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Abstract 

Background and objective:  Rhabdomyolysis (RM) is a life-threatening adverse drug reaction in which statins are 
the one commonly related to RM. The study aimed to explore the association between statin used and RM or other 
muscular related adverse events. In addition, drug interaction with statins were also assessed.

Methods:  All extracted prescriptions were grouped as lipophilic and hydrophilic statins. RM outcome was identified 
by electronically screening and later ascertaining by chart review. The study proposed 4 models, i.e., logistic regression 
(LR), Bayesian network (BN), random forests (RF), and extreme gradient boosting (XGBoost). Features were selected 
using multiple processes, i.e., bootstrapping, expert opinions, and univariate analysis.

Results:  A total of 939 patients who used statins were identified consisting 15, 9, and 19 per 10,000 persons for 
overall outcome prevalence, using statin alone, and co-administrations, respectively. Common statins were simvasta-
tin, atorvastatin, and rosuvastatin. The proposed models had high sensitivity, i.e., 0.85, 0.90, 0.95 and 0.95 for LR, BN, RF, 
and XGBoost, respectively. The area under the receiver operating characteristic was significantly higher in LR than BN, 
i.e., 0.80 (0.79, 0.81) and 0.73 (0.72, 0.74), but a little lower than the RF [0.817 (95% CI 0.811, 0.824)] and XGBoost [0.819 
(95% CI 0.812, 0.825)]. The LR model indicated that a combination of high-dose lipophilic statin, clarithromycin, and 
antifungals was 16.22 (1.78, 148.23) times higher odds of RM than taking high-dose lipophilic statin alone.

Conclusions:  The study suggested that statin uses may have drug interactions with others including clarithromy-
cin and antifungal drugs in inducing RM. A prospective evaluation of the model should be further assessed with 
well planned data monitoring. Applying LR in hospital system might be useful in warning drug interaction during 
prescribing.

Keywords:  Statin, Rhabdomyolysis, Drug interaction, Data mining, Bayesian network, Random forests, Extreme 
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Introduction
Rhabdomyolysis (RM) is a life-threatening adverse drug 
reaction (ADR) which commonly presents with myo-
pathy, myalgia, and dark urine, together with or with-
out the rising of creatine kinase (CK) [1–3]. The most 
severe complication, acute kidney injury (AKI), was 
found in about 10–55% of RM patients, which resulted 
in multiple organs failure and deaths about 7.1–13.0% 

Open Access

*Correspondence:  oraluck.pat@mahidol.edu; charungthai.dej@mahidol.ac.th

1 Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine 
Ramathibodi Hospital, Mahidol University, 270 Rama VI Rd, Ratchathewi, 
Bangkok 10400, Thailand
2 Department of Medicine, Faculty of Medicine Ramathibodi Hospital, 
Mahidol University, 270 Rama VI Rd, Ratchathewi, Bangkok 10400, 
Thailand

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-022-01978-4&domain=pdf


Page 2 of 14Kunakorntham et al. BMC Medical Informatics and Decision Making          (2022) 22:233 

per year [3, 4]. Treatment of RM is a supportive care 
with intravenous fluid therapy [1]. The estimated cost 
per quality-adjusted life years (QALY) to treat RM was 
69,742.5 USD per year [5], and the treatment cost even 
raised to 11,000 USD per episode of AKI [6].

Medication use was reported as one of the major 
causes of RM. The most common drugs are antihyper-
lipidemic agents such as simvastatin, atorvastatin, and 
rosuvastatin, regardless of co-administration with other 
drugs with the rate of RM ranged from 0.5 to 3.7, and 
as high as 18.6 to 22.5 per 10,000 person-years for com-
bined therapy [7, 8]. Lipophilicity (e.g., atorvastatin, 
fluvastatin, pitavastatin, and simvastatin) have higher 
risk for induction of RM compared to hydrophilic (e.g., 
pravastatin and rosuvastatin) group [9]. In addition, 
statin also interacts with other drugs including gemfi-
brozil, amiodarone, digoxin, cyclosporine, colchicine, 
diltiazem, and verapamil. Nonetheless, the early detec-
tion of ADRs could reduce the treatment costs around 
1,400 USD per patient [10].

Data mining techniques (e.g., disproportional analy-
sis (DPA) and machine learning-based model (ML)) 
have been applied to early detect ADRs. The DPA is 
a fast and inexpensive method, which is widely used 
for signal detection in spontaneous reporting systems 
(SRSs) [11–15], but it is not appropriate for data with 
high correlation among predictors, or a large dimen-
sional data in electronic health records (EHRs). Data 
mining from SRS plus EHR could improve the accuracy 
of signal detection compared to using the information 
of SRS alone [16]. The ML algorithms have been pro-
posed to solve those limitations of SRSs [17, 18]. Now-
adays, there is no consensus on which method is the 
most appropriate to assess the drug-ADR associations 
[11, 19].

A previous study [18] proposed a text mining algo-
rithm for detection of statins induced myopathy or 
RM from EHRs of a hospital in Singapore. The algo-
rithm had high precision and recall, but the algorithm 
required discharge summaries in English. Hence, it 
could not apply to hospitals in Thailand, in which 
discharge summaries were handwritten with vari-
ous abbreviations and mixed languages. In addition, 
their black box algorithms could not explain which 
drugs increased the risk of RM. Therefore, the study 
had two research questions as follows: First, did sta-
tin alone associate with RM or muscular related ADR 
occurrence? Second, was statin effect on RM or mus-
cular related ADR modified by other drugs? The study 
was conducted which aimed to explore the association 
between use of statin alone or in combination with 
other drugs and RM or muscular related ADR using the 
EHRs of Ramathibodi Hospital.

Methods
Data source
Five EHRs of Ramathibodi Hospital including patient 
registration, medication, laboratory, diagnosis/proce-
dure, and SRS databases were retrieved from the hospi-
tal informatics system during 1st January 2012 to 31st 
December 2019. Patients were identified and included 
into the study if they were aged 18  years or older and 
had been prescribed statins as details in Additional 
file 1: Table A.1. Statins were categorised into 2 groups, 
i.e., hydrophilic (pravastatin and rosuvastatin) and lipo-
philic (atorvastatin, fluvastatin, pitavastatin, and simvas-
tatin) statins. Other features of those eligible patients, as 
shown in Additional file 1: Table A.1, were also retrieved. 
Standard codes were used for information extractions 
including Thai Medicines Terminology (TMT), Thai 
Medical Laboratory Terminology (TMLT), International 
Statistical Classification of Diseases and Related Health 
Problems 10th Revision Thai Modification 2010 (ICD-
10-TM), and International Classification of Diseases 9th 
Revision Clinical Modification (ICD-9-CM), and the 
hospital codes, see Additional file 1: Table A.2–A.4. The 
study had been approved by the ethics committee of the 
Faculty of Medicine Ramathibodi Hospital, Mahidol Uni-
versity. All identified data were encrypted using the MD5 
hash function.

Outcome of interest
An occurrence of RM or muscular related adverse event, 
hereafter called ‘RM’, was the outcome of interest. Two 
steps were performed as described by Fig.  1. First, RM 
was initially identified in a cohort of patients with statin 
users by linking a cohort database with ICD10-CM (see 
codes in Additional file 1: Table A.4) and creatine kinase 
(CK) level of > 1000 U/L from laboratory databases. RM 
patients with myocardial infarction (MI), dermatomy-
ositis, or polymyositis were excluded. Second, identified 
RMs were ascertained by manually review of EMRs by 
our research team which consisted of a pharmacist and 
four physicians. The reviewers checked whether there 
was any report of ‘rhabdomyolysis’, ‘neuromyopathy’, 
‘myopathy’, or ‘drug-related weakness’ in the hospital’s 
EHR to confirm as the RM outcome.

Patient’s timeline
The individual patient’s timeline was constructed based 
on the use of hydrophilic and lipophilic statins regard-
less of switching statins. An episode of each person-time 
started at the date of the first prescription of the statin 
groups and ended with the RM occurrence. The duration 
of taking statins was calculated from the drug regimen of 
each prescription. If a patient had multiple episodes of 
RM, the beginning of the next episode would be on the 
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Fig. 1  Steps for identification and ascertainment of the outcome
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date of prescribing statins after the end of the previous 
episode.

Data preparation
The underlying diseases and demographic data were 
included as baseline characteristics for individual per-
son-time. Other extracted features were mapped to each 
event with different criteria depending on the type of 
outcome, clinical knowledge, and real practice as summa-
rised in Additional file 1: Table A.5. Then the dataset was 
split into train and test datasets with a ratio of 80:20 for 
development and validation of the model, respectively.

A total of 122 categorical and continuous features were 
considered to include in analysis, see Additional file  1: 
Table A.6. The feature of interest was statin use consid-
ered as statin only or combined with other lipid lower-
ing drugs, type of statin (i.e., lipophilic and hydrophilic 
coded as 1 and 0, respectively), and high or low/stand-
ard dose of each statin. In addition, 77 medications that 
could increase statin levels were also considered. Fur-
thermore, 26 medications known in the literatures as 
inducing RM occurrence were also considered. Finally, 
other confounding features were also considered includ-
ing 2 demographic data, 8 laboratory tests, 5 underly-
ing diseases, and any of 16 comorbidities. These binary 
features were coded as 1 for presence and 0 otherwise. 
Age was categorised according to a median of 65 years. 
Statin dose was calculated based on a number of doses 
taken per day, then compared to the number of defined 
daily doses (DDD) recommended by the World Health 
Organisation (WHO) [20]. The average number of DDD 
during a period of the event was classified into high dose 
if DDD was higher than 1, otherwise as low (standard) 
dose. Other drugs were assumed to be taken as 1 DDD, 
and periods of treatment were calculated. If a period for 
taking a drug was overlapped with the period of event 
occurrence, it was identified as co-administration with 
code of 1, and 0 otherwise.

Laboratory values measured at/close to statin prescrip-
tions were used for analysis. Those laboratory features 
were classified into binary features coded as 0 and 1 for 
normal abnormal based on the normal reference ranges 
[21, 22]. The level of eGFR was classified as declining kid-
ney function if eGFR < 60 mL/min/1.73 m2 (code 1), oth-
erwise it was normal (code 0). For tests of lipid profile, 
only TG and LDL were included because doctors consid-
ered to prescribe any regimen of statins based on these 
laboratory results.

Eight lab data were missing, which ranged from 0.004 
to 0.08%. Those data were imputed using multiple impu-
tations by chained equations (MICE) of linear regres-
sion with 10 imputations [23], see Additional file 1: Table 
A.8, as follows: First, Scr, the smallest missing value, 

was initially imputed based on 114 features. Then, the 
imputed Scr plus other 114 features were used to pre-
dict the next second least missing AST. Next, the Na was 
predicted based on imputed Scr and imputed AST plus 
114 completed features. The process was repeated until 
the last feature, i.e., TG. The whole process was repeated 
10 times to get 10 imputed data. Distributions of those 
imputed features are described, see Additional file  1: 
Table A.8

Feature selection
Feature selection was performed as follows. First, fea-
tures were considered based on biological mechanisms in 
relationships with RMs. Second, univariate analysis was 
applied using Pearson’s Chi-squared test or Fisher’s exact 
test where appropriate [24] to assess association between 
each feature and RM. Third, a 1000-replication boot-
strapping with multiple logistic regression was applied by 
simultaneously fitting all features whose p-value was < 0.1 
in the univariate analysis, and non-significant features by 
expert opinions, which were age and common drugs that 
may have drug interaction with statin [9, 10] including 
amiodarone, ciprofloxacin, digoxin, diltiazem, ezetimibe, 
and gemfibrozil which were reconsidered to include in 
the model. Lastly, multicollinearity was verified by calcu-
lating the variance inflation factor (VIF) score. [9, 10].

Model development
To estimate the effect size of the association between 
drug(s) and outcome, the study has proposed 4 mod-
els, i.e., logistic regression (LR), Bayesian network (BN), 
random forests (RF), and extreme gradient boosting 
(XGBoost). Data were split into 80:20 for train and test 
sets using random without replacement method with 
consideration that patients must be included in each 
data set only once. All models were learnt on the same 
train dataset with the same selected features. Moreover, 
the performance of models were evaluated based on the 
same test dataset.

Logistic regression (LR)
LR model was created through STATA® version 16 by 
including all features suggested by univariate analysis and 
expert opinion. Then only the first level of statin-drug 
interaction was considered for analysis. Also, the prob-
lem of zero RM outcome was avoided, thus the interac-
tion effect of a statin group was compared with the rest 
instead of directly fitting with the interaction term. For 
example, the interaction effects were considered by com-
paring the odds of the outcome when using high-dose 
lipophilic statins alone and when using other groups of 
statins with a concurrent drug.
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Bayesian network (BN)
There were 2 steps of developing BN model. Firstly, struc-
ture of model was created based on clinical knowledge 
using GeNIe® modeler which is a free graphic user inter-
face (GUI) software application. However, a large number 
of parent nodes contributed to the problem of high com-
putation for the conditional probability table and com-
plicated learning inference. Therefore, a parent divorcing 
and Noisy-OR would be applied if more than 20 features 
were eventually chosen in accordance with literatures [25, 
26]. Secondly, model parameters were learnt on the train 
dataset, and the conditional and the marginal probability 

of child and parent nodes were calculated and directly 
emerged on themselves. Values of information of features 
were also diagnosed and ranked. The highest diagnostic 
value meant the most relevant features that were used to 
predict the outcome regardless of parent or child nodes 
of the outcome. Moreover, a new dataset which consisted 
of all possible interaction terms was simulated for analy-
sis of the drug interactions.

Random forests (RF)
RF is a machine learning model which consists of a large 
number of individual decision trees that operate as an 

Table 1  Logistic multivariate regression results

* p < 0.05

Variables OR SE z P-value 95% CI

Intercept 0.000 0.000 − 13.160  < 0.001* (0.000, 0.000)

Statin groups

0. Low-dose hydrophilic 1.000 – – – –

1. High-dose hydrophilic 0.811 0.565 − 0.300 0.763 (0.207, 3.177)

2. Low-dose lipophilic 0.743 0.306 − 0.720 0.470 (0.331, 1.664)

3. High-dose lipophilic 1.227 0.523 0.480 0.630 (0.533, 2.829)

Medications

Antifungals 2.865 2.095 1.440 0.150 (0.683, 12.008)

Clarithromycin 2.777 1.297 2.190 0.029* (1.112, 6.934)

Ticagrelor 2.220 1.344 1.320 0.188 (0.678, 7.271)

Cyclosporine 2.127 1.306 1.230 0.219 (0.638, 7.089)

Carvedilol 1.534 0.442 1.490 0.138 (0.872, 2.697)

Colchicine 1.327 0.459 0.820 0.413 (0.674, 2.613)

Amiodarone 0.654 0.319 − 0.870 0.384 (0.251, 1.703)

Digoxin 0.594 0.441 − 0.700 0.483 (0.138, 2.549)

Diltiazem 0.865 0.451 − 0.280 0.781 (0.311, 2.405)

Ezetimibe 0.712 0.256 − 0.950 0.344 (0.352, 1.439)

Ciprofloxacin 0.419 0.196 − 1.860 0.063 (0.167, 1.049)

Gemfibrozil 0.508 0.513 − 0.670 0.503 (0.070, 3.674)

Othercovariables

AST (> 30 U/L) 35.294 20.824 6.040  < 0.001* (11.104, 112.181)

eGFR (< 60 mL/min/1.73 m2) 2.360 0.617 3.280 0.001* (1.413, 3.940)

Hypertension 1.774 0.504 2.020 0.044* (1.017, 3.095)

Age (> 65 years old) 0.640 0.157 − 1.820 0.069 (0.396, 1.036)

LDL (> 125 mg/dL) 0.409 0.122 − 3.010 0.003* (0.228, 0.733)

Variables Odds Ratio Std. Err z P-value 95% CI

Interaction effects of high-dose lipophilic statin

 + Clarithromycin 5.662 4.908 2.000 0.046* (1.035, 30.962)

 + Antifungals 5.840 6.071 1.700 0.090 (0.761, 44.796)

 + Clarithromycin
 + Antifungals

16.219 18.309 2.470 0.014* (1.775, 148.226)

 + Ticagrelor 4.526 4.256 1.610 0.108 (0.717, 28.584)

 + Cyclosporine 4.337 4.157 1.530 0.126 (0.662, 28.389)

 + Carvedilol 3.127 2.430 1.470 0.142 (0.681, 14.344)

 + Colchicine 2.705 2.180 1.230 0.217 (0.558, 13.125)
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ensemble. Each tree in the random forest gives a class 
prediction, then all trees are combined. The majority 
votes from all trees will suggest the model prediction. 
The proposed model was developed using scikit-learn 
Python’s library, called ‘RandomForestClassifier’. In addi-
tion, the model used the “balanced” mode to augment 
imbalanced data by automatically adjusting weights 
inversely proportional to class frequencies in the data-
set; which resulted in balanced data with a ratio of 1:1 for 
Rhabdomyolysis and non-Rhabdomyolysis groups. The 
model was learnt on the train dataset and hyperparame-
ters tuned to obtain the optimal model. Tuning hyperpa-
rameters were set as follows: (1) the maximum tree depth 
of 3 showed an optimal parameter, (2) the maximum 
number of features at each split was 10, (3) the minimum 
number of samples required at each split was 3, (4) the 
number of trees in the forest was 40 and (5) The ‘random 
state’ was set at 0 to control the randomness of bootsrap 
samples. Finally, the Tree Shapley Additive Explanations 
(SHAP) [27–29] was applied to show feature importance 
and whether the feature had a positive or negative impact 
on predictions.

Extreme gradient boosting (XGBoost)
XGBoost is an ensemble method using gradient boosting 
technique to optimise and minimise errors of the model 
using xgboost Python’s library. The model was trained 
on the train dataset and the ‘random_state’ was set to 
0. Since the data was imbalanced between the Rhabdo-
myolysis and non-Rhabdomyolysis groups, data was 
augmented and balanced by the scale_pow_weight (cal-
culated by dividing a total number of negative instances 
by a total number of positive instances). Tuning hyper-
parameters for model optimising were set as follows: (a) 
learning rate was set at 0.01, (b) a maximum depth of 
the tree was 3, (c) number of features used to consider 
at each split (colsample_bytree) was 0.8, and (d) a num-
ber of gradient boosted trees was 20. Finally, SHAP algo-
rithm was applied to explain the importance of features 
which contributed to the model.

Model evaluation
All performances of LR, BN, RF, and XGBoost were 
evaluated based on the same test dataset. Sensitivity or 
recall was the most important metric for this study as the 
model should correctly detect the occurrence of outcome 
compared with the actual positive outcome. Specific-
ity and area under the receiver operating characteristic 
(ROC) were also measured. Moreover, the low prevalence 
of outcome induced the imbalanced dataset. All models 
had calibrated threshold of measurements. The threshold 
of measurements for LR and BN were 0.002 which closed 

to the prevalence of the outcome. Whereas the thresh-
old of RF and XGBoost were 0.5. Finally, the net reclas-
sification index (NRI) [30] was estimated along with its 
95% confidence interval (CI) by comparing BN, RF, and 
XGBoost with the LR models.

Results
A total of 939 patients with 70,470 observations were 
included in a cohort of statin users. Of them, 8,791 
(12.5%) and 61,679 (87.5%) used hydrophilic and lipo-
philic statins, see Additional file 1: Table A.7. A total of 
96 patients with 104 episodes were confirmed as having 
RM outcome with a prevalence (95% CI) of 0.15% (0.12%, 
0.18%).

Of 104 RM episodes, 56, 35, 11, 1, and 1 used simvasta-
tin, atorvastatin, rosuvastatin, pitavastatin, and pravasta-
tin. As depicted in Additional file 2: Fig. A.1, 89 patients 
had got one episode of outcome occurrence (i.e., pattern 
number 2 and 3), whereas only 7 patients had multiple 
episodes (i.e., pattern number 4) in which, 3 of them had 
ended with the positive outcome at every period of tak-
ing statins.

Most patients were female (63%), mean age was 
67 years, and 66% had hypertension. About 64% had con-
currently used statin and other drugs, in which the top 
3 ranking drugs were lorazepam (19%), carvedilol (8%) 
and alprazolam (7%), shown in Additional file 2: Fig. A.2. 
Other characteristics were reported in Additional file 1: 
Table A.8.

Features transformation and selection
Of 122 features, defined daily dose (DDD) and labora-
tory features were categorised based on clinical knowl-
edge, and age was categorised according to a median. 
Distributions of features in train and test datasets were 
quite similar, see Additional file 1: Table A.9. Most statins 
users were aged 65 or older (59%) and taking low-dose 
statins (76%) as well as having normal laboratory results. 
Eventually, 18/122 features were included for model 
development obtained from the univariate analysis as 
well as expert’s judgements as listed in Additional file 1: 
Table A.10. Those included 11 significant features (sta-
tin, antifungals, carvedilol, clarithromycin, colchicine, 
cyclosporine, ticagrelor, hypertension, AST, eGFR, and 
LDL) and 7 expert-opinion features (i.e., age, amiodar-
one, ciprofloxacin, digoxin, diltiazem, ezetimibe, and 
gemfibrozil).

LR findings
The odds ratio (OR) of the proposed LR was reported 
in Table 1. The results demonstrated that taking a high-
dose lipophilic statin was about 23% higher odds of hav-
ing outcome [OR = 1.227 (0.533, 2.829)] relative to taking 
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low-dose hydrophilic statin, but this was not statistically 
significant. Additionally, other medications were con-
sidered and found that taking antifungals, clarithromy-
cin, ticagrelor, cyclosporine, carvedilol, and colchicine 
seemed to increase odds of having outcome more than 
not taking those medications, but only clarithromycin 
was significant with the OR (95% CI) of 2.777 (1.112, 
6.934). Drug interactions between those drugs and high-
dose lipophilic statin were further explored indicating 
the odds of having outcome were significantly increased 
in taking high-dose lipophilic statin with clarithromycin 
and clarithromycin plus antifungals with the ORs (95% 
CI) of 5.662 (1.035, 30.962) and 16.219 (1.775, 148.226), 
respectively.

The odds of outcome were also significantly increased 
for rising AST, poor renal function (reduction of eGFR), 
and having hypertension with the ORs (95% CI) of 35.294 
(11.104, 112.181), 2.360 (1.413, 3.940), and 1.774 (1.017, 
3.095), respectively.

BN findings
Eighteen features were considered in the BN graphi-
cal model, in which eGFR was assigned as a child node, 
whereas the remaining played as parent nodes of the out-
come, see Fig.  2. Clarithromycin and antifungals were 
directly associated with the RM outcome and also could 
be directly associated through statin users. All nodes 
were configured as ranked chance-general node with dif-
ferent diagnostic types, i.e., ‘fault’ for outcome and ‘obser-
vation’ for features. It can be distinguished that eGFR had 
the highest discriminatory value used to predict the out-
come, whereas AST level had the least diagnostic value. 
The conditional probability of outcome given features 
(all parent nodes) was approximately 3%, whereas the 
conditional probabilities of the outcome given individ-
ual features were estimated, see Additional file  1: Table 
A.11. Taking low to high dose hydrophilic statins raised 
the probability of outcome from 6 to 8%, whereas low 
to high-dose lipophilic statins increased the probability 
of outcome only from 2.35 to 3.36%. Taking statins with 
other drugs also increased the probability of outcome, 
especially antifungals, ticagrelor, cyclosporine, digoxin, 
and clarithromycin, as shown in Table  2. For instance, 
occurrence of outcome increased from 6.35 to 38.30%, 
40.33%, 37.89%, and 40.03% if taking low-dose hydro-
philic statin with antifungals, cyclosporine, digoxin, and 
ticagrelor, respectively. Probability of outcome occur-
rence was even increased in these corresponding drug 
interactions with high-dose hydrophilic statin with prob-
abilities of 41.49%, 45.05%, 41.31%, and 41.81%, respec-
tively. Poor renal function also increased the probability 

of outcome occurrence of 5.64%, whereas other co-varia-
bles had only slightly changed the probability.

The conditional probability of outcome occurrence 
with different drug combinations were estimated, see 
Additional file 1: Table A.12–15. According to the anal-
ysis of all possible interactions, a patient aged less than 
65 who had hypertension, poor renal function, elevated 
AST, and concurrent use of low-dose lipophilic statins, 
colchicine, cyclosporine, diltiazem, and ezetimibe, 
had the highest chance of outcome occurrence (80%), 
see Additional file 1: Table A.16. Moreover, the model 
could predict the probability of outcome even though 
there was an unknown feature of individual case.

RF findings
As result in Fig. 3, a beeswarm plotted the SHAP value 
on x-axis and features which were ranked by SHAP 
values on the y-axis. A feature with the highest mean 
SHAP value was located on top of the chart shaded with 
red colour whereas the least SHAP value was located 
on the bottom with blue colour. We found that the top 5 
features with high impacts on RM prediction were AST, 
eGFR, LDL, high-dose lipophilic statin and low-dose 
lipophilic statin. The chart demonstrated that patients 
with abnormal AST (> 30 U/L) lead to higher chance 
of RM occurrence, whereas patients with normal AST 
(≤ 30 U/L) contributed to lower RM risk. Patients with 
eGFR less than 60  mL/min/1.73  m2 were also higher 
risk of RM, which were similar to a patients who took 
high-dose lipophilic statin. Conversely, patients with 
abnormal LDL (> 125  mg/dL) and patients who took 
low-dose lipophilic statin were lower RM risks.

A waterfall plot demonstrated a combination of bar 
chart and line chart. The bar chart indicated feature 
relative importance whereas the line chart showed the 
cumulative ratio of SHAP values ranged from 0 to 100 
percent. As suggested by the beeswarm plot, AST was 
the most important feature followed by eGFR, LDL, 
high-dose lipophilic statin, and low-dose lipophilic sta-
tin with cumulative contributions of about 93%.

XGBoost findings
As shown in Fig. 3, the top 5 important features on RM 
prediction were AST, eGFR, LDL, HTN, and high-dose 
lipophilic statin. The visualisation of a beeswarm plot 
indicated that patients with abnormal AST (> 30 U/L), 
low eGFR level (< 60 mL/min/1.73  m2), HTN, and tak-
ing high-dose lipophilic statin were higher RM risks, 
whereas patients with abnormal LDL (> 125  mg/dL) 
were lower RM risk. The SHAP waterfall plot suggested 
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that cumulative contributions on RM by those five fea-
tures were about 95%.

Models performance
All performances of LR, BN, RF, and XGBoost were 
shown in Fig. 4. Sensitivity or recall was the most impor-
tant metric for this study because the model should cor-
rectly detect the occurrence of outcome compared with 

the actual positive outcome. In addition, the model 
would be designed as a clinical decision support system 
which helped to screen the patient. The high number of 
false negative predictions will affect on loss and delay of 
effective treatments to patients. As the results, all mod-
els had high level of sensitivity (LR: 0.850 (95% CI 0.694, 
1.00), BN: 0.900 (95% CI 0.769, 1.000), RF:0.950 (95% CI 
0.854, 1.00), XGBoost: 0.950 (95% CI 0.854, 1.00)), but 

Absent 97%
Present 3%

Rhabdomyolysis or Muscular
related adverse events

eGFR_60_upper62%
eGFR_lower_60 38%

eGFR

Absent 40%
Present60%

Hypertension

Absent 92%
Coadministration 8%

Carvedilol

below_or_equal_30 60%
higher_than_30 40%

AST

Absent 96%
Coadministration 4%

Amiodarone

Absent 93%
Coadministration 7%

Ciprofloxacin

Absent 98%
Coadministration 2%

Clarithromycin

Absent 96%
Coadministration 4%

Colchicine

Absent 99%
Coadministration 1%

Cyclosporine

Absent 98%
Coadministration 2%

Digoxin

Absent 97%
Coadministration 3%

Diltiazem

Absent 99%
Coadministration 1%

Ticagrelor

Absent 98%
Coadministration 2%

Gemfibrozil

Absent 90%
Coadministration10%

Ezetimibe

below_65 41%
aged_65_or_upper59%

Age group

low_dose_hydrophilic 9%
high_dose_hydrophilic 4%
low_dose_lipophilic 67%
high_dose_lipophilic 20%

Statin groups

Absent 99%
Coadministration 1%

Antifungals

below_or_equal_125 64%
higher_than_125 36%

High LDL

Fig. 2  Graphical model and diagnostic results of BN. Left pane displayed the conditional probability of an outcome based on the train dataset, right 
pane showed ranking of the features from most to least information
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all of them were not significantly different. However, the 
LR had significantly higher specificity when compared to 
other models (LR: 0.754 (95% CI 0.747, 0.762), BN: 0.562 
(95% CI 0.554, 0.571), RF: 0.684 (95% CI 0.677, 0.692), 
XGBoost: 0.689 (95% CI 0.680, 0.695)). The area under 
the ROC was significantly higher in LR [0.802 (95% CI 
0.796, 0.809)] than BN [0.731 (95% CI 0.724, 0.738)], but 
it was significantly slightly lower than the RF [0.817 (95% 
CI 0.811, 0.824)] and XGBoost [0.819 (95% CI 0.812, 
0.825)]. Nonetheless, the precision and F1 score of all 
models were quite low due to the low prevalence of RM 
outcome.

Finally, the NRIs (95% CI) comparing BN, RF, and 
XGBoost with the LR models were −  0.212 (−  0.311, 
−  0.114), −  0.496 (−  0.594, −  0.397), and −  0.496 
(− 0.594, − 0.396), respectively, which were significantly 
lower than 0 for all NRIs. From that could be interpreted 
that those three models were significantly inferior in clas-
sification than the LR model.

Discussion
We conducted the study to assess associations of statin 
use and statin-other drugs interactions with RM and 
related muscular adverse effects by linkage of electronic 
databases. The LR model suggested that high-dose lipo-
philic statin tended to approximate 22.7% higher risk of 
RM than low-dose hydrophilic statin, but this was not 

significant. In addition, the high-dose lipophilic statin 
had interaction effects with clarithromycin about 5.6-
folds, and antifungal drugs about 5.8-folds on developing 
RM, but only clarithromycin was significant. Comparing 
between explainable-models, the LR was the best relative 
to BN model, but it was slightly inferior in discrimina-
tive performance than the RF and XGBoost with the area 
under ROCs of 0.802, 0.731, 0.817, and 0.819, respec-
tively. However, the LR model yielded highest F1 score, 
followed by the XGBoost, RF, and BN, but those were not 
significantly different. Furthermore, the NRIs indicated 
that the BN, RF, and XGboost models were significantly 
inferior in model classifications than the LR model.

The estimated RM prevalence was as high as about 2 
per 1000 patients, which was higher than those reported 
by previous studies [7, 8]. That indicated that data link-
ages among clinical diagnosis, laboratory findings, and 
the SRS databases could improve identifying and report-
ing RM. The process of outcome verification was per-
formed by research teams by reviewing electronic health 
databases, in order to reduce ascertainment bias of RM 
outcome [31–33]. All 122 features were listed based on 
clinical knowledge and review of literatures [3, 34], espe-
cially with medications. For developing models, the study 
had chosen features having high information using sev-
eral processes of features selection. The bootstrapping 
technique which was initially applied for screening the 

Table 2  Conditional probabilities of the outcome predicted from statin-drug interaction effects

Features 1. Low-dose

hydrophilic (%)

2. High-dose

hydrophilic (%)

3. Low-dose

lipophilic (%)

4. High-dose

lipophilic (%)

Statin alone 6.35 8.54 2.35 3.36

Amiodarone 27.51 34.04 12.49 14.43

Antifungals 38.30 41.49 19.11 36.36*

Carvedilol 18.22 22.86 7.22 7.26

Ciprofloxacin 15.99 20.02 7.34 9.52

Clarithromycin 26.07 38.43 12.87 20.81

Colchicine 23.18 31.69 9.84 12.33

Cyclosporine 40.33* 45.05* 18.24 27.34

Digoxin 37.89 41.31 16.62 23.84

Diltiazem 26.35 28.45 10.77 14.46

Ezetimibe 13.11 11.74 6.55 7.10

Gemfibrozil 20.57 31.48 12.00 18.76

Ticagrelor 40.03 41.81 24.02* 18.49

*The highest probability of outcome which was compared with other combinations within each statin group

Highlight showed the top 5 highest probabilities of the outcome for each statin group
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relevant features from the high dimensional variables 
and the collinearity test corresponded to literature [35–
37]. Then some drugs were regrouped as new features 
based on clinical therapeutic uses, i.e., statin groups, 
antifungals, and NOAC, in order to avoid the problem 
of zero positive events for each feature. The regrouping 
decreased granularity of data resulting in in a limitation 

of drilling down on the details of each drug that belonged 
to antifungals and NOAC. Finally, both statistical method 
(univariate analysis) and expert’s judgment were used to 
consider which features should be included for model 
development.

The proposed models including LR, BN, RF and 
XGBoost suggested the association between drugs and 

SHAP beeswarm plot of RF SHAP waterfall plot of RF

SHAP beeswarm plot of XGBoost SHAP waterfall plot of XGBoost

Fig. 3  Estimation of feature important values by SHAP analysis for RF and XGBoost
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the RM with acceptable to high performance levels. 
Although the sensitivity of the LR model was about 5% 
and 10% lower than BN and RF/XGBoost models, those 

were not statistically different. The LR model yielded 
highest specificity of 0.754 whereas the BN had lowest 
followed by RF and XGBoost, which were about 19.2%, 

Fig. 4  Performance of the proposed models: LR, BN, RF and XGBoost. LR: Logistic regression, BN: Bayesian network, RF: Random forests, XGBoost: 
Extreme gradient boosting
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7.0%, and 6.6% lower than the LR, respectively. Likewise, 
the F1 score was highest in the LR model, followed by 
XGBoost, RF, and BN. However, the area under the ROC 
of the LR was significantly higher than the BN models 
[0.805 (0.796, 0.809) vs. 0.731(0.724, 0.738)], respec-
tively, but it was significantly lower than the two other 
unexplainable models of RF and XGBoost [0.817 (0.811, 
0.824) and 0.819 (0.812, 0.825)], respectively. The LR and 
BN models were known as the white-box models, which 
could estimate the effect size of features on RM directly. 
Although the RF and XGBoost were known as the black-
box models (i.e., unable to estimate effect sizes), feature 
importance and contribution on RM outcome could 
be explained by the SHAP values. However, the NRIs 
indicated that BN, RF, and XGBoost were lower perfor-
mance in misclassifying non-RM than the LR model. In 
addition, interpretation and explainability of the model 
played an important role in healthcare domain, because 
the impact of features on RM should be relevant and cor-
respond to biological/clinical mechanism and knowledge 
leading awareness in drug prescription. Therefore, the LR 
should be more suitable to the aims of this study and also 
be useful in clinical interpretation and more applicable 
than the BN, RF and XGBoost.

For the results of LR, a higher odds of outcome with 
taking a high-dose lipophilic statin corresponded to the 
characteristics of statins [9, 38, 39]. In accordance with 
the higher odds of outcome with concurrent use of high-
dose lipophilic statin and another drug were related 
to the metabolic and elimination pathway of statins. 
Both substrates (ticagrelor and colchicine) and inhibi-
tors (antifungals, clarithromycin, and cyclosporine) of 
CYP3A4 were competitors in the metabolic pathway of 
simvastatin, lovastatin, and atorvastatin. Carvedilol is an 
inhibitor of P-glycoprotein, a cellular transport pathway 
of all statins. Moreover, concurrent use of those drugs 
(e.g., cyclosporin, digoxin, ticagrelor, and antifungal) 
with hydrophilic statin also remarkably increased the 
conditional probabilities of the outcome in accordance 
with results of BN. Therefore, these medications induced 
statin retention leading to higher odds of the outcome 
corresponding to previous studies [31–33, 40–43]. In 
addition, a patient who had been concurrently taking 
high-dose lipophilic statins, clarithromycin, and antifun-
gals should be closely monitored about the outcome due 
to the high odds of outcome. Additionally, patients who 
had hypertension, elevated AST level, or decreased eGFR 
level were higher risk of RM which corresponded to lit-
erature [3].

For clinical implementation, the proposed LR model 
should be applied for confirmation of the outcome occur-
rence, because it had a higher performance as well as easy 
for use and explanation with an explicit coefficient of an 

individual feature. Nevertheless, LR was not suitable to 
use as a clinical decision supporting system due to sev-
eral limitations of multiple logit regression models [44]. 
First, the logit model requires all known variables for pre-
diction. Unfortunately, missing data always happens in 
real clinical practice, and the laboratory features are also 
usually reported after the outcome has occurred. Also, 
interaction effects analysis is done by manually fitting 
the interaction terms into the model, so the LR model 
is inconveniently used for the analysis of interaction 
effects that contain more than 2 variables. On the con-
trary, the BN model could be applied for screening the 
outcome before happening because it could solve those 
limitations for several reasons. First, the model predicts 
the outcome based on prior knowledge learned from 
the train dataset and the given evidence, so the model 
can handle missing data. Second, the interaction effects 
analysis could be done by feeding the conditions as a new 
dataset or directly inputting evidence into the interactive 
model. Hence, the model could predict all input interac-
tion terms at once resulting in less time consumption and 
more comfort compared to the logit model. As a result, 
the BN could find the worst scenario of patients who 
would have the highest probability of an outcome after 
analysing all possible interaction effects. Moreover, the 
BN model allows immediate prediction of the conditional 
probability of the outcome for individual patients.

Nonetheless, there were several limitations of the 
study as follows: First, the data was retrieved from 
one hospital in Thailand resulting in a low prevalence 
of the outcome that could affect on the reliability and 
accuracy of the model. To avoid the problem of zero 
events, the study had regrouped some drug features, 
which led to another limitation of data granularity. For 
example, the model could not drill down on the details 
of whether the active ingredient, i.e., simvastatin, ator-
vastatin, pravastatin, fluvastatin, rosuvastatin, or pita-
vastatin can actually cause the outcome. Second, there 
was an incomplete diagnosis recorded in the clinical 
databases resulting in the problems of outcome iden-
tification. Some events were missing because the ICD-
10-TM code for rhabdomyolysis has only emerged since 
2016. Manual chart reviews were executed to solve this 
gap. However, if there is a higher rate of completeness 
and correctness of recording ICD-10-TM in the future, 
then manual chart reviews might be unnecessary. 
Third, the process of data preparation was complex and 
complicated due to silos of data. All data obtained from 
each electronic database had to be merged together for 
preparing the longitudinal data of individual patients. 
The study included almost 140,000 statin users with 
more than 1.5 million prescriptions of statins. Merg-
ing all data, building individual patient’s timeline, and 
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mapping features to the timelines were time-consum-
ing and high computation was needed. Also, the BN 
model should update the prior knowledge regularly to 
accordingly accommodate changes in clinical practice. 
Therefore, a technique of stored procedure should be 
used for more practical data preparation. The stored 
procedure is a prepared query coding that is created for 
automatic data preparation and saved in the databases 
without increasing the size of data. Fourth, although 
we had attempted to identify interaction of statin-other 
drugs, and also interaction among other drugs them-
selves, only few significant interactions of statin-other 
drugs could be identified, whereas the rest of statin-
other drugs interactions (i.e., ticagrelor, cyclyosporine, 
carvedilol, and colchicine) only showed trend of asso-
ciations due to small numbers of RM outcomes. Our 
study also considered other drug-drug interactions, but 
this caused overfitting of the model, so they were omit-
ted. Neither pharmacokinetic nor genetic feature was 
routinely assessed, thus they were not considered. As a 
result, this study could only repeat previous knowledge 
without adding new knowledge from the literature.

Conclusion
Statin use with high-dose lipophilic might have drug 
interactions with others including clarithromycin and 
antifungals. Use of electronic data linkages should be 
helpful in identify RM cases from statins and those 
medications. A prospective evaluation of the model 
should be further assessed with well planned data mon-
itoring for drug prescriptions and relevant laboratory 
tests particularly for CK level leading to validating the 
LR model. Application of the LR model should then be 
developed later to plug them into a routine drug pre-
scription system.
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