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Abstract

Aims Takotsubo syndrome (TTS) is an acute potentially reversible cardiac syndrome characterized by variable regional
myocardial akinesia that cannot be attributed to a culprit coronary artery occlusion. TTS is an important differential diagnosis
of acute heart failure where brain natriuretic peptides are elevated. Sacubitril/valsartan is a novel and effective
pharmacological agent for the treatment of patients with heart failure. Our aim was to explore whether treatment with
sacubitril/valsartan could prevent isoprenaline-induced takotsubo-like phenotype in rats.
Methods and results A total number of 186 Sprague–Dawley male rats were randomized to receive pretreatment with
water (CONTROL, n = 62), valsartan (VAL, n = 62), or sacubitril/valsartan (SAC/VAL, n = 62) before receiving isoprenaline
for induction of TTS. We recorded heart rate and blood pressure invasively. Cardiac morphology and function were
evaluated by high-resolution echocardiography 90 min after the administration of isoprenaline. We documented the
survival rate at the time of echocardiography. Compared with the CONTROL group, the SAC/VAL group had less
pronounced TTS-like cardiac dysfunction and lower mortality rate, while the VAL group did not differ. Heart rate and blood
pressure were not significantly different between the groups. Analysis of cardiac lipids was performed with mass
spectrometry. The VAL and SAC/VAL groups had significantly higher levels of lysophosphatidylcholine (LPC), in particular
LPC 18:1 and LPC 16:0.
Conclusions Pretreatment with sacubitril/valsartan but not with valsartan reduces mortality and attenuates isoprenaline-
induced apical akinesia in the TTS-like model in rats. Sacubitril/valsartan could be a potential treatment option in patients with
TTS in humans.
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Introduction

Takotsubo syndrome (TTS), ever since been reported by Sato
et al. in 1990,1 is an increasingly recognized acute heart failure
syndrome. The typical phenotype of TTS is characterized by
the akinetic apex and hyperkinetic base of the left ventricle
(LV).2 In contrast, atypical phenotypes of TTS are character-
ized by variable LV regional akinesia that spares the apex.3,4

TTS has a similar clinical presentation to acute myocardial in-
farction and acute heart failure. TTS is not as benign as initially
thought because of the risk of serious complications.5 Mortal-
ity was shown to be similar between TTS and acutemyocardial
infarction.6 Treatment of patients with TTS is based on expert
opinion, and we lack evidence from randomized clinical trials.
Consequently, preclinical trials in relevant animal models are
essential for understanding TTS pathophysiology and
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evaluating promising pharmacological strategies for the treat-
ment of TTS in humans.

Takotsubo syndrome patients, like those with heart
failure,7,8 have elevated brain natriuretic peptide (BNP)
levels.9–11 Sacubitril/valsartan (Entresto®)—a drug that in-
hibits degradation of natriuretic peptides and increases
BNP12—has been shown to substantially lower mortality in
patients with heart failure with reduced ejection fraction.13,14

The addition of sacubitril/valsartan to standard therapy in
heart failure led to decreased cardiac sympathetic activity
and increase survival.15 While sacubitril/valsartan is approved
for the treatment of heart failure,16 its potential for the treat-
ment of TTS has been explored neither in experimental nor in
clinical settings.

In the rat model of TTS established by our group, isoprena-
line induces TTS-like phenotype with typical apical akinesia in
LV,17–19 a phenotype that is exaggerated by cardio-stimulants
and prevented by beta-blockers.20 TTS phenotype in this rat
model is also characterized by pronounced intracellular lipid
accumulation in cardiomyocytes. Sacubitril/valsartan is a
combination drug composed of neprilysin inhibitor (sacubitril)
and valsartan in a 1.1 ratio.21 Neprilysin inhibition decreases
cardiac sympathetic activity15 and attenuates myocardial
hypoperfusion induced by isoprenaline.22 Thus, it can be
hypothesized that sacubitril could be beneficial in the setting
of TTS.

We aimed, therefore, to explore whether treatment with
sacubitril/valsartan could prevent isoprenaline-induced TTS-
like phenotype and how sacubitril/valsartan affects myocar-
dial lipid metabolism in rats.

Methods

Animals and animal handling

We followed NIH guidelines for the use of experimental
animals, and the Animal Ethics committee at Gothenburg
University approved the study protocol. In this study, a total
number of 186 Sprague–Dawley male rats were used. The
rats were kept in a temperature-controlled facility (25°C)
with 12 h light/dark cycle and were given free access to both
food and water. We used a combination of ketamine (50 mg/
kg) and midazolam (5 mg/kg) for anaesthesia to allow
echocardiographic studies and haemodynamic monitoring.
The rats were anaesthetised, and hair was removed from
the anterior surface of the neck and the chest with an electri-
cal clipper and hair removal cream. The rats were then
placed in a supine position on a heating pad to keep the body
temperature at 38°C throughout the experimental protocol.
Maintenance anaesthesia during the experimental period
was ensured by administering additional doses of ketamine
and midazolam.

Study protocol

The animals were randomized into three groups to receive
daily treatment with sacubitril/valsartan 68 mg/kg (SAC/VAL,
n = 62), valsartan 31 mg/kg (VAL, n = 62), or water (CONTROL,
n = 62) for 3 days. Sacubitril/valsartan and valsartan were pre-
pared according to ‘Guidance to investigators for formulating
and administering LCZ696-ABA and valsartan to rats’
(Novartis).23 Sacubitril/valsartan was formulated in water at
a concentration required for administration. Valsartan was
first dissolved in 1 N NaOH to generate a stock solution of
200 mg/mL after which water was added to generate a
solution at a concentration required for administration. On
the third day, all animals received isoprenaline 50 mg/kg as
a single intraperitoneal dose. A subset of rats (n = 8) from each
of the three groups were used for the invasive study of
haemodynamics. We based this study on our rat model of
isoprenaline-induced TTS-like cardiac dysfunction.17 Hearts
and blood were collected after echocardiography.

Invasive haemodynamic recording

Continuous invasive blood pressure and heart rate recording
were obtained over 90 min while the rats were kept
anaesthetized. The right common carotid artery was dis-
sected free, cannulated, and connected via a pressure sensor
(Pharmlab Astra Zeneca, Möndal, Sweden). We ensured that
the rats were adequately anaesthetized for the whole
duration of the experiment. After invasive haemodynamic re-
cordings, the rats underwent echocardiographic evaluation.
We harvested hearts and blood before euthanasia.

Echocardiography

We used VisualSonics 770 VEVO imaging station equipped
with a 35 MHz linear transducer (RMV 707) and an integrated
rail system for consistent positioning of the transducer to
study cardiac function. An optimal parasternal long-axis view
(i.e. visualization of both the mitral and aortic valves
and maximum distance between the aortic valve and the
cardiac apex) was achieved. A cine loop of >1000 frames
was acquired using the electrocardiogram-gated kilohertz
visualization technique. The extent of akinesia was traced in
the long axis along the endocardial border and expressed as
a percentage of total LV endocardial length. Fractional
area change, an index of cardiac function, was calculated as
FS = (EDA � ESA)/EDA, where EDA and ESA are
end-diastolic and end-systolic areas, respectively. We defined
the presence of apical ballooning when the extent of akinesia
was ≥20%.
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Lipid analyses

In total, 30 lipid species and two derived lipid variables were
analysed in N = 10 samples each of CONTROL, VAL, and SAC/
VAL. Rat heart biopsies were homogenized in butanol:metha-
nol (3:1 vol/vol) for 5 min at 25 Hz using a Mixer Mill instru-
ment (Retch, Haan, Germany). Known amounts of
heptadecanoyl-containing internal standards [phosphatidyl-
choline 17:0/17:0 and lysophosphatidylcholine (LPC) 17:0]
were added to the samples before extraction, which was per-
formed as described previously.24 The lipid extracts were
evaporated under a stream of nitrogen and reconstituted in
chloroform–methanol (2:1 vol/vol) and stored at �20°C until
further analysis. For mass spectrometry, a small volume of
the total extracts were diluted 1:400 in chloroform:methanol
(1:2) with 5 mM ammonium acetate and infused into a
QTRAP 5500 mass spectrometer using the robotic nanoflow
ion source TriVersa NanoMate (Advion BioSciences, Ithaca,
NJ, USA). Phosphatidylcholines were detected using precur-
sor ion scanning in positive mode using m/z 184.1 as frag-
ment ion.25,26

Statistics

We used the Shapiro–Wilk test and histograms to test
whether variables were normally distributed. Stata software
(Version 16.1) was used for all statistical analyses. The
Kruskal–Wallis or Mann–Whitney test was used for compari-
son of akinesia between groups. For comparison of blood
pressure and heart rate over time between groups, we used
a mixed linear model. The χ2 test for trend was used for mor-
tality comparison. Data were expressed as mean ± SEM and
median with interquartile range (IQR). P < 0.05 was consid-
ered significant. For the lipid-data analysis, R Version 3.6.3
was used. Linear discriminant analysis was performed using
package ‘MASS’. Significance tests were performed using
the Mann–Whitney U test.

Results

Left ventricular function and apical akinesia

The indices of LV function and morphology are presented in
Table 1. The median degree of akinesia was 8.2% (IQR
0–19.4%), and apical akinesia (LV ballooning) was present in
23.3% of rats in the CONTROL group. In the VAL group, the
median akinesia was 6.6% (IQR 0–11.5, P = 0.129 vs.
CONTROL), while the incidence of LV ballooning was 5.7%
(P = 0.041 vs. CONTROL). In the SAC/VAL group, the median
of akinesia was 0% (IQR 0–9.0, P = 0.031 vs. CONTROL), and
5.6% of animals had LV ballooning (P = 0.037 vs. CONTROL)
(Figures 1 and 2, Supporting Information, Videos S1–S3).

Blood pressure and heart rate

Systolic and diastolic blood pressure decreased in all groups
at 60 min post-isoprenaline administration. There were no

Table 1 Echocardiography

Control Valsartan Sacubitril/valsartan

Akinesis (%) 10.2 (9.2) 6.6 (6.9) 5.4 (7.0)*
End-diastolic area (mm2) 49.2 (8.8) 51.1 (7.47) 49.1 (6.9)
End-systolic area (mm2) 33.6 (10.6) 32.3 (7.2) 31.4 (8.4)
Fractional area change (%) 31.5 (16.8) 36.9 (9.2)* 37.8 (16.8)
LV volume in diastole (mm2) 206.8 (71.6) 216.1 (56.5) 198.3 (46.2)
LV volume in systole (mm2) 103.0 (54.1) 91.6 (37.9) 88.4 (40.3)
Stroke volume (μL) 103.7 (69.7) 124.4 (37.5)* 109.9 (40.1)
Cardiac output (mL/min) 44.6 (29.7) 51.2 (25.9)* 48.0 (18.8)
Ejection fraction (%) 49.5 (18.9) 57.7 (11.0)* 56.0 (16.0)

LV, left ventricular.
*P < 0.05 versus CONTROL.

Figure 1 Effect of pretreatment with sacubitril/valsartan and valsartan
on the incidence of akinesia in isoprenaline-induced TTS-like model in
rats in the left ventricle. CONTROL, isoprenaline; SAC/VAL, sacubitril/
valsartan; VAL, valsartan. *P < 0.001 versus CONTROL.
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significant differences in systolic and diastolic blood pressure
among the groups (time–treatment interaction P > 0.05)
(Figure 3A and 3B). Heart rate increased in all groups after
isoprenaline administration. There were no significant differ-
ences in heart rate between the groups (Figure 4).

Mortality

Mortality was 24% in the CONTROL group, 23% in the VAL
group (P = 0.895 vs. CONTROL), and 13% in the SAC/VAL
group (P = 0.0150 vs. CONTROL) (Figure 5).

Lipid analyses

In the subset of samples (N = 10 each of CONTROL, VAL, and
SAC/VAL) analysed for heart–lipid alterations, we found alter-
ations in the myocardial content of LPC (Figure 6). Comparing
the CONTROL group to the VAL and SAC/VAL groups, we
found LPC 18:1, LPC 16:0, and the sum of all LPCs to be signif-
icantly higher (false discovery rate-adjusted P-values of 0.010,
0.037, and 0.041, respectively). No other statistically signifi-
cant differences were found.

Discussion

The main finding in this study is that sacubitril/valsartan re-
duced mortality and apical akinesia in isoprenaline-induced
TTS-like model in rats.

Sacubitril/valsartan—a novel approach to heart failure
therapy with angiotensin receptor and neprilysin inhibition
—has been shown to reduce cardiovascular mortality by
20% and overall mortality by 16% on top of modern treat-
ment with angiotensin-converting enzyme inhibitors,
beta-blockade aldosterone antagonists, cardiac
resynchronization therapy, and implantable cardioverter–
defibrillator.13 Neprilysin is a neutral endopeptidase involved

in the metabolism of several vasoactive peptides. Sacubitril
blocks the action of neprilysin, resulting in higher levels of
peptides, including natriuretic peptides, bradykinin, and
adrenomedullin, which have vasodilator properties, facilitate
sodium excretion, and counteract pathologic cardiac remod-
elling. Sacubitril/valsartan is approved for the treatment of
heart failure16 based on the exceptionally positive data from
the PARADIGM-HF trial,13 and this drug is currently widely
used for the treatment of patients with chronic heart failure.
While studies are ongoing to evaluate the potential of
sacubitril/valsartan for therapy of acute post-infarction heart
failure,27 sacubitril/valsartan has not been tested either in ex-
perimental or in clinical settings for the treatment of TTS. Our
aim in this study was not to address the intricate cellular and
molecular mechanisms but rather to provide initial evidence
that of sacubitril/valsartan may be effective for treating TTS
with a simple and straightforward experimental design.

Pretreatment with valsartan improved LV function but did
not reduce mortality nor apical akinesia. Indices of LV systolic
function were numerically higher in the sacubitril/valsartan
than in the control group. Still, these differences did not reach
statistical significance due to the higher dispersion of mea-
surements. Haemodynamic variables, heart rate, and blood
pressure were similar between the groups suggesting that
positive effects of sacubitril/valsartan are not primarily medi-
ated by alteration in heart rate and blood pressure—two crit-
ical determinants of the development of apical akinesia in the
rat model.28 We have shown that interventions with adeno-
sine, isoflurane, and beta-blockers have positive effects on
cardiac function and morphology in small-animal models of
the TTS-like phenotype. However, none of these treatments
decreased mortality in such quantity as sacubitril/valsartan.

Treatment with sacubitril/valsartan as well as with
valsartan alone has altered intracellular lipid metabolism.
We are not aware of previous studies specifically addressing
the effects of these two pharmacological agents on myocar-
dial lipid metabolism, which is surprising because the lipid
metabolism is profoundly altered in the failing heart.29–31

Lipid metabolism is essential for maintenance of normal

Figure 2 Effect of pretreatment with sacubitril/valsartan and valsartan on systolic blood pressure (A) and diastolic blood pressure (B) in isoprenaline-
induced TTS-like model in rats. CONTROL, isoprenaline; SAC/VAL, sacubitril/valsartan; VAL, valsartan.
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Figure 4 Effect of pretreatment with sacubitril/valsartan and valsartan on mortality in isoprenaline-induced TTS-like model in rats. CONTROL, isopren-
aline; SAC/VAL, sacubitril/valsartan; VAL, valsartan. *P = 0.015 versus CONTROL.

Figure 3 Effect of pretreatment with sacubitril/valsartan and valsartan on heart rate in isoprenaline-induced TTS-like model in rats.
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function and structure of the heart.32 Indeed, the importance
of cardiac lipid metabolism has been further emphasized by
our recent publication in which we provide translational evi-
dence that cardiac glycosphingolipids are required to main-
tain β-adrenergic signalling and contractile capacity in
cardiomyocytes and to preserve normal heart function.33

We found that both sacubitril/valsartan and valsartan af-
fected the metabolism of LPC but not of other lipids, which
is rather intriguing observation given the importance of LPC
for normal function. LPC is a major phospholipid component
in cell membranes accounting for 40% of total phospholipids
in the heart tissue.29,34,35 Because of its amphiphilic property,
LPC is readily incorporated into the lipid bilayers of the cell
membrane, changing the physicochemical property of the cell
membrane and thereby affecting the receptors, enzymes,
and ion channels embedded in the membrane.36 LPC is also
involved in the regulation of intracellular pH.37 Given these
effects, the observed higher survival rate in the rats treated
with sacubitril/valsartan could be due to suppression of ma-
lignant ventricular arrhythmias rather than better cardiac
function. This assumption is supported by Chang et al.,38

who reported that sacubitril/valsartan reduces the inducibil-
ity of ventricular tachyarrhythmia in rats with heart failure
and by the fact that cardiac function was not significantly

Figure 6 Effect of pretreatment with sacubitril/valsartan and valsartan on LV function and development of LV apical ballooning. Apical akinesia is ap-
parent in the rats from the control group (A) and the valsartan group (B) but not in the rats from the sacubitril/valsartan group (C). The red line traces
the endocardial border of the left ventricle.

Figure 5 (A) Principal components analysis (PCA) showing that the first
two principal components do not separate the groups. (B) Linear discrim-
inant analysis (LDA) showing group separation, indicating possible alter-
ations in certain lipid species between the groups. (C) Distribution of P-
values (false discovery rate adjusted) between CONTROL (N = 10) and
VAL + SAC/VAL (N = 20) showing a non-random pattern.
Lysophosphatidylcholine (LPC) species are highlighted in yellow, and
phosphatidylcholine (PC) species are highlighted in grey. The false discov-
ery rate-adjusted P-value of 0.05 is marked as a horizontal line. (D)
Boxplot of the three lipid species/variables (LPC 18:1, LPC 16:0, and the
sum of all LPCs) that show a significant between-group difference. CON-
TROL, isoprenaline; SAC/VAL, sacubitril/valsartan; VAL, valsartan.
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better in the sacubitril/valsartan group. Reduced pro-arrhyth-
mic signal transduction in the heart through LPC-mediated
desensitization of beta-adrenergic receptors could be one of
the anti-arrhythmic mechanisms of sacubitril/valsartan.39

Anti-arrhythmic effects of sacubitril/valsartan on malignant
ventricular arrhythmias have also been demonstrated in
humans.40

Based on available experimental evidence, we speculate
that the protective effects of sacubitril/valsartan could be me-
diated by the anti-sympathetic effects of the drug.15

Sympathetic overstimulation of the heart is essential in the
pathogenesis of TTS41 and arrhythmias,42,43 and we have
previously shown that beta-blockers reduce mortality in this
TTS model.20 Exogenous catecholamines can cause TTS in
humans44 and animals.45 TTS patients often have high levels
of catecholamines.46 While isoprenaline augments internal
catecholamines secretion,47 sacubitril/valsartan decreases
levels of catecholamines.48,49 Our study is in line with Imran
et al., who showed that sacubitril/valsartan protects the cellu-
lar antioxidant defence system against oxidative stress
induced by isoproterenol by reducing lipid peroxidation
activity,50 which is another possible mechanism behind the
positive effects. Sacubitril/valsartan could attenuate induction
of TTS phenotype in this model via increasing BNP51,52 that
counters ventricular stretch and mediates cardioprotection.53

Significant limitations of this study include the absence of
data about sympathetic tone, levels of plasma, and tissue (car-
diac) catecholamines and BNP. In addition, we were unable to
distinguish between arrhythmia and progressive heart failure
as specific cause of death. We have not performed invasive
evaluation of LV haemodynamics with pressure–volume
loops. The strength of the study is the use of a well-
established and reproducible rat model of isoprenaline-
induced TTS that replicates the essential phenotype of TTS

in humans. However, the model is artificial as it is based on
administering a high dose of a synthetic catecholamine.

In conclusion, pretreatment with sacubitril/valsartan pre-
vents isoprenaline-induced TTS-like phenotype in rats.
Sacubitril/valsartan could be a potential treatment option in
patients with TTS in humans.
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Video S3. Echocardiography from the sacubitril/valsartan rat
without apical akinesia.
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