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Genome-wide association studies (GWAS) have identified many disease-associated variants,

yet mechanisms underlying these associations remain unclear. To understand obesity-

associated variants, we generate gene regulatory annotations in adipocytes and hypothalamic

neurons across cellular differentiation stages. We then test variants in 97 obesity-associated

loci using a massively parallel reporter assay and identify putatively causal variants that

display cell type specific or cross-tissue enhancer-modulating properties. Integrating these

variants with gene regulatory information suggests genes that underlie obesity GWAS

associations. We also investigate a complex genomic interval on 16p11.2 where two inde-

pendent loci exhibit megabase-range, cross-locus chromatin interactions. We demonstrate

that variants within these two loci regulate a shared gene set. Together, our data support a

model where GWAS loci contain variants that alter enhancer activity across tissues,

potentially with temporally restricted effects, to impact the expression of multiple genes. This

complex model has broad implications for ongoing efforts to understand GWAS.
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While genome-wide association studies (GWAS) have
been instrumental in associating genetic variation to
disease, functional studies delineating specific causal

variants or effector genes of these associations have yet to become
commonplace. Current evidence indicates that a significant
number of associated variants impart their phenotypic effect
through functional effects on distal gene regulatory elements,
such as enhancers. However, a challenge remains to pinpoint the
causal variants that modulate these enhancers and to identify
their effects on target genes in specific tissues. Recent studies have
posited that regulatory variants are common, and may act in a
pleiotropic manner to modulate expression across cell types1,2.
Therefore, questions remain whether genetic associations are
driven by single or multiple variants, if the phenotypic impact of
causal variants is uniform or cell type-specific, and whether this
regulation occurs across developmental stages or is confined to
specific temporal windows3–6. The ability to characterize the
genetic architecture of disease remains anchored in the need to
develop and interpret comprehensive functional genomic maps in
disease-relevant cell types. Here, we applied a suite of tools to
generate genomic annotations that allow for the functional
interpretation of GWAS loci associated with obesity.

GWAS meta-analyses for body mass index (BMI) have iden-
tified 97 independent loci associated with obesity, where the vast
majority of these loci harbor causal variants that are predicted to
be noncoding7. These noncoding BMI-associated variants are
strongly enriched to lie within regions containing the brain and,
to a lesser extent, adipose enhancers7. These two cell types are
thought to be critical players in BMI maintenance, as they
modulate energy intake in the form of hunger and satiety cues
and control energy expenditure through central and peripheral
circuitry. To functionally interpret obesity-associated loci, we
systematically generated key genomic annotations in primary
human adipocytes and human-induced pluripotent stem cell
(iPSC)-derived hypothalamic neurons. To capture dynamic fea-
tures of chromatin accessibility, gene expression, and long-range
enhancer–promoter interactions, we assessed these parameters
across the differentiation of iPSC-derived hypothalamic neurons
and during the conversion of pre-adipocytes to mature white
adipocytes. In addition, we identified a set of 2396 putatively
causal variants in high linkage disequilibrium (LD) with the 97
BMI GWAS lead single nucleotide polymorphisms (SNPs) and
determined the enhancer activity and allelic effects of each of
these variants by performing a massively parallel reporter assay
(MPRA) in brain and adipose cell lines.

Our MPRA data identified putatively causal enhancer-
modulating variants (EMVars) with regulatory properties in adi-
pose and/or neuronal cell lines. While we identified a single
EMVar in some obesity-associated loci, the majority of loci con-
tained multiple EMVars, demonstrating that the genetic archi-
tecture at GWAS loci is often complex. Assaying the regulatory
landscapes of human adipocytes and hypothalamic neurons across
developmental stages resulted in an increased overlap of func-
tional annotations with EMVars, supporting evidence that a subset
of functional variants have temporally restricted phenotypic effects
in vivo. We synthesized these datasets to provide a ranking system
for variant and target gene prioritization across 36 of the 97
GWAS loci to inform functional follow-up in each cell type. In
addition, we characterized a particularly complex region of the
genome on chromosome 16. This region harbors two independent
GWAS loci that exhibited a dense network of cross-association
in situ promoter capture Hi–C (cHi–C) connectivity and strong
evidence of pleiotropy in our data. Altogether, our work utilizes
high throughput technologies to shed light on the complexity of
GWAS loci and applied a pipeline that can be used to prioritize
GWAS target genes for functional follow-up for any heritable trait.

Results
Regulatory landscapes in obesity relevant cell types. To interpret
obesity GWAS associations, we aimed to generate comprehensive
maps of genome annotations in human hypothalamic neurons and
adipocytes. Despite the prominence of hypothalamic neurons in
obesity etiology little is known about the regulatory landscape of
these cells, in part due to the challenge in obtaining them. To
overcome this, we differentiated human iPSCs into mature hypo-
thalamic neurons. We modulated sonic hedgehog (SHH), trans-
forming growth factor β (TGFβ), and bone morphogenetic protein
(BMP) signaling pathways to induce neuronal differentiation. After
neuronal differentiation, we introduced brain-derived neurotrophic
factor (BDNF) to promote the maturation of pro-opiomelanocortin
(POMC) positive arcuate nucleus-type hypothalamic neurons. We
collected cells at three time points representing early hypothalamic
neuron precursors (D12), early immature (D16), and late (D27)
mature hypothalamic neurons (Fig. 1a). These cells were then pro-
cessed for cHi–C to elucidate putative enhancer–promoter interac-
tions, ATAC-seq to identify open chromatin, and RNA-seq for global
gene expression information. We also utilized non-immortalized
Simpson–Golabi–Behmel syndrome (SGBS)8 human preadipocytes,
which we differentiated to mature white adipocytes and collected
during four key time points representing preadipocytes, differentia-
tion induction, early mature adipocytes, and late mature adipocytes,
respectively (Supplementary Figs. 1a, b and 3a). For each of the
adipocyte time points, we also performed ATAC-seq, RNA-seq, and
cHi–C9–11.

To characterize dynamic changes of these datasets across
differentiation stages, we initially focused on identifying differ-
entially expressed genes (DEGs) in both adipose and hypotha-
lamic neurons. We used fuzzy-c means clustering to group DEGs
into predominant patterns (Fig. 1b and Supplementary Fig. 2a, b).
The three clusters with the highest membership scores are shown
(Fig. 1b and Supplementary Fig. 3b–d). The first and third
clusters (Cluster 3 and Cluster 5) encompassed genes that have
relatively higher expression in early hypothalamic neurons and
were enriched for genes involved in cellular differentiation and
developmental processes. The second cluster (Cluster 1) repre-
sented genes that increased in expression during differentiation
and were enriched for genes involved in synaptic signaling and
neuron generation (Fig. 1b–d).

Using cHi–C, we identified 601,109–935,217 significant chro-
matin interactions per time point in adipose and 124,750–596,847
interactions in neurons, with a median interaction distance
between 178 and 241 kb per library and approximately 20%
promoter–promoter interactions (Supplementary Fig. 2c, d). The
median fragment size for promoter-distal interactions was 604
base pairs, allowing us to map putative regulatory regions at very
high resolution12. In support of these mapsʼ use for enhancer
identification, we evaluated the promoter distal ends of the brain
and adipose interactions and found they were enriched for cell
type appropriate enhancer histone marks identified by ENCODE
(H3K4me1 and H3K27ac), as well as for open chromatin
(Supplementary Fig. 2e, f).

To derive comparisons across time and between datasets, we
show all significant data points in hypothalamus and adipose
using the Hue-Saturation-Value transformation (HSV)13,14

(Fig. 1e–g, Supplementary Fig. 3e–g). With HSV, gene expression,
chromatin accessibility, and cHi–C promoter interactions can be
visualized in a 360° space, where each significant data point is
binned into a representative temporal pattern shown on the
outside of the plot. We also performed a Pearson’s r correlation to
evaluate relationships between time points. In neurons, gene
expression and cHi–C were the least correlated between Day 12
and 16 (r= 0.90; RNA and r= 0.42; cHi–C) and reached an
equilibrium in later differentiation (r= 0.94; RNA and r= 0.58;
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cHi–C). Conversely, the ATAC-seq data were the most correlated
between Day 12 and 16 (r= 0.85) and changed more dramatically
as differentiation continued (r= 0.41) (Fig. 1e–g). To evaluate
whether changes in chromatin accessibility and/or cHi–C
interactions correlate with gene expression changes at gene loci,
we obtained a list of genes that were connected to at least one
ATAC-seq peak via a significant cHi–C interaction in the

hypothalamic differentiation (Fig. 1h). This list contained 7382
genes and on average each promoter interacted with 2–3 unique
ATAC-seq peaks across the time-course (Fig. 1h). To test the
functionality of these interactions, we grouped genes that were
differentially expressed at any time point and compared changes
in chromatin accessibility and cHi–C interaction strength to static
genes. For genes upregulated between two-time points, we
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observed stronger interaction scores and more accessible
chromatin compared to genes that were not differentially
expressed. Downregulated genes also generally demonstrated
stronger suppression of chromatin and interaction scores,
supporting the use of these datasets to identify gene regulatory
regions (Supplementary Fig. 2g). These analyses were also
performed for the adipocyte differentiation and are presented in
Supplementary Figs. 2a, c–g and 3a–i.

Using these data, we generated a high-resolution map of
interactions between promoters and putative regulatory elements
across several developmental stages in both adipose cells and
iPSC-derived hypothalamic neurons. This is a critical first step for
the overarching goal of obesity GWAS interpretation and allowed
us to wire distant enhancers to promoters in a high-throughput
manner (Fig. 1i).

Identifying functional variation in obesity GWAS loci. A
common mechanism by which noncoding variants lead to disease
risk is expression modulation mediated by alterations in enhancer
function2. In order to identify SNPs capable of affecting enhancer
activity at GWAS loci, we employed an MPRA to test variants in
high LD with lead SNPs identified in a recent BMI meta-analysis
conducted by the GIANT consortium7,15,16. Candidate variants
were defined as lead SNPs in 97 independent obesity GWAS loci
and variants in high LD (MAF≧ 5% CEU population, r2 > 0.8),
for a total of 2396 variants. We chose to test all of these SNPs,
rather than those within known annotations, in order to estimate
the full scope of possible functional variants. We obtained 175-bp
DNA fragments centered on each biallelic SNP, and each allele
was synthesized alongside 18–19 unique 10 bp DNA barcodes,
allowing for 18–19 measurements of enhancer activity for every
allele. This resulted in a pool of 89,964 fragments that were
cloned into the pMPRA1 vector15. We tested each region con-
taining an SNP for enhancer modulating activity, as well as allele-
specific differences in activity across three adipose cell types
(SGBS preadipocytes, SGBS mature adipocytes, 3T3-L1 pre-
adipocytes) and two neuronal cell types (GT1-7 and HT22 cells)
(Fig. 2a, b). Across the GWAS loci, we identified 807 genomic
regions in the brain and 543 genomic regions in adipose where at
least one of the two alleles acted as an enhancer, and 460 regions
were enhancers in both cell types (Fig. 2c). Of the enhancers, 94
harbored an EMVar, which conferred significant differences in
enhancer activity between alleles (Fig. 2d). Compared to all tested
regions, MPRA enhancers were enriched for ENCODE
ChromHMM predicted active marks and depleted for inactive
marks in adipose and brain tissues (Supplementary Fig. 4a). They
were also more likely to overlap open chromatin and cHi–C
interactions compared to tested regions without MPRA enhancer
activity, supporting the potential of enhancer function for these
regions in their native chromatin context (Supplementary
Fig. 4b).

Because enhancers are made up of combinatorial transcription
factor (TF) binding sites that can be up to 1 kb in length, we
decided to validate enhancer activity for 24 unique ~1000 bp sized
regions containing MPRA EMVars using luciferase assays in a
brain and/or adipose cell line depending on where they were
found to be significant using MPRA. We found that these longer
DNA fragments resulted in the same enhancer activity call in
luciferase assays for 28/43 (65%) of the conditions tested
(Supplementary Fig. 4c). This indicates that while the size of
the tested enhancer may affect activity, the calls were relatively
consistent across different assay types and fragment sizes.

We next sought to illuminate the network of TFs putatively
bound to these enhancers to understand potential biological
processes regulated within these GWAS loci. We performed TF
motif enrichment analysis within enhancer sequences identified
from each of our MPRA cell types and found that MPRA
enhancers at obesity GWAS loci were enriched for motifs for TFs
that are involved in critical metabolic processes regulated in both
brain and adipose. Multiple members of the AP-1 complex family,
as well as the ATF family, were identified. AP-1 family members
are upregulated during early adipogenesis and are critical for
proper adipose formation, and also have the ability to regulate
whole-body energy expenditure when modulated in the
hypothalamus17–20. ATF factors, in particular, are important for
adipogenesis and have also been shown to regulate thermogenic
programs in the mouse hypothalamus through Agrp expression
modulation21–23. Other TF motifs important for thermogenesis
and glucose homeostasis were also enriched, including those for
the thyroid hormone receptors, IRF3, ESRRA, and USF1/224–27.
Interestingly, TFs important for the maintenance of circadian
rhythm in central or peripheral clocks such as CLOCK, bHLHe40
(DEC1), and BMAL1 were also enriched (Supplementary Fig. 5a,
Supplementary Data 7)28.

In addition to identifying enhancers, the MPRA assay tests for
variants capable of modulating enhancer activity (EMVars). Of
the 94 EMVars, we found 61 brain EMVars and 70 adipose
EMVars, and at least one EMVar was identified in 40/97 (41%) of
tested GWAS loci. Surprisingly, 2/3 of these contained more than
one EMVar (Fig. 2e). In addition, 37/94 (39%) of these variants
affected enhancer activity in both cell types, an observation in line
with the recent GTEx finding that the majority of expression
quantitative trait loci (eQTLs) are not tissue-specific (Fig. 2e)2.
This suggests that at each of these GWAS loci, multiple variants
have the potential to contribute to expression variation. In
addition, the effect of these variants may not be restricted to one
obesity-relevant tissue.

The two loci that harbor the largest number of EMVars identified
in our study were the FTO and ATP2A1 obesity association regions,
each representing strong and highly reproducible associations on
chromosome 16 (Fig. 2e)7. Overall, we observed the largest number
of EMVars mapping to chromosome 16. To investigate this further,

Fig. 1 Characterizing hypothalamic differentiation using genomic annotations. a Time points for data collection. b Hypothalamic DEGs were grouped via
fuzzy-c clustering and the top three clusters with the highest membership are illustrated. The number of genes in each cluster and scaled expression across
the four differentiation time points are shown on each graph. c Significant Gene Ontology (GO) terms for the top three clusters. (Fisher’s Exact Test; FDR
adjusted p values are presented). d A heatmap of gene expression depicting genes from each of the top three clusters that are members of the enriched
GO terms. The leftmost colored bar indicates cluster membership and the columns are RNA-seq replicates. e–g HSV transformation of gene expression
dynamics, ATAC-seq accessibility, and cHi–C interactions across differentiation. Each significant data point is categorized and colored based on the
temporal pattern it displays shown by the guides on the periphery of each plot. The three nodes of each pattern represent day 12, day 16, and day 27 of
neuronal differentiation. The distance of each point from the center of the circle represents maximum log2 fold change, and color transparency represents
the relative number of reads for that data point. Below, heatmaps of Pearson’s r correlation coefficients estimate the overall similarity between time points.
h On average, a promoter interacts with 2–3 ATAC-seq peaks via a c-HiC interaction across time (interactions and ATAC peaks were not required to be
significant at the same time point) n= 7382 data points included. i View of significant cHi–C interactions emanating from the promoter of the NKX2-1 gene,
which is downregulated between differentiation days 12–16. ATAC-seq reads and significant ATAC-seq peaks at day 12 and day 16 are also shown.
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we applied stratified LD score regression (s-LDSC)29,30 to BMI
GWAS summary statistics to estimate heritability across chromo-
somes and confirmed that chromosome 16 contributes dispropor-
tionally to obesity heritability (Fig. 2f, Supplementary Fig. 5b, c)31.
These data suggest that the strong heritability enrichment at
chromosome 16 could be driven by an overabundance of functional

variants, such as EMVars, that exist within chromosome 16 obesity
GWAS loci.

Assigning functional variants to target genes. Having identified
an array of regulatory elements and putatively functional variants

Fig. 2 MPRA identifies enhancers and functional variants in obesity GWAS loci. a Variants were synthesized adjacent to 18–19 unique 10 bp DNA barcodes
and cloned into the pMPRA1 vector. Constructs were transfected into five cell lines from the adipose and brain lineages (see Methods). b Average MPRA activity
across the five replicates is shown for all tested regions in GT1–7 libraries. Significant GT1–7 enhancers (q <0.05; one-sided Mann–Whitney U test) are colored red.
An SNP was considered an EMVar if the variant significantly affected MPRA enhancer activity levels (**q= 4.2e−08; two-sided Mann–Whitney U test. c Venn
diagram of MPRA enhancers significant in either cell type. d Circos plot of MPRA results. Grey lines within the circle represent the locations of GWAS associations,
blue lines represent the locations of MPRA identified enhancers, and the red lines represent identified MPRA EMVars. Locus gene names (closest gene) are shown
in the center. e Bar chart of significant EMVars per locus, along with a Venn diagram of EMVars called in either brain or adipose cell lines. f (left) Total number of
significant EMVars identified per chromosome (n= 1 value per chromosome). (right) s-LDSC estimates from n= 1 BMI GWAS summary statistics of the
heritability explained per chromosome normalized to the proportion of variants tested; data shown are percent heritability explained ± SEM (LD score regression
with a block jackknife approach) (also see Supplementary Fig. 5).
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in obesity GWAS loci, we next aimed to gain insights into the
connections of these regulatory elements with their target genes
in 3D genomic space using cHi–C (Fig. 3a). Understanding the
configuration of these functional variants in respect to promoters
in the nucleus will help identify target genes of the EMVar-
containing enhancers and generate a list of prioritized genes for
future mechanistic studies into their role in obesity etiology.

We intersected the time course cHi–C data generated in
adipocytes and neuronal precursors with EMVar locations to
identify interactions between EMVars and their target genes in a
cell-type-specific manner. Having cHi–C data for multiple time

points in both lineage differentiations allowed us to assign more
EMVars to promoters (Fig. 3b). Interestingly, we observed that if
an adipose EMVar, enhancer, ATAC-seq peak, or H3K27ac
marked region participated in a cHi–C interaction, it contacted a
median of three different promoters across the adipose cHi–C
time-course. Similarly, brain EMVars and enhancers contacted a
median of two promoters across the hypothalamic cHi–C time
course (Fig. 3b). These data suggest pervasive pleiotropic
regulation by these regulatory variants, which could affect gene
expression in disparate tissues or in specific developmental stages.
Our findings underscore the importance of assaying regulatory

Fig. 3 Integration of functional variants with genomic annotations prioritizes target genes. a cHi–C allows for the identification of physical connections
between enhancers (E) and promoters (P) in nuclear space and are shown as arcs on the linear genome (depicted here in pink). b (left) Cumulative
distribution of promoter interactions per EMVar across time in adipose and brain cells. (right) Bar plot showing the number of promoters that each Brain
MPRA enhancer interacts with across all cHi–C replicates (does not include enhancers that do not interact with a promoter). c Diagram of EMVars that are
either in cHi–C interactions and/or are GTEx eQTLs, and not assigned to a target gene with either method. d Genes were binned into classes based on
strength of the evidence supporting them as a GWAS target gene (see Methods). A half shaded circle= eQTL or cHi–C support e MAP2K5, a class I gene,
is shown here with the brain and adipose cHi–C interactions from its promoter. Average activity units for each EMVar barcode and lead SNP from this locus
are shown in a violin plot in HT22 (blue) and 3T3-L1 cells (yellow). * Reached q < 0.05 in at least three out of five independent MPRA experiments; two-
sided Mann–Whitney U test. Additional data are shown in Supplementary Data 6.
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landscapes across development or under specific conditions, a
finding recently corroborated by reports showing genomic
annotations are subject to tissue and temporal specific
regulation3–5,32.

To further assess the functionality of these long-range
interactions and gain additional evidence for gene targets, we
intersected EMVar-promoter interactions with eQTL information
in adipose and brain cell types from GTEx2. For the brain, 26/61
EMVars were eQTLs for a gene in a GTEx(V8) brain cell type and
34/61 interacted with a promoter in at least one cHi–C library.
Twenty-two EMVars participated in interactions with distant
promoters and were eQTLs, while 14/22 were an eQTL for a gene
they interacted with (Fig. 3c). We evaluated the intersection of
adipose EMVars with our adipose differentiation cHi–C and
GTEx subcutaneous or visceral adipose eQTLs in the same
manner (Fig. 3c). Through the integration of these datasets across
time, we were able to assign 38/61 (62%) of brain EMVars and
52/70 (74%) of adipose EMVars to at least one gene in the cell
type where the EMVar was found to alter enhancer activity
(Fig. 3c).

Integrating these annotations established gene expression
patterns, identified regions of open chromatin, pinpointed
enhancers harboring EMVars, and suggested target genes through
long-range enhancer–promoter interactions in obesity-associated
loci. To summarize this for each GWAS locus, we binned genes
into four classes of supporting evidence for both adipose and
brain based on degrees of supporting evidence for their
involvement in obesity etiology (Fig. 3d, Supplementary Data 8).
Identified Class I genes have functions with known relevance to
BMI maintenance, such as cholesterol and steroid metabolism,
food intake, fat mass, mitochondrial function, or leptin
sensitivity33–39. There are also several genes with unknown
functions or functions with unidentified relevance to a BMI
phenotype.

As an example, we show that a brain EMVar (rs4776984) in the
MAP2K5 locus interacts with the Class I gene MAP2K5 (Fig. 3e).
This variant is a GTEx eQTL for MAP2K5 in adipose, brain, and
other cell types. This SNP-gene pair was previously tied to obesity
risk in a study that identified this locus using eQTLs from the
METSIM cohort and cHi–C data from primary human white
adipose tissue40. We confirmed this SNP’s interaction in adipose
and show that it also interacts with MAP2K5 in iPSC-derived
hypothalamic neurons (Fig. 3e). We also identified a second
EMVar in this locus, rs2127163, which was an EMVar in both
adipose and brain. This variant also interacted with and is an
eQTL for,MAP2K5 in both adipose and brain, suggesting that the
association at this locus may be due to at least two different SNPs
in independent enhancers regulating MAP2K5 across these cell
types (Fig. 3e). Our datasets thus allow us to tease apart loci with
multiple potential causal variants and were not influenced by LD
in the same manner as eQTL data alone.

Extensive variant and gene-level pleiotropy within obesity-
associated loci. While the integration of our functional genomics
datasets was able to resolve regions such as the MAP2K5 locus,
where a single gene emerged as the likely target of the genetic
association with obesity, we also uncovered unexpected com-
plexities amongst other loci. As previously mentioned, despite its
modest length, chromosome 16 had the strongest enrichment for
obesity heritability of all human chromosomes and contained the
largest number of EMVars in our study (Fig. 2e, f). This over-
representation was partly due to a hotspot of EMVars within a
600 kb span on chromosome 16p11.2, which harbored two
independent GWAS loci and 10 EMVars (Supplementary Fig. 6a,
b). These two loci were the SBK1 locus and ATP2A1 locus, named

for the gene closest to the lead variant. EMVars within these two
regions formed an extensive network of long-range interactions
with promoters within and between the reciprocal locus, sug-
gesting that several of the genes in this megabase region may be
co-regulated by a set of shared enhancers (Fig. 4a, Supplementary
Fig. 6c). In addition, the EMVars within these two loci were
eQTLs for, and physically interacted with, some of the largest
number of genes in our dataset. Thus, a better understanding of
these regions would shed light on a complex regulatory network
within a GWAS-associated region and serve to test the ability of
our datasets to uncover functional insights into obesity GWAS
loci.

The first of these two regions harbored a lead SNP within the 3′
UTR of SBK1. This SNP is not only associated with BMI, but also
with other bodyweight phenotypes in the UK Biobank41. We
identified three EMVars in this region. Two of these were neither
eQTLs nor participated in cHi–C interactions and were discarded
from the future investigation (Supplementary Fig. 6a). The third,
rs2650492, is the lead SNP of this locus and is an eQTL for 18
nearby genes across GTEx cell types, including 5 in adipose and 7
in the brain. This EMVar also participated in cHi–C interactions
with 13 genes, including those that extended beyond its locus into
the neighboring ATP2A1 locus over 500 kb away (Fig. 4a). In our
MPRA datasets, the GWAS risk allele rs2650492-A decreased
enhancer activity in both adipose and brain cell lines. This variant
localized to open chromatin in our data as well as in a DNaseI
cluster present in 85/125 ENCODE cell types (Fig. 4b).

The second region harbored a lead SNP, rs3888190, which
mapped closest to the ATP2A1 gene. SNPs in this locus have been
associated with obesity in several studies, and the region harbors
rare large copy number variations that lead to early onset
obesity42. This region contained 7 EMVars, the largest number in
our study, and 5 out of the 7 EMVars are in perfect LD with
rs3888190 in the CEU population (Fig. 4c, Supplementary
Fig. 6a). These variants are inherited together on a common
European haplotype present at 32% frequency (Supplementary
Fig. 6a). Five out of the seven alleles segregating on this risk
haplotype decrease enhancer activity in the MPRAs. Three
located between SH2B1 and TUFM decrease enhancer activity,
two located within RABEP2 introns decrease enhancer activity,
and two located within introns of ATXN2L increase enhancer
activity (Supplementary Fig. 6b). Each SNP is an eQTL for nine
genes in adipose and seven genes in the brain. Although eQTL
status is confounded by linkage, each of these EMVars also
contacted several promoters, indicating a capacity for indepen-
dent regulation of multiple genes in the locus (Supplementary
Fig. 6c).

Using luciferase assays, we confirmed EMVar enhancer activity
for all ATP2A1 locus EMVars and rs2650492 in either SGBS
preadipocytes and/or HT22 brain cells depending on where they
were active in MPRA (six actives in adipose and six active in the
brain). We validated that 3/6 adipose EMVars and 4/6 brain
EMVars had allelic effects detectable by luciferase assay. Both
rs2650492 and rs9972768 were confirmed to affect enhancer
activity in both cell types (Fig. 4d). Overall, these data suggested
that multiple functional variants within distinct enhancers are
present at this obesity-associated locus, each with the potential to
regulate multiple genes, thus contradicting the canonical model of
a single casual variant affecting a single target gene. The
pleiotropic regulatory impact on different genes would result in
complex molecular signals emanating from multiple genes that,
together, participate in disease etiology. Given that 27/40 (67.5%)
of EMVar containing loci had more than putatively functional
variant (Fig. 2d), our data suggests that this complex connectivity
will be a common feature of disease-associated loci, and is not
simply an oddity of this region.
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Investigating enhancer activity under unique cellular and
developmental contexts. To provide additional evidence for a
functional connection between the ATP2A1 and SBK1 GWAS loci
on chromosome 16, we used CRISPR-cas9 editing to delete one
EMVar-containing enhancer from each locus. Out of the ten
EMVars identified across the two loci, rs2650492 and rs9972768

were the most supported for causality because they were in open
chromatin, they participated in many long-range interactions with
distal genes, and they were eQTLs for several genes within the
megabase encompassing these regions. We generated polyclonal cell
lines where we deleted the regions harboring rs2650492 or
rs9972768 in a human iPSC cell homozygous for the non-risk

Fig. 4 Two independent GWAS loci physically converge in nuclear space. a The locations of two lead GWAS variants separated by >0.5Mb are depicted.
cHi–C promoter interactions that encompass rs2650492 in the brain (blue) and adipose (yellow). b Location of rs2650492 within the 3′UTR of SBK1, along
with significant DNAseI hypersensitivity clusters in 125 cell types from ENCODE. ATAC-seq peaks and read pileup from day 0 SGBS preadipocytes are also
shown. c Location of all EMVars within the ATP2A1 locus along with ATAC-seq peaks and read pileup from day 0 SGBS preadipocytes and day 12 early
neuronal precursors. d Allele-specific luciferase assay results for EMVars in the HT22 neuronal cell line or SGBS preadipocytes. Fold change is calculated
relative to the control sequence. (n= 4 independent HT22 experiments, n= 3 independent SGBS experiments for all variants with the exception of
rs478100 and rs2650492 which had n= 7 independent experiments). *SGBS: rs2650492 p= 0.009; rs9972768 p= 0.03; rs4788100 p= 0.006; *HT22:
rs2650492 p= 0.01; rs9972768 p= 0.04; rs62037414 p= 0.02; rs12446589 p= 0.04; two-tailed Student’s t test, data are presented as mean ± SEM.
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haplotypes at both GWAS loci (Fig. 5a). We used the BrainSpan
atlas43 of gene expression in addition to expression data collected
from our hypothalamic differentiation and determined that all
genes within this megabase region are expressed uniformly across
early development except NUPR1, which is lowly expressed until
post conception. We, therefore, chose to assay the effects of these
variants during early hypothalamic development. Four independent
deletion clones from each line were then differentiated to the
hypothalamic lineage. Cells were collected at four-time points
representing key early developmental stages: iPSCs, ventralized cells,
neuronal precursors, and hypothalamic precursors (Fig. 5a, b).
Total RNA was extracted from each line at every time point and
RNA-seq was performed to identify genes affected by these
enhancer deletions.

Although these two SNPs map to enhancers separated by over
half a megabase, we found that these deletions independently
affected the expression of a single common gene, SBK1, and the
effect was temporally restricted (Fig. 5c). Both enhancers were
critical for proper SBK1 expression during TP2 (ventralization),
as SBK1 expression was reduced in both lines at this stage. The
convergent regulation of SBK1 by variants from two independent
GWAS loci supports the cross-locus cHi–C interactions that we
observed, as well as the eQTL effect of both rs2640492 and
rs9972768 variants on SBK1 expression.

Looking globally at gene expression patterns in these two lines,
we observed extensive sharing of a large number of DEGs
between the two enhancer deletions. DEG sharing increased
dramatically between the ventralization (TP2) and neuronal
precursor timepoints (TP3), suggesting these two enhancers
converge to regulate an early driver gene that, when misregulated,
leads to a cascade of gene expression changes (Supplementary
Fig. 7a–c). Although the function of human SBK1 is unknown, its
zebrafish homolog, Bsk146, is critical for early neuronal
development. Upon Bsk146 knockdown, zebrafish embryos
exhibited changes to the midbrain–hindbrain boundary, enlarged
hindbrain ventricles, and had small eyes44. Mice lacking Sbk1
have also been shown to exhibit an abnormal neurological
phenotype45. In both of our enhancer deletion lines, Gene
Ontology terms for neural development genes were enriched
within DEGs, supporting a conserved role for SBK1 in this
process (Supplementary Data 10).

While our data in neural lineage cells demonstrated that
enhancers within the two independent GWAS loci regulate SBK1,
it did not address the evidence of pleiotropy suggested by the
many cHi–C interactions. Therefore, we evaluated the ability of
the enhancer harboring rs2650492 to regulate additional genes
under a secondary context. We targeted the rs2650492 EMVar,
the promoter of GAPDH as a positive control, and a negative

Fig. 5 Functional variants in GWAS loci regulate multiple local genes in cis. a Genomic regions targeted by CRISPR–cas9 editing machinery in iPSCs.
(top) A 750 bp region within the 3′UTR of SBK1 containing rs2650492 was targeted for deletion, and (middle) a second 1.3 kb region in between TUFM and
SH2B1 surrounding rs9972768 was deleted in an independent line. (bottom) iPSCs were differentiated to the hypothalamic lineage and collected at four-
time points for RNA-seq. b PCA plot showing all genotypes and time points collected for RNA-seq during differentiation to hypothalamic neuronal
precursors. c Plot of TMM normalized counts per million (CPM) for SBK1 across time points. * rs2650992 deletion lines TP1 q= 0.001, TP2 q= 0.004,
+rs9972768 deletion lines TP2 q= 0.04, TP3 q= 0.002, TP4: q= 0.016; data are shown as mean ± SD (n= 3 clones rs2650492 deletion lines; rs9972768
deletion lines; WT lines TP4 and n= 4 clones WT lines TP1–3). d CRISPRi of enhancer containing rs2650492 in HEK293t cells. The expression after
removal of batch effects for significantly differentially expressed cis-genes identified in RNA-seq analysis across CRISPRi conditions in HEK293t cells. left
panel ***p= 5.1e−33, middle panel **p= 1.0e−4, right panel *p= 3.1e−3 (n= 5 independent experiments Cas9; GAPDH; rs265 and n= 4 independent
experiments Neg Ctrl). boxplot center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range.
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control inactive region within the chromosome 16 locus using
CRISPRi machinery in HEK293t cells (Supplementary Fig. 7d).
We FACS sorted cells containing the Cas9 alone, or Cas9 and
CRISPRi guides, to select for cells that were transfected with the
CRISPRi components. We extracted total RNA from these cells
and performed RNA-seq to look for the downregulation of genes
within the two loci. We observed a significant expression decrease
for one distal gene in the locus, NUPR1, which was very lowly
expressed throughout our neuronal RNA-seq time course (<1
TPM all stages) but is moderately expressed in HEK293t and in
adipose (Fig. 5d). The rs2540492 EMVar was an eQTL for
NUPR1 in several GTEx tissues, and in our data formed frequent
long-range cHi–C interactions with NUPR1 in our adipocyte
differentiation but not in the brain. We also observed a significant
decrease in SBK1 expression after targeting rs2650492 in
HEK293t cells. However, because rs2650492 maps within the 3′
UTR of SBK1, we could not rule out that the change in expression
we detect may be due to the possible hindrance of SBK1
transcription or reduction in stability due to the recruitment of
CRISPRi machinery to the 3′UTR46.

Altogether, our data show that at least two MPRA identified
EMVars in this complex locus is within independent enhancers
that regulate at least one common gene. One of these enhancers,
which harbors the lead SNP of the SBK1 locus, is additionally
capable of regulating a second gene in an alternate cell type. The
pleiotropic physiological effects stemming from these tissue and
temporal regulatory specificities may play a role in the molecular
etiology of obesity risk, and highlight complex considerations in
the functional experiments that will attempt to better understand
the mechanisms underlying GWAS associations to disease
susceptibility.

Discussion
In this work, we generated comprehensive regulatory maps in human
adipose and hypothalamic neurons, which lack complete genomic
annotations despite their prominence in disease etiology. We profiled
these cells across several differentiation stages to catalog chromatin
accessibility, expression patterns, and cHi–C enhancer–promoter
interactions which, together, aid in the interpretation of candidate
causal non-coding variants at obesity-associated loci. Recent work
suggest that regulatory variants associated with human phenotypes
may impart their effect during temporally restricted windows, which
would be missed in functional assays of a single developmental time
point or environmental perturbation3–5,32. Thus, integrating cHi–C
data from multiple time points along with GTEx eQTL data allowed
us to better assign putative gene targets to functional variants and to
provide an evidence-based ranking approach for genes within obesity
GWAS loci.

Interestingly, we frequently identified multiple SNPs within a
locus capable of modulating enhancer activity across two obesity-
relevant cell types. This suggests a previously underappreciated
degree of allelic and tissue heterogeneity. Recent reports support
this notion, with strongly powered and densely genotyped GWAS
identifying independent signals within the same association to
suggest the existence of multiple causal variants within a single
loci47. But few studies to date have investigated how regions
containing multiple causal variants affect gene expression across
tissues and developmental time points. With its increasingly
larger dataset, the GTEx consortium has recently been able to
address patterns of tissue specificity in eQTLs and found a high
level of eQTL effect sharing between tissues2. This indicates
functional variants may have pleiotropic effects across tissues as
frequently, or more frequently than tissue-specific effects.

While we have provided evidence that in a number of obesity-
associated loci there are multiple functional variants potentially

regulating gene expression, we are not able to formally ascertain
the impact of those variants on gene expression. It would be
interesting to test this hypothesis using statistical fine-mapping,
which explicitly identifies all potential causal variants in trait-
associated loci48. This is made difficult, however, by the lack of
individual-level GWAS data. When only summary statistics of
GWAS are available, as in our case, fine-mapping methods will
have to rely on LD information derived from external reference
samples. Potential mismatch of GWAS sample LD and reference
LD may greatly increase false-positive findings. Multiple simu-
lation studies have shown that essentially with GWAS from large
meta-analysis, it is only possible to reliably identify single causal
variants in trait-associated loci49,50. Another challenge of using
fine-mapping to establish allelic heterogeneity is that all current
fine-mapping methods impose “sparsity”, i.e., the number of
causal variants in a locus is small. So, if one variant is detected as
putatively causal, any variant in high LD would be unlikely to be
found as an additional causal variant. In our results, multiple
functional variants in a locus may be in high LD (e.g., the
ATP2A1 locus, see Fig. 4c), so even if there are multiple causal
variants in a locus, the current fine-mapping tools will not be able
to detect them as separate signals. The dissection of the locus on
chromosome 16 that we performed in the current work (Fig. 5) as
well as the obesity-associated FTO locus51 support our model of
multiple variants acting on distinct enhancers at restricted tem-
poral windows. Future work will determine if these insights are
extended to the other loci and variants we report here. A second
limitation to this work involves the use of immortalized cell lines.
Although we used non-immortalized karyotype normal cells to
generate RNA-seq, ATAC-seq, and cHi–C profiles across differ-
entiation, we were limited due to the requirement for high
transferability and millions of cells for the MPRA assays.
Therefore, we had to rely on immortalized cell lines for some of
this enhancer activity and enhancer modulating estimates.

We identified 23% (22/94) of EMVars on chromosome 16
alone. This, and the obesity heritability enrichment of chromo-
some 16, suggests that this chromosome could harbor an over-
abundance of obesity-relevant genes. A complex region in
16p11.2 harbors three independent GWAS loci within a megabase
range. Within this interval, multiple local segmental duplications
in the great ape’s lineage have resulted in new genes and tran-
scripts in the human genome52. These repeat regions leave this
region vulnerable to structural variants, resulting in deletions and
duplications53, where deletions lead to highly penetrant forms of
obesity42,54,55. The gene(s) and mechanisms mediating BMI
phenotypes in this region remain a focus of investigation. This
region emerged from our datasets due to the high complexity of
long-range interactions and patterns of eQTL sharing among
many genes across adipose and brain. Our data demonstrate that
these loci harbor multiple functional SNPs within enhancers that
independently regulate SBK1 early in neuronal differentiation. In
addition, we demonstrated that rs2650492, a GWAS lead variant,
regulates at least one other gene, NUPR1, in a secondary cellular
context. While the profiling of cells carrying deletions of
enhancers was done in cells harboring independent genomic
deletions using CRISPR technology, the editing was carried out in
a single individual, raising the possibility that some of the effects
observed might not be similar in a different genetic background.

Other critical modulators of the obesity phenotype exist within the
ATP2A1 locus, such as SH2B1, a gene involved in leptin and insulin
signaling37,38. This gene and others were eGenes that physically
connected to multiple EMVars. It is likely that investigation of these
EMVars under other conditions or developmental stages would
uncover further examples of pleiotropy in this locus. It has yet to be
elucidated whether many or only a subset of genes, modulated within
this region are capable of contributing to obesity risk.
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Altogether, our work raises the possibility that the underlying
genetic architecture of individual loci associated with obesity may
often involve allelic heterogeneity, where multiple variants in
distinct regulatory elements impart expression effects on the
gene(s) across tissues during uniform or restricted temporal
windows. Whether the complexities we uncovered here are a rule
or exception for loci in variant-to-function studies has yet to be
addressed and will require careful investigation of causal genetic
variation at GWAS loci under multiple cell types and temporal
conditions.

Methods
SGBS culture and differentiation. SGBS cells were a gift from Dr. Martin
Wabitsch. SGBS were maintained and differentiated as previously described8,56.
Briefly, cells were grown in DMEM/F12 (1:1) media (Life Technologies #11330-
032) with 10% fetal bovine serum, 1% penicillin–streptomycin solution (10,000 U/
ml; Gibco #15140122), 8 mg/ml Panthotenic Acid, and 8 mg/ml Biotin (Sigma;
#B4639). Cells were allowed to grow to 70–80% confluency before splitting 1:3 with
0.25% Trypsin–EDTA (Gibco; #25200056). To differentiate, cells were split into
6-well plates, allowed to reach 100% confluency over two days. After maintenance
of confluency, day 0 cells were harvested, and the remaining cells were washed
twice with 1× phosphate-buffered saline (PBS) and exposed to Quick-Diff media.
Quick-Diff media consists of serum-free DMEM/F12 media supplemented with
0.01 mg/ml human transferrin (Sigma #T2252), 20 nM human insulin, 100 nM
cortisol, and 0.2 nM Triiodothyronine. Day 2 cells were harvested two days after
the addition of quick-diff media. Cells were incubated for a total of 4 days in quick-
diff media before 3FC media was added. The 3FC media consists of serum-free
DMEM/F12 media supplemented with 0.01 mg/ml human transferrin (Sigma
#T2252), 20 nM human insulin, 100 nM cortisol, 0.2 nM Triiodothyronine, 25 nM
dexamethasone, 250 µM 3-isobutyl-1-methylxanthine (IBMX), and 2 µM rosigli-
tazone. Mature adipocytes are maintained on 3FC media until collection.

Human iPSCs. We used one iPSC line throughout this manuscript (Yoruban—
line NA19101) which was generated as part of a previously published study57. The
iPSCs were derived from lymphoblastoid cells, they are able to differentiate into all
three germ layers and display a normal karyotype. The feeder-independent iPSCs
were maintained at 70% confluence on Matrigel hESC-qualified Matrix (354277,
Corning, Bedford, MA, USA). Cells were cultured in complete mTeSR1 media
(Stemcell #85850) supplemented with 1% Penicillin–Streptomycin (10,000 U/ml;
Gibco #15140122) at 37 °C in 5% CO2. Cells were passaged when they were ~70%
confluent with enzyme-free dissociation solution (30 mM NaCl, 0.5 mM EDTA, 1×
PBS minus Magnesium and Calcium) and maintained in mTESR1 with 10 μM
Y-27632 dihydrochloride (Abcam #ab120129) for up to 24 h. The medium was
replaced daily.

Human hypothalamic neuron differentiation. iPSCs were differentiated into
hypothalamic arcuate-like neurons, as previously described by Wang et al.58.
Briefly, the SHH signaling pathway was activated and TGFβ and BMP signaling
were inhibited, followed by inhibition of the NOTCH pathway, leading to neuronal
induction, ventralization, and hypothalamic differentiation. After differentiation,
the brain-derived neurotrophic factor (R&D Bioscience #248‐BD) was introduced
to promote neuronal maturation of pro-opiomelanocortin (POMC) neurons. The
neurons were then maintained in this medium supplemented with BDNF and
B27 supplement (Thermo Fisher #17504044). Cells were collected at different time
points and processed for in situ promoter capture HiC (cHi–C), total RNA
extraction, and ATAC-seq.

Timecourse RNA-seq. Adipose. At days 0, 2, 8, and 16 of differentiation 1 million,
SGBS cells were collected and frozen per replicate with three technical replicates
per time point. When all time points were collected, cells were lysed with a 20g
needle, and total RNA was extracted using the RNeasy kit (Qiagen #74104). RNA
quality was assessed on an agarose gel. RNA-seq libraries were generated from 1 μg
of total RNA following the Illumina.

TruSeqRNA Sample Preparation V2 guide and 15 cycles of polymerase chain
reaction (PCR) amplification. Libraries were sequenced on an Illumina HiSeq 4000
machine. Neurons: At days 12, 16, and 27 of differentiation approximately 1 million
cells were collected and frozen per replicate with three technical replicates per time
point. When all time points were collected, cells were lysed with a 20g needle, and
total RNA was extracted using the RNeasy kit (Qiagen #74104). RNA quality was
assessed on an Agilent Bioanalyzer and only samples with RIN > 8 were retained.
RNA-seq libraries were generated from 500 ng of total RNA following the NEB
Next Ultra II Directional RNA-seq kit and 10 cycles of PCR amplification. Analysis:
Analysis included three technical replicates per time point. Gene-level read counts
were quantified in each technical replicate at each time point directly using salmon
(v0.7.2), correcting for sequence-specific bias and using a gene list derived from
GENCODE release grch37.v19. For individual gene expression, read counts per
gene were converted into transcripts-per-million (TPM) to account for gene length
and library size. For the purposes of HSV visualization, gene counts were converted
to TPM to normalize for transcript length and then adjusted for library size using
the trimmed mean of M-values (TMM) normalization. Mean TPM was calculated

at each time point and all genes with mean log2(TPM) < 1 at any time point were
removed from further analysis.

Timecourse clustering. Gene-level read counts were quantified in each technical
replicate at each time point directly using salmon(v0.7.2), correcting for sequence-
specific bias and using a gene list derived from GENCODE release grch37.v19.
Gene-level read counts were transformed into counts-per-million (CPM) and any
gene with CPM < 1 in more than three samples across all time points was removed
from further analysis. The data were normalized to account for library size using
TMM normalization. Linear models testing pairwise differential expression
between any two-time points were fit using limma(v3.48.1). and tested using a
moderated t-test accounting for mean-variance dependence and increased dis-
persion in limma. All genes with significant differential expression between any
two-time points were included in the clustering analysis. Raw gene-level counts
from salmon were normalized to account for transcript length and scaled to
account for differences in gene expression across genes. Fuzzy c-means clustering
was performed in R using the e1071 package. A gene was assigned to the cluster for
which it had the highest membership if (1) its membership score was above 0.3 for
the averaged replicates and (2) above 0.2 for each individual replicate. The top
three clusters were defined by the highest average membership score.

HSV plots. All HSV analyses are developed from code originally published in
Siersbaek et al.14. Value (V) indicates the maximum log2(counts in TPM or CPM)
for a given gene at any time point, and so is defined as

V ¼ maxðCtÞ ð1Þ
Saturation (S) indicates the maximal fold change between any time points and is

defined as

S ¼ 1�mintðCtÞ
V

ð2Þ

Hue (H) indicates the pattern of change in gene expression across time and is
defined as

H ¼ 60 � 2þ CO þ C2 � C16 � V
V � S

� �
� C2 � CO

jC2 � COj
ð3Þ

For visualization purposes, the values of V and S were scaled between 0 and 1
based on rank. MPRA cell lines culture and transfection: HT22 (Millipore Sigma):
Cells were maintained in DMEM (Gibco # 11995-065) supplemented with 10%
fetal bovine serum (FBS) and 1% penicillin–streptomycin solution (10,000 U/ml;
Gibco #15140122) at 37 °C in 5% CO2. We plated 250,000 cells into wells of 6-well
plates and transfected 1 day later with Lipofectamine LTX & Plus reagent
(Invitrogen; #15338100) when 60–70% confluent. 3T3-L1 (ATCC): Cells were
maintained in DMEM (Gibco # 11995-065) supplemented with 10% FBS, 1%
penicillin–streptomycin solution (10,000 U/ml; Gibco #15140122), 0.8 mg/ml
Biotin (Sigma; #B4639) and 0.8 mg/ml Panthotenic Acid at 37 °C in 5% CO2. We
plated 20,000 cells into wells of 6-well plates and transfected 2.5 days later with
Lipofectamine LTX & Plus reagent (Invitrogen; #15338100) when 30–50%
confluent. GT1-7 (Millipore Sigma): Cells were maintained in High Glucose
DMEM (Gibco # 10313-021) supplemented with 10% FBS, 1%
penicillin–streptomycin solution (10,000 U/ml; Gibco #15140122) and 1×
Glutamax (Gibco #35050061) at 37 °C in 5% CO2. We plated 750,000 cells into
wells of 6-well plates and transfected the next day with Lipofectamine LTX & Plus
reagent (Invitrogen; #15338100) when 60–70% confluent. SGBS Preadipocyte (D0):
30,000 SGBS preadipocyte cells were plated into 24-well plates and transfected with
Polyplus jetPEI DNA transfection reagent (Polyplus; #101-10N) when 50%
confluent. These cells were collected 48 h later for RNA processing. SGBS Adipocyte
(D8): Cells were plated as described above for differentiation. On differentiation
day 8, cells were transfected with Lipofectamine LTX & Plus reagent (Invitrogen;
#15338100) and collected on differentiation day 10.

ATAC-seq. We harvested 100,000 fresh SGBS cells or neurons per time point with
two technical replicates. ATAC-seq libraries for each cell type were generated
according to the protocol outlined in Buenrostro et al.9. The cells were lysed,
centrifuged, and frozen at −80 °C until all time points were collected. Final pro-
cessing of all pellets was performed together. Transposed DNA fragments were
PCR amplified using 5–7 PCR cycles. PCR cycle number was determined using
qPCR reactions where the additional cycle numbers were those that corresponded
to the inflection point of the qPCR curve. Peak Calling: ATAC-seq reads were
trimmed to remove Nextera adapters using cutadapt (v8.25) and aligned to the
genome using Bowtie2 (v2.3.2). All reads mapping to the mitochondrial genome
were removed from further analyses. Peak calling was performed using macs2
(v2.1.1.20160309) using no model and an extension size of 200. Significant peaks
were considered those which survived FDR correction (q < 0.05). HSV analysis: The
union set of significant peaks across time points was obtained, and peaks of a
uniform length of 1 kb were obtained by centering around the summit of the
highest peak per peak locus in the union set. The counts per time point mapping to
these 1 kb union peaks were obtained and transformed to log2(CPM) format,
normalizing by library size (defined as a total number of reads in peaks per
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sample). Hue, saturation, and value were calculated using the same equations as
with gene expression, using normalized log2(CPM) values as input.

In situ promoter capture HiC. In situ promoter capture HiC was performed and
analyzed as previously described10,11. Briefly, 5 million SGBS cells or neurons per
replicate were harvested, counted, and crosslinked using a final 1% (v/v) con-
centration of formaldehyde (Sigma #252549) for 10 min at room temperature while
rocking. This reaction was quenched with 0.25 M Glycine (Sigma #G8898) to a
final concentration of 0.2 M for 5 min and washed with 1× PBS. Cells were frozen
in liquid nitrogen and stored at −80 °C until ready for the next stage of in situ
promoter-capture Hi–C processing. Each differentiation time point has two tech-
nical replicates and was sequenced on a full lane of an Illumina Hiseq 4000
machine to achieve sufficient read depth for interaction calling. Data analysis: In
situ promoter capture Hi–C reads were aligned to the genome using Bow-
tie2(v2.3.2) and technical artifacts were removed using HiCUP (v0.5.9). Significant
interactions were detected over a background model of null expectation using
CHiCAGO (v1.2.0). Only interactions with a CHiCAGO score > 5 at any time
point were included in downstream analyses. Trans-chromosomal interactions and
interactions between loci greater than 1 megabase apart were filtered from further
analysis. Counts were normalized by library size using (TMM) normalization and
transformed into CPM. Hue, saturation, and value were calculated using the same
equations as with gene expression, using normalized CPM values as input.

Massively parallel reporter assay. Lead variants for BMI were taken from the
2015 GIANT consortium meta-analysis, which identified 97 independent sig-
nificant loci. We searched 1000 genomes phase 3 genotypes
(ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502) for the 97 GWAS lead SNPs
and obtained all CEU SNPs (Utah residents with Northern and Western European
ancestry from the CEPH collection) within 50 kb and with r2 > 0.8 with a lead SNP.
We only retained biallelic SNPs with MAF≧ 5% (2396 in total). Using these var-
iants, MPRA oligo design was performed as previously described with
modifications15. We synthesized 230 bp long DNA fragments as seen below using a
100,000 oligonucleotide Agilent array.

5′-ACTGGCCGCTTCACTG-enh-GGTACCTCTAGA-barcode-
AGATCGGAAGAGCGTCG-3′ Each enh region was 175 base pairs of endogenous
DNA context surrounding one of the biallelic 2346 SNPs. Each allele of each
biallelic variant was synthesized beside 18–19 unique 10 bp DNA barcodes.
Barcodes were randomly generated using a series of A, C, T, or Gs that did not
contain three or more of the same base in a row and did not create Kpn1 or Xba1
restriction enzyme sites. We also later determined that barcodes should not end
with the sequence “TCT”, because it creates a restriction enzyme site with the
beginning of the second constant region and they will thus be lost. Upon receipt,
this fragment pool was dissolved in 100 µl of nuclease-free water and PCR
amplified using the Micellula DNA emulsion and Purification Kit (EURx #E3600-
01) in order to reduce amplification bias of particular oligos over others. This PCR
adds homology arms onto the oligos and allowed us to use Gibson Assembly
Master Mix (NEB # E2611S) to clone these oligos into a linearized pMPRA1 vector
(addgene #49349) that was cut open using the SfiI restriction enzyme. This
backbone+ oligo insert vector was then linearized using a Kpn1 and Xba1 double
digest and a 60 bp truncated eGFP containing a minimal promoter and spacer
sequence (141 bp in size) was ligated in between the enh fragments and barcodes
using T4 DNA ligase (NEB; # B0202S) at a 1:10 ratio of insert to vector and
incubated at 16 °C overnight. The resulting plasmid library was linearized a final
time using Kpn1 and size selected for vectors containing all inserts (oligos+ eGFP
insert) on a 1% agarose gel. This is then religated using T4 DNA ligase and
transformed until enough final plasmid is produced for all transfections. At each
cloning and transformation, step complexity must be maintained, so we counted
colony forming units (CFUs) after each transformation and aimed to attain at least
100 million CFUs. To ensure the best transformation, all reactions were cleaned up
with the Minelute PCR purification kit (Qiagen; # 28004) and then further cleaned
on a Millipore drop dialysis membrane (Millipore; #VSWP02500) for an hour
before the transformation. Cells were transformed into MegaX DH10B T1R
electrocompetent bacteria (Invitrogen #C640003) and allowed to grow for only
7–9 h after recovery to ensure the likelihood of getting high CFUs without bias
towards particular constructs. Once the final constructs were produced, they were
transfected into GT1–7 cells (6 replicates), 3T3-L1 cells (7 replicates), HT22 cells (5
replicates), SGBS Day 0 cells (6 replicates), and SGBS Day 8 cells (5 replicates) as
described above. Enough cells were transfected to achieve a minimum of 10 million
transfected cells per replicate with transfection efficiency estimated using a GFP
control plasmid. Cells were collected 48 h after transfection and flash-frozen in
liquid nitrogen until all replicates were collected. A replicate was considered
“technical” if they were transfected with the same batch of DNA on different days
with different cell passages. A replicate was considered “biological” if the input
DNA library was separately cloned from the beginning from our Agilent
oligonucleotides. MPRA experiments were designed to have 2–4 technical
replicates for each of two biological replicates. After transfection, cells were lysed
using a 20g needle, and RNA was extracted using Qiagen RNeasy mini kit. RNA
quality was assessed on a 1% agarose gel. mRNA was isolated from total RNA using
Invitrogen Dynabeads (ThermoFisher #61006) and then treated with Promega RQ1
DNAse (Promega; M6101) for 1.5 hours at 37 °C with an enzyme boost halfway

through the reaction. The isolated and DNA plasmid-depleted mRNA is then
cleaned up with the Qiagen RNeasy mini kit and quantified using the Promega
QuantiFluor RNA system (Promega #E3310). Importantly, enrichment of RNA
transcripts emanating from our MPRA plasmid compared to MPRA DNA plasmid
contamination is assessed at this point using qPCR primers targeted to the eGFP.
To do this, 250 ng of mRNA is converted to cDNA while 250 ng of mRNA is run
through the cDNA reaction without reverse transcriptase (RT). We then perform a
qPCR to determine enrichment of eGFP transcripts between RT(+) and RT(−)
samples. We set a threshold of a minimum of eight CT enrichment between DNA
and RNA as a quality control check. All remaining mRNA is then converted to
cDNA using Superscript III RT. cDNA is treated with RNAse A (Invitrogen
#12091-021) and RNAse T1 (ThermoFisher #EN0541) for 1 h and then cleaned
with the Qiagen Minelute PCR purification kit. Totally, 50 ng of cDNA is then used
as a PCR template for the final Illumina multiplexing primers. All available cDNA
should be amplified. Two 50 ng reactions of Input DNA (DNA used as transfection
material) must also be PCR amplified with Illumina multiplexing primers at this
point. Libraries were amplified with 10–11 PCR cycles using Q5 Hot Start High-
Fidelity 2× Master Mix (NEB #M0494S) and pooled before clean up using
Agencourt AMPure XP beads (0.6x+ 1.2x double cleanup; Beckman Coulter;
#A63882). Library quality was assessed using the Agilent DNA 1000 bioanalyzer
chip (Agilent; #G2938-90014), where a single sharp peak of around 250 bp is
expected. Samples can then be sent for paired-end NGS sequencing. A 25% PhiX
genome spike must be added to each sequencing run due to low complexity. Data
analysis: Barcode reads must be converted to the reverse complement before they
can be matched with known barcodes. We required sequenced barcodes to be exact
matches with expected barcode sequences. Count data is then analyzed for
significance as previously described16. In essence, lowly expressed barcodes were
removed and enhancer activity was determined from the remaining normalized
counts using the following equation:

Enhancer activity= log2 ((output CPM)− (input CPM))(4)
The activity was then quantile normalized and enhancer p values were

calculated using a one-sided Mann–Whitney U test in R using the wilcox.test
function. p Values were corrected for multiple testing using the p.adjust function,
method= “fdr” from the stats package(v3.6.2) in R. All regions where at least one
allele was determined to be a significant enhancer were then tested for enhancer
modulating effects using a two-sided Mann–Whitney U test in R with p values
adjusted for multiple testing using the p.adjust function. Enhancer modulating
variants were retained for downstream analyses if they were significant in half of all
technical replicates or both biological MPRA replicates.

MPRA enhancer validation luciferase assays. Twenty-one regions containing at
least one SNP that had an allele in a significant enhancer in either HT22 and/or
3T3-L1 cells were chosen for validation. These regions were PCRed from genomic
DNA using Q5 Hot Start 2× Master Mix (NEB #M0494S) and were designed to be
~1 kb in size. Each region was cloned into the pGL4.23 luciferase vector containing
firefly Luciferase and was tested for luciferase activity via co-transfection with
renilla luciferase at a ratio of (1:50) in both 3T3-L1 cells and HT22 cells. Alleles
were determined through Sanger sequencing. Renilla and firefly luciferase fluor-
escence was measured on a Promega GloMax microplate reader using the Dual-
Luciferase Reporter Assay System (Promega #E1910). Firefly luciferase measure-
ments were normalized to renilla measurements and then fold change over a
control DNA region was calculated to determine enhancer activity.

ATP2A1-SBK1 EMVar luciferase assays. In order to test allele-specific enhancer
activity, IDT gBlocks™ were ordered containing each allele of each variant. Each
SNP tested was centered and surrounded by 470 base pairs of native genomic
context and 15 bp of homology on each side to the pGL4.23 luciferase vector. These
gblocks were then cloned into the pGL4.23 luciferase vector using Gibson
assembly. rs4788100 (C) and (T) gblocks were surrounded by 295 bp of native
genomic context, rs62037414 (C) and (T) gblocks were surrounded by 451 bp of
genomic context, and rs55719896 (G) and (A) gblocks were surrounded by 469 bp
of genomic context due to synthesis constraints. Luciferase assays were conducted
either in SGBS preadipocytes or HT22 cells as described above.

LDSC partitioned heritability analysis. Heritability per chromosome was calcu-
lated via LD score regression analysis using the ldsc command-line tool (v1.0.0)
using Locke et al. 2012 BMI GWAS summary statistics and Yengo et al.59 GMI
GWAS summary statistics downloaded from the GIANT consortium. Briefly, bim
files from 1000 Genomes Phase 1 were downloaded and annotation files were
created for each chromosome where the chromosome was treated as a binary
annotation. LD scores were then computed from these annotation files for input
into partitioned heritability analysis. Summary statistics were filtered to contain
only HapMap3 variants as advised.

Transcription factor motif analysis. All regions identified to be significant
enhancers were included in this analysis. Regions were expanded to be 175 bp (size
of enhancers tested in MPRA) and then if two regions overlapped they were then
merged so they would not become overrepresented in the analysis. The program
findMotifsGenome.pl from HOMER60(v4.8.3) was then used in addition to the
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-size flag to identify motifs that were overrepresented in significant MPRA
enhancers from each cell line. These were compared to size and base composition
matched set of background sequences computed by HOMER to determine sig-
nificance and p value. All p values from each cell line are included in Supple-
mentary data 7.

Calling MPRA EMVAR interactions with promoters. MPRA EMVars were con-
sidered to interact with a promoter if the distal end of the promoter interaction came
within 1 kb of the single base pair SNP location. EMVar SNP location and cHi–C
BEDPE files were overlapped using the BEDtools (v2.27.1)61 pairToBed function. These
variants were not required to overlap other annotations, such as ATAC-seq.

Gene support classes. To develop gene level support for each GWAS locus, we
first binned EMVars into their respective loci. For Class I genes, we required an
EMVar to interact with that gene and the EMVar must be a GTEx eQTL for that
gene in the appropriate cell type (GTEx adipose tissues for adipose EMVars and
GTEx Brain tissues for Brain EMVars). Class II genes interact with an EMVar in
the appropriate cHi–C dataset and the EMVar is an eQTL for that gene in cell types
other than the appropriate one. Class III genes were those that interacted with an
EMVar in the appropriate cHi–C libraries or were an eGene for this SNP in the
correct cell type. Class IV genes were eGenes for these EMVars in other cell types.
In addition, we only included genes in this analysis that were expressed > 1 TPM in
at least 1-time point in their respective cell type from our RNA-seq (all genes with
their classes from both cell types are shown in Supplementary Data 8).

CRISPR–cas9 editing of iPSC cells. iPSCs were grown in complete mTeSR1
media (Stemcell #85850) supplemented with 1% penicillin–streptomycin
(10,000 U/ml; Gibco #15140122) on Matrigel-coated dishes (Corning #354277) at
37 °C in 5% CO2. Fluorescently tagged crRNA-Atto550 and cas9 protein were
purchased from IDT. Guides were designed using IDT software in order to max-
imize cutting efficacy and minimize off-target cleavage using their RNP system.
Guide RNAs were selected such that if they mapped elsewhere in the genome, there
were at least two base pair mismatches to mitigate the chance of off-target effects.
Two guides were designed per region in order to delete the enhancers from their
endogenous context. IDT crRNA and tracrRNA were complexed according to the
manufacturer’s instructions. On the day of transfection, 50 µM of each guide and
cas9 protein were combined and incubated at room temperature for 20 min to form
RNPs. Each guide was complexed with cas9 in individual reactions. Totally, 900 k
of human iPSC cells were harvested and nucleofected using a Lonza nucleofector
2b device with the program A23 and the two RNP complexes. These cells were
plated into one 22 cm2 flask. Once recovered, 40,000 cells were split into a 100 cm2

flask to achieve single-cell colonies. Colonies were then picked and transferred into
48-well plates to grow independently. Colonies were screened for the presence of
homozygous deletion bands using PCR. Homozygous deletion colonies were
grown, transfected, split, and treated identically to wild-type (WT) cells in order to
mitigate RNA-seq batch effects for the differentiation. Cells remained frozen until
all timepoints were collected. RNA was then extracted using the Qiagen RNeasy Kit
and RNA quality was assessed via an Agilent Bioanalyzer RNA Chip. One
microgram of RNA was used for input into RNA-seq. RNA-seq was performed
using the NEB Next Ultra II Directional RNA-seq kit. Data Analysis: Reads were
mapped and gene counts were quantified with STAR (v2.5.1a). Counts were filtered
to retain autosomal genes and exclude lowly expressed genes (<1 CPM). Data
clustered well by time-point and genotype so no batch effect correction was
necessary. p Values were identified using glmQLFTest() from edgeR (3.28.1). p
Values were FDR adjusted genome-wide using p.adjust. PCR primers and guides
are in Supplementary Data 11.

HEK293t CRISPRi. HEK293t cells (ATCC) were maintained in DMEM (Gibco #
11995-065) supplemented with 10% FBS and 1% penicillin–streptomycin
(10,000 U/ml; Gibco #15140122) solution at 37 °C in 5% CO2. Four guide RNAs
were designed for each targeted region by CHOPCHOP or MIT’s guide design tool
based on maximizing cutting efficiency, minimizing off-targets, and closest
proximity to the region of interest. Guide sequences are provided in the Supple-
mentary Data. Guides were then individually cloned using golden gate metho-
dology into the guide vector upstream of an eGFP gene. Cells were transfected into
HEK293t cells at 50–70% confluency using Lipofectamine LTX with the 4 guide
vectors and dCas9 vector (dCas9–KRAB upstream of BFP fluorophore) at a ratio of
three parts Cas9 to one part guide, where each individual guide was added in equal
amounts to additional guides for that region. After 48 hours, double-positive GFP
and BFP fluorescing cells were collected into culture media via FACs sorting, spun
down, and frozen. Sorting was performed on a BD FACS Aria Fusion 5–18 using
BD FACSDiva 8.0.1 software. In the case of the Cas9 only control population, BFP
single positive cells were sorted out of the population via FACS and frozen. This
was repeated 4–5 times to have technical replicates. RNA was extracted using the
Qiagen RNeasy RNA mini extraction kit and 500 ng of RNA was used as input for
RNA-seq. RNA-seq was performed using the NEB Next Ultra II Directional RNA-
seq kit. Data analysis: Reads were mapped and gene counts were quantified with
STAR (v2.5.1a). Counts were filtered to retain autosomal genes and exclude lowly
expressed genes (<1 CPM). PC1 clearly associated with the sorting batch, so the

sorting batch was added as a covariate into the final linear model. p Values were
identified using glmQLFTest() from edgeR. Because of the very small effect sizes of
CRISPRi in non-coding regions, cis-genes within the SBK1-ATP2A1 loci were
considered for final significance testing. This list included all protein-coding genes
within these loci passing the expression threshold as well as GAPDH (14 genes
total). Raw p values from these genes were Bonferroni corrected to get adjusted p
values (p < 0.05/14 genes). Only genes passing the Bonferroni significance
threshold were considered significantly affected by the CRISPRi perturbations.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All high throughput sequencing data that support the findings of this study have been
deposited in https://www.ebi.ac.uk/arrayexpress/ with the following accession codes:
rs9972768 and rs2650492 deletion RNA-seq (E-MTAB-10464), MPRA (E-MTAB-
10463), ATAC-seq (E-MTAB-10462), time course RNA-seq (E-MTAB-10461),
rs2650492 CRISPRi RNA-seq (E-MTAB-10460), and in situ promoter capture Hi–C (E-
MTAB-10488).

Publically downloaded data used in this paper ChIP-seq data can be downloaded from:
https://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E063-
H3K4me1.narrowPeak.gz

https://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/
E063-H3K27ac.narrowPeak.gz

https://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/
E081-H3K4me1.narrowPeak.gz

ChromHMM 15 state predictions can be downloaded from https://egg2.wustl.edu/
roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/
jointModel/final/E063_15_coreMarks_mnemonics.bed

https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/
ChmmModels/coreMarks/jointModel/final/E081_15_coreMarks_mnemonics.bed

Code availability
Code will be made available upon request.
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