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Abstract

Chronic pain has detrimental effects on one’s quality of life. However, its treatment options are very limited, and its

underlying pathogenesis remains unclear. Recent research has suggested that fragile X mental retardation protein is involved

in the development of chronic pain, making it a potential target for prevention and treatment. The current review of

literature will examine the function of fragile X mental retardation protein and its associated pathways, through which

we hope to gain insight into how fragile X mental retardation protein may contribute to nociceptive sensitization and chronic

pain.
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Introduction

Chronic pain, defined as “pain that persists or recurs for

more than three months,” can have a wide range of eti-

ologies, such as inflammation, nerve injury, cancer, post-

trauma, and post-surgery.1 It is a prevalent condition

with an enormous cost to the society and profound

socioeconomic impacts.2–4 On an individual level, chron-

ic pain sufferers report poor quality of life, increased

tendency for substance abuse, and a higher incidence

of mental disorders, such as anxiety and depression.5

Despite now being recognized as a major group of

diseases by the World Health Organization,6,7

treatments for chronic pain are still limited.

Pharmacological agents, such as opioids and anticonvul-

sants, are effective for temporary pain relief, but have

many undesirable side effects and their efficacy dimin-

ishes with long-term use.8–10 While central nociceptive

sensitization is considered as a major contributing

factor to the development and the maintenance of

chronic pain,11–13 the lack of detailed mechanistic under-

standing of how sensitization occurs has remained a

major barrier for developing new pharmacological

treatment.
Fragile X mental retardation protein (FMRP),

encoded by fragile X mental retardation 1 (Fmr1)

gene, has been implicated in pathogenesis of chronic
pain. Mutation in Fmr1 gene is thought to lead to
Fragile X syndromes (FXS), a spectrum of clinical con-
ditions characterized by self-injurious behavior and
abnormal pain processing.14–16 Fmr1 knock-out (KO)
mice show decreased nociceptive behaviors, which sug-
gests FMRP playing a vital role in the pathogenesis of
abnormal pain states.14
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In this review, we will examine the molecular function
of FMRP and its role in the development of chronic
pain.

The molecular functions of FMRP

FMRP has many functions in the nervous system with a
complex protein architecture (Figure 1).17 Specifically,
the K homology (KH) domains and glycinearginine
box (RGG) of FMRP are protein-binding regions that
have direct and indirect role in neuronal synaptic
plasticity.18

Localization studies have found FMRP expressed in
dorsal root ganglia (DRG), trigeminal ganglia (TG), as
well as in primary afferent neurons in rats.19 It is found
to be most concentrated in the neuronal soma and den-
drites.20,21 The loss of FMRP causes the dysregulation of
synaptic protein synthesis, resulting in abnormal synap-
tic connectivity.18

Molecularly, FMRP regulates RNA translation
through interacting with various post-transcriptional
factors or the messenger RNA (mRNA) structure
itself.17,22,23 For example, it can modulate mRNA alter-
native splicing through binding with alternative-splicing-
associated RNA-binding protein.17 Alteration of this
interaction results in abnormal mRNA expression in
hippocampal neurons.24 FMRP has also been shown
to complex with the G-quadruplex structure within the
coding or non-coding regions of mRNAs, through which
it helps regulate translocation and translation of
mRNAs in neurons.25

FMRP also plays an important role in signaling path-
ways that impact synaptic morphology and network
plasticity. Khayachi et al. provided evidence to support
FMRP’s involvement in the small ubiquitin-like modifier
(SUMO) pathway in the brain.26 They showed metabo-
tropic glutamate receptors (mGluRs)-induced sumoyla-
tion of FMRP is important in regulating maturation and
elimination of dendritic spines.26 Furthermore, FMRP is
necessary for the expression of diacylglycerol kinase
kappa (DGKj), an important component of the diacyl-
glycerol and phosphatidic acid signaling pathways.27

The absence of FMRP in neurons eliminates group 1
mGluR-dependent DGKj activity and reduces its
expression of Dgkj. This subsequently leads to abnor-
mal lipid signaling in dendritic spines.27 Lastly, work by

Guo et al. demonstrated that FMRP interacts directly

with transcriptional regulators (e.g., taurine-upregulated

gene 1-Ski-related novel protein N complex) and regu-

lates axonal development.28

These studies provide compelling evidences of FMRP

being essential for RNA translation and trafficking, syn-

aptic signaling, and network plasticity of the nervous

system.

FMRP in chronic pain

Fmr1 mutation- and FMRP defect-related conditions,

such as FXS, are associated with fibromyalgia and

peripheral neuropathy.29 Rodriguez-Revenga et al.

found that 24.4% of the female with Fmr1 mutation

complained of chronic muscle pain in 398 Spanish

FXS families.30

FMRP has been implicated in the development of

chronic pain. It is important in regulating synaptic plas-

ticity in the anterior cingulate cortex, a region that is

strongly implicated in pain perception and modula-

tion.31,32 Moreover, the deficits of FMRP in Fmr1 KO

mice leads to abnormal gamma aminobutyric acid

(GABA) metabolism, downregulated a2, b1, and d
GABA receptors expression, and impaired GABAergic

transmission in a number of pain-relevant circuits, such

as seen in hippocampus.33,34 Given the critical role of

GABAergic circuits in chronic pain, FMRP may be a

major neuronal modulator in the nociceptive circuit.35,36

One of the hallmark characteristics of FXS is that

patients often display self-injurious behaviors, which

suggests abnormal pain perception. Price et al. demon-

strated reduced response to neuropathic pain in Fmr1

KO mice, and it is mediated by group 1 mGluR

(mGluR1/5) and mammalian target of rapamycin

(mTOR).14 Unlike in the wild-type (WT) animals, intra-

thecal or peripheral injection of mGluR1/5 agonist in

Fmr1 KO mice fails to develop hyperalgesia.

Nociceptive behaviors induced by formalin and

mGluR1/5 agonist can be inhibited by mTOR inhibitor,

rapamycin, in WT mice, but not in Fmr1 KO mice.14

Collectively, this indicates that mTOR signaling path-

way is defected in Fmr1 KO animals, and that FMRP

is an important mediator for mGluR1/5 and mTOR-

dependent nociceptive sensitization.

Figure 1. The protein architecture of FMRP. The highly modular architecture of FMRP includes two AG domains, three KH domains,
and unstructured regions containing NES, RGG, and C-terminal domains.17 KH: K homology; AG: Agenet; RGG: glycinearginine box;
NES: nuclear export sequences.
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Lastly, recent evidence showed that interleukin 6
(IL-6) can stimulate nociceptive sensitization in DRG
and TG neuronal axons,37 while nociceptive sensitiza-
tion induced by IL-6 was significantly reduced in Fmr1
KO mice.38 This suggests that FMRP is essential in the
downstream effects of nociception signaling mediated
by IL-6.

The potential mechanisms of FMRP

regulating chronic pain

Ion channels and neuronal excitability

Studies on animal models of FXS have shown that
FMRP plays an important role in influencing neuronal
excitability by regulating mRNA expression of specific
ion channels, and interacting with channel subunits and
altering channel mechanics.39

Potassium channels appear to be heavily influenced
by FMRP. It was demonstrated to bind to voltage-
gated potassium channels mRNAs, such as Kv 3.1 and
Kv 4.2, and regulate channel expression in the dendritic
compartments of neurons.39 Brown et al. showed that
FMRP interacts directly with sodium-activated potassi-
um (Slack) channel, which activates the channel and
induces persistent change in firing patterns in neurons.40

FMRP also interacts directly with the auxiliary b4 sub-
unit of calcium-activated potassium (BK) channels,
thereby increases the calcium-dependent activation of
BK channels on the presynaptic terminal in hippocam-
pal CA3 pyramidal neurons. This interaction alters the
presynaptic action potential duration and calcium sig-
naling, which subsequently changes the mechanics of
neurotransmitter release.41

FMRP also influences calcium channel metabolism in
nociception pathways. By targeting membrane voltage-
gated calcium (CaV) channel for proteasomal degrada-
tion, FMRP alters presynaptic CaV channel density and
leads to a reduction of membrane current in DRG.
Moreover, given the important role of presynaptic
CaV channels in neurotransmission, it is thus not sur-
prising to see an FMRP-induced reduction of presynap-
tic CaV channels can lead to a decrease in vesicle
exocytosis and neurotransmitter release in both DRG
and hippocampal neurons.42

This body of work thus collectively supports the
notion that changes in ion channel activity and plasma
membrane potential mediated by FMRP play a vital role
in nociceptive sensitization.39

The mGluRs signaling pathways

mGluRs are involved in glutamatergic neurotransmis-
sions as well as synaptic development and activity-
dependent synaptic plasticity.43 They are widely

expressed throughout the nociceptive pathways and

influence the transmission of nociceptive signals.44 For

example, Xie et al. demonstrated that hyperalgesia

induced by chemotherapy drug, paclitaxel, is mediated

by increased presynaptic expression and activity of

mGluR5 in rat DRG and spinal cord.45

Zhang et al. showed that increased amplitude of pri-

mary glutamate excitatory post-synaptic currents in

spinal nerve ligation rats, and this phenomenon is medi-

ated by group 3 mGluRs (mGluR4/6/7/8).46

Group 1 mGluR-induced synaptic plasticity requires

FRMP. Yang et al. demonstrated that group 1 mGluR

activation increases neural network activity by activating

an FMRP-depending signaling pathway. This pathway

downregulates a translation inhibitor, murine double

minute-2 (Mdm2), which subsequently induces protein

translation.47

Activation of the c-Jun N-terminal kinase (JNK)

pathway has been implicated in the development and

maintenance of chronic pain,48 and FMRP plays an

important role in JNK-mediated protein synthesis after

mGluR activation.49 In a mouse model, mGluR activa-

tion induces an increase in FMRP level, and the subse-

quent increase in JNK activity. This is not seen in Fmr1

KO mice. Furthermore, the loss of FMRP in Fmr1 KO

animals leads to a reduction in JNK activity and a

decrease in post-synaptic protein expression. This is con-

sistent with the earlier study that showed mGluR-

dependent gene transcription is regulated by JNK

activity.47

The mammalian target of rapamycin (mTOR)

signaling pathways

mTOR, a serine/threonine protein kinase, is essential for

regulating protein synthesis,50,51 and recent work sug-

gests that dysfunction of mTOR and its associated path-

ways can lead to abnormal pain states. Studies that

employed neuropathic and inflammatory pain models

in rats have shown similar increase in the expression of

mTOR in the spinal cord. Intrathecal administration of

a mTOR inhibitor, rapamycin, significantly reduces

mechanical and thermal hyperalgesia in these

animals.52,53

FMRP is an important modulator for mTOR.

Sharma et al. found that the activity of phosphorylated

mTOR (active form) is increased in hippocampal CA1

synapses in Fmr1 KO mice, and that the mGluR-

induced long-term depression in these animals is also

enhanced.43 This finding is consistent with the work by

Price et al. as discussed above.14 Together, these studies

imply that FMRP plays a vital role in nociception sen-

sitization, and it is at least in part mediated by the

mTOR signaling pathway.
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Conclusions and perspectives

FMRP deficiency, caused by Fmr1 mutation, can affect

pain perception, as seen in FXS patients. However, the

precise mechanism through which FMRP modulates

pain remains unclear. FMRP has long been known as

an important modulator for RNA translation and trans-

location as well as for a number of signaling pathways in

neurons. Recent studies have demonstrated that FMRP

can influence nociception processing and sensitization

via various means, such as altering ion channel expres-

sions and activities, and modulating the mTOR and the

mGluRs signaling pathways. Therefore, the current

review provides important insights into how Fmr1

gene and FMRP may contribute to nociceptive sensiti-

zation in chronic pain.
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