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Regulatory mechanisms underlying coordination
of amino acid and glucose catabolism
in Escherichia coli
Mattia Zampieri 1,2, Manuel Hörl1,2, Florian Hotz1, Nicola F. Müller1 & Uwe Sauer1

How microbes dynamically coordinate uptake and simultaneous utilization of nutrients in

complex nutritional ecosystems is still an open question. Here, we develop a constraint-based

modeling approach that exploits non-targeted exo-metabolomics data to unravel adaptive

decision-making processes in dynamic nutritional environments. We thereby investigate

metabolic adaptation of Escherichia coli to continuously changing conditions during batch

growth in complex medium. Unexpectedly, model-based analysis of time resolved exo-

metabolome data revealed that fastest growth coincides with preferred catabolism of amino

acids, which, in turn, reduces glucose uptake and increases acetate overflow. We show that

high intracellular levels of the amino acid degradation metabolites pyruvate and oxaloacetate

can directly inhibit the phosphotransferase system (PTS), and reveal their functional role in

mediating regulatory decisions for uptake and catabolism of alternative carbon sources.

Overall, the proposed methodology expands the spectrum of possible applications of flux

balance analysis to decipher metabolic adaptation mechanisms in naturally occurring habitats

and diverse organisms.
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In natural environments, bacteria are frequently exposed to
continuous changes in the flow of nutrients1,2. To ensure
growth and survival, bacteria constantly sense metabolic

changes and rapidly adapt to the appearance or depletion of
nutrients3. To this end, cells integrate complex and dynamic
external inputs to decide, which nutrients to consume and when
to switch to consumption of alternative available substrates4,5.
Monitoring dynamic changes in intracellular metabolism is key to
understand regulatory mechanisms underlying adaptation to
fluctuating environments6,7. However, resolving dynamic flux
rearrangements is challenging, in particular in complex media
with parallel consumption of multiple nutrients8,9.

The most rigorous approaches infer intracellular fluxes from
isotopic tracer experiments that are typically limited to steady
state conditions and consumption of a single growth-limiting
nutrient10–12. Alternatively, by assuming optimality functions of
cellular behavior, fluxes can be estimated from constraint-based
modeling of the metabolic network stoichiometry, such as in flux
balance analysis (FBA)13–15. While FBA-like methods provide
network-wide flux solutions, simplistic objective functions, such
as maximization of growth, have been met with limited success
for complex media conditions16,17. In such complex and dynamic
environments without a defined limiting substrate, predicting
metabolic fluxes using FBA remains a major challenge18. New
analytical methodologies capable of tackling the chemical com-
plexity of natural environments and of directly measuring rapid
changes in the abundance of multiple substrates and byproducts
in parallel, can provide additional constraints to model intracel-
lular metabolism and open new opportunities to shed light on the
mechanisms underlying decision-making processes of bacteria
dealing with complex and dynamic nutritional conditions.

Here, we exploit non-targeted mass-spectrometry19 and
developed a novel computational approach to resolve dynamic
metabolic adaptation of bacteria in complex chemical environ-
ments featuring continuous changes in available nutrients. Spe-
cifically, we applied this methodology to Escherichia coli growing
in glucose minimal medium supplemented with casamino acids,
an undefined mixture of amino acids and oligopeptides, as a
proxy for undefined environmental conditions20. Continuous
changes in nutrients availability are monitored by mass-
spectrometry profiling of relative nutrient and by-product
abundance in the supernatant. To meet the time-resolution and
coverage demands for fluctuating environments with large che-
mical diversity, we monitored relative time-dependent changes in
extracellular metabolite concentrations using a high-throughput
non-targeted mass-spectrometry method21,22. Constraint-based
modeling of metabolome dynamics reveals temporal coordination
of glucose and amino acid catabolism, in which degradation of
low-cost amino acids, into oxaloacetate and pyruvate, is respon-
sible for a reduced glucose uptake and increased acetate secretion.

Results
Inference of flux dynamics from exo-metabolome profiles. As
an example of a complex nutritional environment, we cultivated
E. coli wild-type BW25113 in M9 minimal medium with glucose
(5 g/L) and casamino acids (CAA) (2 g/L), an undefined mixture
of amino acids and oligopeptides from digested milk protein23.
The culture exhibited a classical batch growth curve with 4 h of
growth fluctuating around maximum exponential growth rate,
followed by a continuous decline in growth rate (Fig. 1a and
Supplementary Fig. 1). To identify the nutritional conditions that
underlie the changes in growth rate, we collected aliquots of
culture supernatant at ten time points over the growth curve. To
maximize the coverage of metabolites in the medium and to scale
this approach to high-resolved time measurements of dynamic

changes in the exo-metabolome24, we monitored the relative
abundance of 8091 ions by flow-injection time-of-flight mass-
spectrometry (FIA-TOFMS)21. 427 of these ions could be puta-
tively annotated as deprotonated metabolites, which corre-
sponded to nearly 40% of the metabolites represented in a
genome-scale model of E. coli25, and 61% when considering only
metabolites with a known active or passive transport mechanism
(Fig. 1b). One-hundred sixty-seven of the 427 detected metabo-
lites were already present in the medium, demonstrating that
CAA are a potentially complex source of alternative nutrients
beyond amino acids. In particular, we detected several nucleotide
precursors (Supplementary Fig. 2). To verify whether these
compounds were present at relevant physiological concentrations,
we showed that CAA can support the growth of E. coli gene
knockouts that are auxotrophic for uridine, GMP, biotin, and
xanthine (Supplementary Fig. 3). Of the 427 metabolites detected
in the spent medium, 35% were only consumed and 34% secreted
(Fig. 1c). The latter metabolites presumably result from overflow
metabolism that goes beyond central metabolism26,27, and
involve peripheral pathways such as nucleotide metabolism,
consistent with earlier observations28 (Supplementary Fig. 4a).
The remaining metabolites, such as intermediates of the tri-
carboxylic acid (TCA) cycle (Supplementary Fig. 4b), exhibited
more complex secretion and consumption patterns.

While our metabolomics platform revealed unexpectedly
complex exo-metabolome dynamics, suggesting widespread
metabolite secretion as a homeostatic mechanism, the obtained
relative concentration changes do not allow for a direct inference
of intracellular fluxes within a classical FBA framework8,15,29. To
integrate such non-targeted, direct flow-injection metabolomics
measurements21 in a genome-scale model for dynamic flux
estimation, we used constraint-based modeling and developed a
framework that consists of three main steps. First, we determined
absolute concentrations for abundant medium components,
namely glucose, acetate and 20 amino acids (Supplementary
Data 1). Glucose and acetate were measured using existing
enzymatic kits, and for amino acids we set-up calibration curves
on our non-targeted mass-spectrometry platform (see Supple-
mentary Methods). The quality of this non-targeted amino acid
quantification is comparable to that of a standard High-Pressure
Liquid Chromatography (HPLC) method30 (Supplementary
Fig. 5), but has a several-fold higher throughput and sensitivity.
Second, the time-dependent profiles of all detected metabolites,
including glucose, acetate, amino acids, and the remaining 407
metabolites detected by FIA-TOFMS (Supplementary Data 1),
were interpolated using multivariate adaptive regression splines
(MARS)31. MARS models are based on piece wise regression and
automatically determine the number of basis spline functions and
knot locations without the necessity for manual curation31. To
estimate variability in fitting estimates due to noise in the
measurements, we used a bootstrapping approach. For each
metabolite, we repeated the fitting 1000 times using only 90% of
the data. Error estimates were calculated as the standard deviation
over the fittings obtained from downsampled data (e.g., gray
shaded region in Fig. 2c). Next, we estimated relative instanta-
neous uptake and secretion rates by calculating the difference of
metabolite levels between two consecutive time points, divided by
the change in optical density (OD600) and multiplied by the
instantaneous growth rate (Supplementary Data 1). Third, we
incorporated the estimated uptake and secretion rates in a
constraint-based approach to resolve dynamic intracellular
metabolic responses to changes in nutrient availability. Akin to
other dynamic FBA modeling approaches8,17,32, bacterial growth
was divided into N intervals at equidistant optical densities (ODs)
and fluxes were assumed to be constant within these intervals.
Absolute and relative consumption/secretion rates are used as soft
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constraints to reduce the space of feasible flux solutions. To
account for the variability in estimated rates, lower and upper
bounds for each exchange flux (i.e., mean ± standard deviation
determined by the bootstrapping approach) are included in the
model. As changes in OD600 can be routinely measured at high
time-resolution and accuracy using standard plate readers,
experimentally measured growth rates are used as hard constraint
in the model. Hence, maximization of the biomass objective does
not need to be invoked. For metabolites without external
calibration, we introduce an auxiliary time-independent variable
representing the proportional scaling factor (c) between measured
MS intensities and actual concentrations. Instead of solving fluxes
(v(t)) at each time point independently33, our method is
formulated as a one-step global linear optimization problem to
generate time dependent flux maps. The single constraint-based
model contains genome-scale networks (S) for each time point,
time-specific bounds on uptake and secretion fluxes estimated
from absolute measurements of glucose, acetate, and amino acids
in the supernatant (~vðtÞ), and, only for exchange fluxes with
relative estimates of consumption/secretion rates (u(t)), the
vector of time-independent scaling factors c.

To infer the unknowns v(t) and c, we sequentially minimized
three objectives: (i) the L1-norm distance between predicted (v(t))
and estimated (~vðtÞ) exchange fluxes from absolute metabolite

measurements, (ii) the L1-norm distance between predicted v(t)
and estimated relative exchange rates (u(t)), and (iii) the sum of
absolute fluxes along the entire time course (

P
t
jv tð Þj). Assem-

bling the set of constraints generated at each time point in one
global optimization problem allows us to solve the vector of
scaling factors (c) and time-dependent fluxes (v(t)) at once, such
that the flux solutions for each time interval depend on
each other.

To test uncertainty in flux estimates we performed flux
variability analysis (FVA) of the optimal flux solution: for each
reaction, we calculated the maximum and minimum sum of
fluxes over time. We found that for the vast majority (81%) of
metabolic reactions, flux variability was within 10% of the
reported flux solution (Supplementary Fig. 6). 738 reactions
(29%), out of the 2583 in the model, were active throughout most
of the time course, mainly representing reactions essential for
energy and biomass generation. Of particular interest are those
reactions (8%) that were only transiently active and hence may
reflect specific adaptive mechanisms underlying changes in
nutrient availability (Fig. 2a). Most of these reactions were
involved in transport, exchange and catabolism of amino acids,
nucleotide precursors, and intermediates of central metabolism
(Fig. 2b).
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Fig. 1 Exo-metabolome profiling. a Optical densities (OD600; blue line) and instantaneous growth rate—i.e., OD600 difference between two contiguous time
points divided by the time interval (red line), of an E. coli culture growing in M9 glucose minimal medium supplemented with casamino acids (CAA). Dots
represent time points for withdrawal of supernatant aliquots for exo-metabolome analysis. The solid line represents the mean across four biological
replicates, while the shaded region is the mean ± standard deviation. b Percentage of detected metabolites with respect to the annotated compounds in the
genome-scale model of E. coli25: metabolites that can be exchanged with the external environment (white and yellow), and those that are constrained to
be intracellular (red and black). c Percentage of detected metabolites exhibiting complex (yellow) or monotonic profiles, i.e., instantaneous derivative in
time is always negative (green—consumed) or positive (blue—secreted). d The total incoming flux of carbon at each given time is calculated by multiplying
the number of carbon atoms for each compound and the respective estimated uptake flux. The relative percentage is reported. Only those metabolites
contributing for at least 2% of the total incoming carbon are listed. The remaining compounds are grouped (i.e., Various in the legend). Correspondence
between metabolite IDs in the legend and metabolite names can be found in the Supplementary Data 1
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Among the transiently active reactions we found the NAD- and
NADP-dependent malic enzymes, which catalyze the anaplerotic
reaction converting malate into pyruvate (Fig. 2c and Supple-
mentary Fig. 7). While these anaplerotic reactions are inactive in
glucose minimal medium34, time-dependent estimates of flux
through the malic enzymes MaeA and MaeB suggest an early
transient activation of the flux from malate to pyruvate in the
presence of CAA (Fig. 2c). To validate this prediction and test the
functionality of malic enzymes in complex medium, we
monitored growth of the two individual malic enzyme knockout
mutants ΔmaeA and ΔmaeB, in M9+ CAA. Consistent with
model predictions of an earlier and stronger activation of the
NAD-dependent MaeA enzyme (Fig. 2c), we observed that the
maximum growth rates were similar to wild-type in glucose M9,

while ΔmaeA exhibits a significant lower maximum growth rate
in M9+ CAA (two-tailed paired t-test, p-value ≤ 0.001) (Fig. 2d).
Since malate is close to the entry point of aspartate/asparagine
and aspartate is a known allosteric activator of both malic
enzymes35,36, we hypothesized that malic enzymes are particu-
larly important in mediating the utilization of C4-substrates like
aspartate. To test this possibility, we repeated the growth assay in
M9 glucose medium supplemented with different aspartate
concentrations (Fig. 2e). This experiment confirmed our hypoth-
esis and showed that, in the presence of aspartate, ΔmaeA has a
reduced growth rate with respect to the wild-type. Overall, we
demonstrated that constraining an FBA model with a combina-
tion of absolute and relative measurements of metabolite con-
centrations in the supernatant allows to estimate dynamic
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intracellular flux rearrangements during the sequential utilization
and depletion of nutrients in a complex medium.

Dynamic coordination of amino acid and glucose consump-
tion. Our model-based analysis revealed mainly two phases of
growth, approximately before and after the culture reaches an
OD600 of 1. The first phase is characterized by catabolism of
amino acids such as aspartate, glycine, glutamate and serine, that
provided a large portion of carbon (~40%) and nitrogen (70-80%)
for rapid growth during the first ~3 h (Fig. 1d and Supplemen-
tary Figs. 8 and 9). During this phase, the culture exhibited low-
glucose uptake, high acetate overflow, and an excess consumption
of nitrogen (Figs. 1d and 3 and Supplementary Figs. 8 and 9).
This excess consumption of nitrogen is predicted to be balanced
by secretion of ammonia, a phenomenon also observed in the
presence of large quantities of glutamine37. Nearly 20% of the
carbon required for biomass formation was derived from meta-
bolites other than amino acids and glucose, but no individual
metabolite contributed more than 2% to the total carbon balance
(Fig. 1d). Notably, in the very first growth phase, model-based
analysis of exo-metabolome data predicted high catabolic fluxes

between 2 and 5 mmol/gDW/h for glycine and serine into pyr-
uvate and for aspartate into oxaloacetate (Supplementary Fig. 10).
Upon near depletion of these amino acids, glucose and ammonia
became the main carbon and nitrogen sources, respectively
(Fig. 1d and Supplementary Fig. 9). In this second phase, glucose
uptake increased from about 6 to 8 mmol/gDW/h and acetate
secretion decreased by approximately 35% (Fig. 3).

Throughout these two phases, the rates of amino acid
consumption varied approximately one order of magnitude
(Fig. 3). Uptake rates for all seven non-degradable amino acids
(Fig. 3, yellow chart areas) were lower than or matched the
theoretical requirements for protein biosynthesis at a given
growth rate. Akin to uptake of methionine that is inhibited by
internal methionine levels38, it appears that uptake rates of all
non-degradable amino acids are tightly regulated by internal
feedback loops, possibly to avoid accumulation of toxic
intermediates39. In contrast, more than half of the degradable
amino acids (i.e., 7 out of 13), in particular serine, glycine,
threonine, aspartate, and glutamate, were consumed at rates
much higher than required solely for protein biosynthesis.
Consistent with previous evidence40, we found that the average
amount of amino acid consumed per unit change in OD600 (i.e.,
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initial amino acid concentration divided by the OD600 at time of
depletion) is inversely related to its metabolic cost, defined as the
number of high-energy phosphate bonds required for biosynth-
esis41 (Fig. 4a, b). Our data hence supports the hypothesis that
amino acid biosynthetic cost imposes a selective pressure to
encode less costly amino acids in highly abundant proteins41,42

(Supplementary Fig. 11). To test whether the observed amino acid
uptake rates depend on their absolute or relative concentration in
the medium, we supplemented the medium with seven mixes of
all amino acids at different quantities and determined their
individual average uptake rates (Fig. 4d). For most amino acids,
varying amounts of their concentrations in the media did not
affect our previous conclusions (Supplementary Figs. 11 and 12).
However, the average uptake rates of some amino acids (e.g.,
glutamate, glycine, and aspartate) exhibited higher variance than
others across conditions (Fig. 4d and Supplementary Data 2). We
sought to find potential regulatory dependencies between amino
acids by correlating uptake rates between all pairs of amino acids

across the seven conditions (Fig. 4e–g). On average, serine and
aspartate exhibited the strongest correlation with uptake rates of
other amino acids, suggesting for a prominent role of these amino
acids in the regulation of nutrient consumption (Fig. 4e). We
found the strongest positive correlation between valine and iso-/
leucine, and confirmed the functional relationship between these
amino acids by showing that if leucine or isoleucine are depleted
before valine, bacterial growth is strongly inhibited (Fig. 4f and
Supplementary Fig. 13), in agreement with previous findings39.

Overall, our data suggests that amino acids that are “cheap” to
produce, such as serine, glycine, threonine, and aspartate, are
taken up at a much higher rate and degraded, thereby potentially
reducing the need for glucose as a carbon and energy source
(Fig. 1d). Noteworthy, several low-cost amino acids that were
consumed at a rate not exceeding the requirement for protein
biosynthesis, namely proline, arginine, glutamine, and asparagine,
cannot be directly degraded, but first need to be converted into
glutamate or aspartate. The remaining amino acids that could be
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directly degraded but are instead taken up at a relatively low rate,
are alanine, tryptophan, and lysine. However, differently from the
other amino acids, alanine is also an essential component of cell
wall peptidoglycan, and tryptophan and lysine have high
biosynthetic costs (Fig. 4b, c). Altogether these results suggest
for a complex tradeoff between the cost of degrading amino
acids—i.e., the risk of wasting expensive resources such as
methionine43 or tryptophan41—and the potential benefit to fulfill
the demand for carbon and nitrogen.

The role of pyruvate in coordinating glucose catabolism.
Above, we found that some amino acids are catabolized and even
reduce glucose catabolism during the early stages of growth.
While glucose-based catabolite repression of less preferred sub-
strates is relatively well characterized in E. coli40,44–46, much less
is known about the influence of other nutrients on glucose con-
sumption47,48. Thus, we next investigated how E. coli coordinates
catabolism of amino acids and glucose. As a key regulator of
carbon uptake and catabolism, the transcription factor Crp reg-
ulates the expression of many alternative substrate uptake systems
and genes involved in amino acid degradation and carbon cata-
bolism in E. coli44. By measuring Crp activity with a GFP reporter
plasmid, we verified that glucose strongly represses Crp activity44

and that the addition of amino acids does not influence this
repression (Fig. 5a). Thus, our results suggest that transcriptional
regulation by Crp is not responsible for the reduced glucose
consumption.

An alternative mechanism for more rapid control of glucose
uptake relies on changing transporter activity either via
phosphorylation49 or small molecule binding5. Dephosphor-
ylation of the first step of the sugar–phosphoenolpyruvate
phosphotransferase system (PTS), EIIAGlc, leads to the
transport inhibition of several non-PTS carbon sources.
According to the current model, a rapid increase of the ratio
between phosphoenolpyruvate and pyruvate levels would
correspond to increased phosphorylation of EIIAGlc49, and
hence a reduced glucose uptake. We monitored immediate
changes in the intracellular ratio between phosphoenolpyr-
uvate and pyruvate after supplementation of CAA, using
a targeted Liquid Chromatography–Mass Spectrometry
(LC–MS) method50 (Fig. 5b, Supplementary Fig. 14, and
Supplementary Data 2). We observed a rapid increase of
intracellular pyruvate and almost steady levels of phosphoe-
nolpyruvate (Fig. 5b), which according to the current working
hypothesis would cause EIIAGlc dephosphorylation and favor
glucose uptake49. While we do not have direct experimental
evidence, reduced phosphorylation of EIIAGlc seems implau-
sible because EIIAGlc is already completely dephosphorylated
in the presence of glucose49. Moreover, even higher EIIAGlc

dephosphorylation would correspond to an additionally
increased glucose uptake, contrary to our observation. Thus,
collective evidence suggests that the coordination between
glucose and amino acid catabolism is achieved by intracellular
signaling metabolites; the most parsimonious explanation
being modulation of glucose uptake through degradation
products of amino acid catabolism.

To test this hypothesis and to identify putative effector
metabolites, we supplemented E. coli cultures during mid-
exponential growth on glucose minimal medium with eight
different amino acid mixtures. Each mixture was deprived of one
class of amino acids that are catabolized into either of the three
final degradation products, namely the α-keto acids: pyruvate, α-
ketoglutarate, or oxaloacetate. In each experiment, we determined
the rates of growth, glucose uptake, and acetate secretion and
measured the dynamic intracellular metabolome response up to

90 min after amino acid supplementation by non-targeted FIA-
TOFMS51 (Supplementary Fig. 15 and Supplementary Data 2).
Generally, addition of amino acids affected glucose consumption
and acetate secretion (Table 1) and caused large concentration
changes in intermediates of central metabolism, primarily
pyruvate, and oxaloacetate (see Supplementary Discussion and
Supplementary Fig. 15). Relative concentration changes deter-
mined by FIA-TOFMS were consistent with previous absolute
concentration measurements by LC–MS (Supplementary Figs. 14–
16). To identify candidate metabolites that can potentially
regulate glucose catabolism, we correlated relative metabolite
changes 15, 30, 60, and 90 min after amino acid supplementation
with growth rate, glucose uptake rate, acetate secretion rate, and
the split ratio of acetate secretion vs. glucose consumption. For at
least one time point, four metabolites correlated with the fraction
of secreted acetate relative to consumed glucose, eight with
acetate secretion, and one with growth rate, respectively
(Supplementary Fig 17 and Supplementary Data 2) (absolute
fold change ≥ 2 and correlation p-value ≤ 0.001). While in CAA
supplemented cultures the concentration of most of these
metabolites increased steadily over the course of 90 min
(Supplementary Fig. 15), pyruvate levels peaked after 30 min
and exhibited the strongest correlation with the ratio between
acetate secretion and glucose uptake across all supplemented
amino acids mixtures (Fig. 5c, d). We found a similar correlation
in previously published data52 monitoring metabolite and flux
changes in gene deletion mutants (Supplementary Fig. 18),
suggesting that the coupling between pyruvate levels and carbon
uptake/metabolism generalizes beyond the specific conditions
tested here.

The rapid accumulation and subsequent depletion of intracel-
lular pyruvate levels upon CAA supplementation were compatible
with the initial growth phase during which glucose consumption
was reduced, and the subsequent phase, after depletion of low-
cost amino acids, characterized by increased glucose uptake and
decreased acetate secretion (Figs. 4a and 5c). In media lacking
amino acids such as serine, glycine, threonine, tryptophan,
cysteine, and alanine that are degraded into pyruvate, we
observed no suppression of glucose uptake (Table 1), showing
that pyruvate levels change in response to catabolism of amino
acids. Moreover, previous results from chemostat experiments
have shown that increasing glucose uptake corresponds to
increased intracellular levels of pyruvate53, which is opposite to
the negative correlation (i.e., Pearson correlation=−0.7) found
here between pyruvate levels and glucose uptake. Hence, pyruvate
changes are unlikely to be a mere indirect consequence of changes
in glucose uptake.

Collected evidence suggests pyruvate as a candidate for the
regulation of glucose uptake and acetate secretion. Activation of
acetate secretion by pyruvate was already known because
pyruvate is a strong activator of phosphotransacetylase, catalyzing
the reversible interconversion of acetyl-CoA and acetyl phos-
phate54. Furthermore, E. coli grows relatively slow on pyruvate,
but with very high acetate secretion of >30% of the consumed
carbon34 and similar overflow metabolism has been observed in
other bacteria55. Moreover, pyruvate represses the activity of
PdhR, a transcriptional regulator that negatively regulates
formation of pyruvate dehydrogenase complex (PDHc). We
found that while deletion of pdhR doesn’t affect growth in M9+
CAA, ΔpdhR growth rate is mildly (9%) but significantly reduced
in glucose M9 (two-tailed paired t-test, p-value= 0.0045,
Supplementary Fig. 19). These results suggest that PdhR
residual activity in glucose M9 is completely abolished when
amino acids are supplemented to the medium and intracellular
pyruvate levels are increased up to 20-fold. The combined
increase of pyruvate levels and decreased PdhR activity can

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11331-5 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3354 | https://doi.org/10.1038/s41467-019-11331-5 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


PEP GLT ALA ASP FBP SUCC GOX AKG OXA OXM
0

20

40

60

80

100

120

140

P
er

ce
nt

ag
e 

of
 a

ct
iv

ity

*
*

**

Keto-acids

−2 0 2 4 6
0.5

1

1.5

2

GLC

CAA

SAA

STG

STGTCA

GGPA

AA

GLT

Metabolite fold change log2

A
ce

ta
te

 s
ec

re
tio

n/
gl

uc
os

e 
up

ta
ke

Pyruvate
(30 min)

0 50 100
−2

0

2

4

6

Time (min)

F
ol

d 
ch

an
ge

 (
lo

g2
)

−2

0

2

4

6
F

ol
d 

ch
an

ge
 (

lo
g2

)

−2

0

2

4

6

F
ol

d 
ch

an
ge

 (
lo

g2
)

−2

0

2

4

6

F
ol

d 
ch

an
ge

 (
lo

g2
)

GLC

 

 

pyr
akg
oxa

0 50 100

Time (min)

CAA

0 50 100
−2

0

2

4

6

Time (min)

F
ol

d 
ch

an
ge

 (
lo

g2
)

−2

0

2

4

6

F
ol

d 
ch

an
ge

 (
lo

g2
)

−2

0

2

4

6
F

ol
d 

ch
an

ge
 (

lo
g2

)

−2

0

2

4

6

F
ol

d 
ch

an
ge

 (
lo

g2
)

STG

0 50 100

Time (min)

STGTCA

0 50 100

Time (min)

SAA

0 50 100

Time (min)

GGPA

0 50 100

Time (min)

AA

0 50 100

Time (min)

GLT

a

c

b

d e

0 10 20 30
Time (min)

–8

–6

–4

–2

0

P
E

P
/p

yr
uv

at
e 

(lo
g2

)

0

0.5

1

1.5

2

2.5

C
R

P
 a

ct
iv

ity

×104

GLC CAA
SAA

STG

STGTGA

GGPA AA
GLT

SUC
CAA

SAA

Succinate

Glucose

Fig. 5 Coordination of glucose and amino acids catabolism. a Mean ± standard deviation of Crp activity across different nutritional environments: minimal
medium with either glucose (GLC) or succinate (SUC in green, positive control), and glucose minimal media supplemented with casamino acids (CAA),
synthetic amino acid mix (SAA), SAA deprived of amino acids that can be degraded into pyruvate: (i) threonine, glycine and serine (STG) or (ii) threonine,
glycine, serine, tryptophan, cysteine, and alanine (STGTCA), or α-ketoglutarate: (iii) glutamate, glutamine, proline, and arginine (GGPA), or oxaloacetate:
(iv) aspartate and asparagine (AA), and glucose minimal medium with 0.125 g/L of glutamate (GLT). b Dynamic changes of the ratio between
phosphoenolpyruvate and pyruvate upon CAA supplementation. c Dynamic relative changes in the abundance of pyruvate (blue), oxaloacetate (red), and
α-ketoglutarate (yellow) upon supplementation with the different amino acid mixtures and glucose as the main carbon source. d Relative changes in the
abundance of pyruvate 30min after amino acid addition vs. the ratio between acetate secretion and glucose consumption. e In vitro activity of PtsI in the
presence of only the reactant phosphoenolpyruvate (PEP), or PEP with the addition of glutamate (GLT), alanine (ALA), aspartate (ASP), fructose bis-
phosphate (FBP), succinate (SUC), glyoxylate (GOX), α-ketoglutarate (AKG), oxaloacetate (OXA), and oxamate (OXM). Bar plots report mean ± standard
deviation across three replicates

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11331-5

8 NATURE COMMUNICATIONS |         (2019) 10:3354 | https://doi.org/10.1038/s41467-019-11331-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


potentially support a higher flux into acetyl-CoA and possibly
acetate.

To test whether pyruvate can also directly regulate glucose
uptake, we purified PtsI, the component of the PTS system that
catalyzes the phosphorylation of glucose to glucose-6-
phosphate with phosphoenolpyruvate (PEP) as phosphate
donor. We determined PtsI in vitro activity in the presence of
nine different intermediates of central metabolism, using the
known inhibitor α-ketoglutarate as a positive control5,56. Since
pyruvate is one of the reaction products and a readout of the
assay, the pyruvate-analog oxamate had to be used to
investigate inhibition by pyruvate (Fig. 5e). Consistent with
our hypothesis, we found that compounds with similar
chemical properties to pyruvate, such as oxamate, oxaloacetate
and α-ketoglutarate, but not glyoxylate, inhibited PtsI (two-
tailed paired t-test, p-value ≤ 0.05), while other intermediates of
central metabolism such as glutamate, alanine, aspartate,
fructose bisphosphate and succinate did not exhibit any
inhibitory activity (Fig. 5e). Besides pyruvate’s immediate effect
on PtsI, analyzing previously published proteomics data57, we
found that pyruvate can induce multiple conformational
changes in all protein subunits of the PTS system (i.e., PtsG,
Crr, PtsH and PtsI), hinting at the possibility that pyruvate
interferes not only with PtsI, but also with the stability of the
entire protein complex (Supplementary Fig. 20).

To further demonstrate that increased pyruvate can selectively
inhibit the PTS uptake system, we tested for a potential growth
inhibitory effect by addition of extracellular pyruvate to E. coli
growing with either the PTS carbon source glucose or the non-
PTS carbon source succinate. Since Crp-mediated catabolic
repression would prevent pyruvate uptake during exponential
growth on glucose, we first grew E. coli in glucose M9 media
overnight to stationary phase when Crp activity is high, enabling
uptake of alternative carbon sources. Overnight cultures from M9
glucose or M9 succinate media were then diluted 1 to 100 in the
same minimal media supplemented with 20 or 40 mM pyruvate.
Consistent with the pyruvate inhibition of the PTS system
hypothesis, we observed that pyruvate addition caused lower
growth rates during adaptation to the reappearance of glucose
(Fig. 6a). On the contrary, extracellular pyruvate facilitated the
adaptation to succinate, resulting in faster growth (Fig. 6b).
Consistent with these findings, while succinate consumption is
also strongly reduced upon addition of amino acids (Fig. 6c),
pyruvate levels exhibit reduced levels (Fig. 6d). Differently from
glucose, where Crp activity is already repressed, succinate uptake
is directly controlled by Crp58, and addition of amino acids
coincide with proportional reduction in Crp activity (Fig. 5a).
Thus, collective evidence suggests that rapid catabolism of serine,
glycine and aspartate reduces glucose catabolism and increases
acetate secretion via accumulation of α-keto acids, mainly
pyruvate and oxaloacetate. On the other hand, while amino acid

catabolism modulates glucose uptake via post-translational
regulation, transcriptional adaptation seems to be at the basis of
global carbon flow regulation in the presence of a non-PTS
carbon source.

Discussion
Resolving dynamic flux variations in continuously changing and
nutritionally complex environments has remained a major chal-
lenge59. Growing in rich media, bacteria cannot consume all
nutrients at once, but must decide which to consume first and
how to utilize them. Changing nutrient concentrations force
bacteria to continuously adapt their uptake, which in turn
requires continuous and rapid redirection of intracellular fluxes.
Here, we developed an experimental and computational approach
that allows to infer dynamic metabolic adaptation phases of E.
coli during growth in complex medium. Exo-metabolome pat-
terns revealed complex dynamics in the consumption of nutrients
and secretion of metabolites. Somewhat unexpectedly, maximum
growth occurred at relatively low-glucose uptake and high acetate
secretion. Constraint-based model predictions resolved the
overall contribution of consumed nutrients to biomass formation
and the intracellular fluxes, unveiling underlying metabolic stra-
tegies during the different growth phases with consecutive
depletion of amino acids. Low-cost amino acids provided most of
the carbon and nitrogen needed during the initial phase of rapid
exponential growth that featured relatively low rates of glucose
uptake. In particular, serine, aspartate, and glycine were con-
sumed at much higher rates than required for protein synthesis
and therefore contributed substantially to energy and biomass
generation.

To understand how E. coli coordinates the consumption of
different nutrients and adapts its intracellular fluxes, we mon-
itored the intracellular metabolome response to sudden addition
of different combinations of amino acids. Pronounced changes in
pyruvate levels and their strong correlation with the ratio between
glucose consumption and acetate secretion, suggested pyruvate as
an important regulator of glucose uptake and acetate secretion.
We demonstrated that the pyruvate-analog oxamate inhibits the
activity of the glucose uptake system protein PtsI, and that
extracellular pyruvate hampers growth resumption of E. coli on
glucose, but not on a non-PTS carbon source. Altogether with the
previous experimental evidence of pyruvate as an activator of
acetate overflow in E. coli60, our results suggest that catabolism of
amino acids and glucose is coordinated through changes in the
levels of α-keto acids, primarily pyruvate, and oxaloacetate. Since
our experiments were not performed under nitrogen limitation,
the minor changes in α-ketoglutarate levels do not contradict
previous results on the role of α-ketoglutarate in regulating glu-
cose uptake in response to nitrogen limitation, and extended our
understanding on the functional regulatory role of other keto
acids in central metabolism, like pyruvate and oxaloacetate.

Table 1 Growth rate, glucose consumption, and acetate secretion rates of cell cultures grown with M9 glucose medium and SAA
mixtures deprived of certain groups of amino acids

Condition Growth-rate
(1/h)

GR SD Acetate secretion
(mmol/gDW/h)

AS SD Glucose uptake
(mmol/gDW/h)

GU SD Acetate secretion/glucose uptake AS/GU SD

GLC 0.70 0.03 −5.43 0.16 9.13 0.61 0.59 0.043083
CAA 1.05 0.03 −11.43 1.30 6.46 0.58 1.77 0.256478
SAA 1.05 0.02 −11.26 0.17 7.24 0.75 1.56 0.163309
SAA-STG 0.80 0.02 −8.92 0.36 7.10 0.65 1.26 0.126064
SAA-STGTCA 0.82 0.01 −8.47 1.60 8.57 0.97 0.99 0.218013
SAA-GGPA 0.91 0.05 −8.75 0.29 7.15 0.80 1.22 0.142366
SAA-AA 1.09 0.03 −8.45 0.82 5.77 0.60 1.47 0.209082
GLT 0.79 0.03 −4.60 0.28 7.71 0.32 0.60 0.044204
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The presented experimental and computational method can
quantitatively model intracellular flux rearrangements during
growth of microbes and potentially higher cells in complex
environments beyond the here investigated amino acids. We
envisage that this new approach coupled with the high time-
resolution and coverage achievable with direct infusion mass-
spectrometry24,51,61, in combination with more quantitative
methods such as LC–MS or nuclear magnetic resonance62,63, has
the potential to derive testable predictions on regulatory
mechanisms that underlie the investigated metabolic phenotypes,
even outside of the restricted laboratory conditions.

Methods
Strains and media. For all growth experiments, E. coli BW25113 was initially
grown for 5 h in Luria-Bertani (LB) medium, and subsequently overnight in
M9 minimal medium. As carbon sources 5 g/L glucose and 2 g/L casamino acids
(CAA) (Sigma-Aldrich) were used, if not stated otherwise. The M9 medium
contained, per liter of deionized water: 7.5 g of Na2HPO4 2H2O, 3.0 g KH2PO4, 1.5
g (NH4)2SO4, and 0.5 g NaCl and was adjusted to pH 7 before autoclaving. The
following components were filter-sterilized separately and then added (per liter of
final medium): 1 mL of 1M MgSO4, 1 mL of 0.1 M CaCl2, 1 mL 0.1 M FeCl3, and
10 mL of a trace element solution containing (per liter) 180 mg ZnSO4 7H2O, 120
mg MnSO4 H2O, 180 mg CoCl2 6H2O, and 120 mg CuCl2 2H2O. Carbon source
solutions were filter-sterilized and added separately to the medium.

Cultivation. Growth of E. coli in M9 minimal medium with glucose and CAA
was monitored in a 48-well plate with a Tecan Infinite M200 plate reader (Tecan)
(37 °C, linear shaking), by measuring the absorbance at 600 nm. Cell dry-weight
was inferred from a predetermined conversion factor of 0.48 g cells/OD600

64. For
exo-metabolome profiling, 50 µL of culture broth were sampled at the time
points indicated in Fig. 1a and cells separated from the supernatant by cen-
trifugation (4 °C, 4000 rpm, 10 min).

Exo-metabolome profiling. Absolute concentrations of glucose and acetate in
culture supernatants were determined with enzymatic kits (Megazyme). In parallel,
we used a direct flow-injection mass-spectrometry method (FIA-Q-TOF)21 to
profile relative changes of metabolite concentrations in the supernatant.

Specifically, culture supernatants were injected into an Agilent 6550 Series Quad-
rupole Time-of-flight mass spectrometer (Agilent, Santa Clara, CA), operated in
negative mode. The experiment was performed in triplicates and each sample of
the ten time points was injected twice. From the spectrum of detected ions, amino
acids and other metabolites were annotated as mono-deprotonated ions with the
genome-scale model of E. coli by Orth et al.25. Absolute amounts of amino acids
were estimated by comparing peak intensities measured in the culture supernatant
with intensities of a dilution series of pure amino acids in M9 minimal medium
(see supplementary materials for further details). The validity of the estimated
concentrations was confirmed using an alternative standard method for amino acid
quantification (ACCQ-Tag Ultra Derivatization Kit, Waters) (see Supplementary
Text and Supplementary Fig. 5).Time-dependent profiles of each individual
metabolite detected in the supernatant were interpolated using multivariate
adaptive regression splines (MARS)31. We used the ARESLab Adaptive Regression
Splines toolbox for Matlab/Octave ver. 1.13.0, which can be downloaded here:
http://www.cs.rtu.lv/jekabsons/. To estimate variability in the fitting estimates for
each metabolite, we repeated the fitting 1000 time using only 90% of the collected
data. Error estimates were calculated as the standard deviation over the fittings
obtained from the bootstrapping procedure. Next, we estimated relative instanta-
neous uptake and secretion rates by calculating the difference of metabolite levels
between two consecutive time points, divide by the time interval (i.e., incremental
ratio) (Supplementary Data 1). It is worth noting that an intrinsic problem of data
interpolation is the filtering of high frequencies in the data (i.e., smoothing or rapid
changes of metabolite levels). In principle other approaches can be used to derive
uptake/secretion rates of metabolites in the supernatant, like those described in
ref. 65, which can explicitly take into account a priori knowledge on the time at
which rapid metabolic changes are expected.

Amino acid spiking experiments. To monitor rapid metabolic changes in
response to diverse mixes of amino acids and to facilitate dynamic sampling at
high-throughput, reducing the risk of sample processing artifacts, we used a 96-well
plate whole-culture broth extraction protocol51. Aliquots of cell culture were
extracted without cell separation using cold solvent extraction and then directly
injected into a time-of-flight mass spectrometer21. We supplemented exponentially
growing E.coli cells with synthetic amino acid (SAA) mixtures, containing the same
concentrations of individual amino acids as measured in CAA, but deprived of
groups of amino acids catabolized into pyruvate (e.g., threonine, glycine, and serine
(SAA-TGS) or threonine, glycine, serine, tryptophan, cysteine and alanine (SAA-
TGSTCA)) and other α-keto acids such as α-ketoglutarate (e.g., glutamate, gluta-
mine, proline, and arginine (SAA-GGAP)) and oxaloacetate (e.g., aspartate and
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asparagine (SAA-AA)). Pure M9 glucose medium containing 0.125 g/L of gluta-
mate (SAA-GLT) was used as a control.

To validate that whole-cell broth (WCB) measurements were representative for
intracellular metabolome changes, we also used a fast filtration protocol4 to
exclusively monitor intracellular changes upon CAA and SAA perturbations and
showed that most of the patterns we obtained in WCB samples resembled
measured intracellular changes (Supplementary Data 2).

For the spiking experiments, E. coli was cultivated in 150 mL M9 minimal
medium with glucose in 1 L shake flasks (37 °C, 300 rpm) to exponential phase
(OD600 of 0.2–0.3) before splitting the culture into equal portions for further
cultivation (30 mL per 500 mL shake flask and 1.2 mL per well for 96-deep well
cultivations, respectively). At an OD600 of 0.5, the cultures were spiked with amino
acid mixtures to a final concentration of 2 g/L. Subsequently, cell growth was
monitored photometrically and a culture volume equivalent to 2 mL at OD600= 1
was sampled for intracellular metabolite measurements using the fast filtration
technique4.

For extraction of intracellular metabolites, the filter with cells was transferred
into precooled (−20 °C) extraction solution (acetonitrile/methanol/water; 2:2:1)
supplemented with 25 µM phenylhydrazine for derivatization of α-keto acids50.
Only for targeted analysis, 100 μL of an E. coli 13C extract were added as internal
standard to the extraction solution66, immediately after filter addition. After
incubation at −20 °C for 1 h, samples were immediately dried under vacuum at 30 °
C for targeted analysis by LC–MS62 or directly used without drying for untargeted
analysis by FIA-Q-TOF21,51, respectively. For targeted analysis by LC–MS, dried
samples were resuspended in 100 μL of water of which ten μL were injected on a
Waters Acquity UPLC with a Waters Acquity T3 end-capped reverse phase column
(150 × 2.1 x1.8 mm; Waters Corporation, Milford, MA, USA). Metabolites were
detected on a tandem mass spectrometer (Thermo TSQ Quantum Triple
Quadropole with Electron-Spray Ionization; Thermo Scientific, Waltham,
MA, USA).

Untargeted constrained flux balance analysis. Standard FBA couples mass
balance, thermodynamic (i.e., reaction reversibility) and capacity constraints to
stoichiometric metabolic models. Linear constraints define a space of feasible
steady state flux solutions, and the flux distributions that maximize an objective
function, typically biomass production (i.e., vgrowth), are selected with the aid of
linear programming solvers:

max vgrowth ; min
Pn
i

vij j
Sv ¼ 0

Li � vi � Ui

ð1Þ

where, v represents the vector of fluxes, S the stoichiometric MxR matrix (i.e., M
metabolites, R reactions), Sv= 0 is the mass balance constraint and U/L are the
thermodynamic and capacity constraints. Typically, only one substrate is limiting
and maximum growth corresponds to maximum yield. The in-silico medium is
defined by allowing the import of a metabolite from the external compartment to
the intracellular ones (e.g., cytosolic) by adapting the lower/upper bound of the
corresponding reaction. Often, the flux distribution that optimizes biomass pro-
duction and is the most parsimonious—i.e., minimum sum of absolute values, is
selected67.

The genome-scale model of E. coli used in this study accounts for 324 exchange
reactions25. When the medium becomes complex and the limiting resource is not
known, the space of feasible solutions increases and simple objective functions as
pure maximization of biomass are no longer appropriate17,68. In classical
constraint-based modeling (e.g., flux balance analysis), the complexity of the in-
silico medium is reflected in undetermined systems, where the sparsity of
constraints inevitably cause predictions to be inaccurate and unreliable69. To
overcome these limitations, uptake rates can be experimentally determined and
used as constraints in the model to reduce the space of feasible solutions. Here, we
used non-targeted mass-spectrometry, which allows fast, accurate, and sensitive
measurements of nearly 60% of metabolites that can be exchanged between the cell
and its environment (Fig. 1). However, broad coverage comes at the expenses of
only relative and not absolute quantitative readouts. For all 20 amino acids, we
obviated to this limitation using external calibration curves derived from pure
compounds (full details can be found in the Supplementary). Notably, the two
isomers leucine and isoleucine, cannot be distinguished by FIA-TOF analysis.
Hence for these two amino acids we estimated only upper bounds. Independent
measurements of glucose uptake and acetate secretion were performed using
enzymatic kits. To incorporate the direct flow-injection mass-spectrometry
measurements of the remaining metabolites in a genome-scale metabolic model of
E. coli, we implemented an optimization procedure that includes auxiliary
unknown variables reflecting the linear proportionality factors between measured
MS intensities and concentrations. To this end, we divided the experimentally
observed growth time course in N intervals at equidistant ODs, from 0.1 to 4.5 with
a 0.1 OD interval step and assumed fluxes within these time intervals to be
constant. A quasi-steady state assumption is crucial to reduce problem complexity
and maintain linearity in the constraints. For each time interval, the absolute rate of
consumption and secretion of glucose, acetate and amino acids are estimated from
absolute experimental measurements, together with confidence intervals (vmeasA).

The L1-norm distance between absolute measured fluxes (~v) and predicted ones (v)
throughout all time intervals is minimized. Subsequently, we minimize the L1-
norm distance between the relative estimates of exchange rates for metabolites
without a calibration curve, multiplied by a scaling factor c. To this end we
introduce an auxiliary variable D. For metabolites detected to be part of casamino
acids a maximum initial amount of 50 µmol was considered, consistently with the
overall estimates of most abundant metabolites in casamino acids like GMP,
uridine and citrate (see Supplementary Text). Results are robust to small changes of
this parameter. For each exchangeable metabolite in the model, the uptake at time t
cannot exceed the sum of produced and consumed metabolite up to that time. For
those compounds found to be secreted in the medium a lower bound for the
corresponding c factor was estimated by assuming that if the metabolite was
detected in medium at any point during growth, then the maximum concentration
has to be >50 µmol. It is worth noting that all measured rates (absolute and
relative) are used as soft constraints, besides growth rate, which is here imposed as
a hard constraint:

min
P
All

vj j

ðminÞPT
t¼1

P
i2Ψ

Dij j ¼ obj2

ðminÞPT
t¼1

P
i2Ω

viðtÞ � ~viðtÞj j ¼ obj1

SvðtÞ ¼ 0 for t ¼ 1 : T

Li � viðtÞ � Ui for t ¼ 1 : T

vmeasA
i ðtÞ � verrAi ðtÞ � ~viðtÞ � vmeasA

i ðtÞ þ verrAi ðtÞ for i 2 Ω

viðtÞ � ciu
measR
i ðtÞ � Di ¼ 0 for i 2 ΨPT

k¼1

Pk
t¼1

viðtÞ � γ � Δt � ODðtÞ � �0:05 for i 2 Ψ and i 2 CAA

PT
k¼1

Pk
t¼1

viðtÞ � γ � Δt � ODðtÞ � 0 for i 2 Ψ and i=2CAA
Lci � ci � Uci

Lci ¼ 0:05=
Ptmax

t¼t0

viðtÞ � γ � Δt � ODðtÞ
 !

for i 2 Ψ and i=2CAA

vgrowthðtÞ ¼ ~vgrowthðtÞ

ð2Þ

Here, Ω is the set of absolute measured fluxes, ψ is the set of measured fluxes
with relative estimated rates, c is the unknown scaling factor, Δt is the time interval
in hours between two contiguous instances, OD(t) is the optical density measured
at time t and ɣ= 0.413 is the conversion factor used to transform OD readouts in
gram of dry biomass (gDW). Solutions were calculated using the CPLEX IBM
optimization software. The three minimizations were carried out one after the
other in the order described above. Specifically, after solving the first optimization,
the minimum sum of absolute differences between absolute estimated and
predicted fluxes (obj1) is used as a constraint in the second optimization. In the
second optimization, we minimize the L1-norm distance between relative estimates
of metabolite secretion/uptake and predicted fluxes. Finally the objective value
(obj2) is used as constraint to find the flux solution that minimizes the sum of
absolute fluxes. To find the full range of possible flux values (v(t)) we used flux
variability analysis70. Specifically, we minimize and maximize the flux through each
metabolic reaction under the constraint that solutions has to lie in the 99.9% of the
optimal solution (Supplementary Fig. 6). Results from flux variability analysis are
reported in Supplementary Data 1 and in Figs. 2c and 3 as gray areas.

cAMP receptor protein (CRP) activity. Cultivation of the E. coli strain bearing a
transcriptional reporter plasmid for monitoring Crp activity, as well as the calcu-
lation of promoter activity as the OD600 normalized GFP production rate, were
performed using a previously described protocol71,72. Steady state promoter
activities in M9 minimal medium with varying external amino acid composition
were determined during the first rapid growth phase window during which the
cultures exhibited the maximal growth rate.

PtsI enzyme assay. PtsI enzyme assays were performed as previously described by
Doucette et al.5. PtsI (enzyme I) containing an N-terminal histidine tag was pur-
ified from ASKA library strain b241673 and its identity verified by SDS page.
Purified PtsI was pre-incubated for 5 min at 37 °C with a 1:4 mixture of 2 mM
sodium phosphoenolpyruvate (Sigma-Aldrich, ≥ 97%) and sodium pyruvate
(Sigma-Aldrich, ≥ 99%), in a buffer containing 25 mM sodium phosphate adjusted
to pH 7 and 2.5 mM MgCl2. The reaction was started by addition of an amount of
13C-labeled sodium pyruvate (Cambridge Isotope Laboratories, ≥ 98%) equivalent
to the amount included in the pre-incubation mixture, yielding a final PEP/pyr-
uvate ratio of 1:8. Approximately 1 μg of purified protein was used in each reaction,
and the total reaction volume was 300 μl. Putative inhibitors were included in the
pre-incubation mixture at a concentration of 2 mM. At each time point of interest,
20-μl samples were simultaneously quenched and diluted by pipetting into 980 μl
of 80% v/v methanol in water at −70 °C. After drying the samples and
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resuspension in water, the fraction of 13C-labeled PEP in the total PEP pool was
determined by LC–MS analysis. Similarly to5, for each time course weighted
nonlinear least-squares regression was used to fit the following equation:

L tð Þ ¼ 0:45ð1� ektÞ ð3Þ
to the mean and s.e.m. of three experimental replicates. L is the 13C-labeled fraction
of the PEP pool at time t, and k is the fitted parameter representing the rate
constant of the labeling reaction; 0.45 is the 13C-labeled fraction of total carbon.
The estimated k-values of each assay were then compared using t-test analysis to
identify compounds with a significant inhibitory effect (Fig. 5e).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data discussed in this study can be found in the supplementary tables.

Code availability
Matlab code to reproduce the FBA flux predictions is available at http://www.imsb.ethz.
ch/research/zampieri-group/resources.html.
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