. Croucher NJ, Harris SR, Grad YH, Hanage WP. Bacterial genomes
in epidemiology—present and future. Philos Trans R Soc Lond B

Biol Sci 2013;368:20120202.

42. Marttinen P, Hanage WP, Croucher NJ, Connor TR, Harris SR

et al. Detection of recombination events in bacterial genomes
from large population samples. Nucleic Acids Res 2012;40:e6.

43. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biol 2014;15:R46.

44. Gardner SN, Slezak T, Hall BG. kSNP3.0: SNP detection and phy-
logenetic analysis of genomes without genome alignment or ref-
erence genome. Bioinformatics 2015;31:2877–2878.

45. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest
suite for rapid core-genome alignment and visualization of
thousands of intraspecific microbial genomes. Genome Biol

2014;15:524.

46. Ahmed SA, Lo C, Li P, Davenport KW, Chain PSG et al. From raw
reads to trees: whole genome SNP phylogenetics across the tree
of life. bioRxiv 2015; doi:10.1101/032250.

Petkau et al., Microbial Genomics 2017;1

11

Five reasons to publish your next article with a Microbiology Society journal

1. The Microbiology Society is a not-for-profit organization.

2. We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.

3. Our journals have a global readership with subscriptions held in research institutions around
the world.

4. 80% of our authors rate our submission process as ‘excellent’ or ‘very good’.

5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.

http://www.microbiologyresearch.org

