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Abstract
Recent advances in cell-type deconvolution approaches are adding to our understanding of the biology underlying disease de-
velopment and progression. DNA methylation (DNAm) can be used as a biomarker of cell types, and through deconvolution
approaches, to infer underlying cell type proportions. Cell-type deconvolution algorithms have two main categories:
reference-based and reference-free. Reference-based algorithms are supervised methods that determine the underlying com-
position of cell types within a sample by leveraging differentially methylated regions (DMRs) specific to cell type, identified
from DNAm measures of purified cell populations. Reference-free algorithms are unsupervised methods for use when cell-
type specific DMRs are not available, allowing scientists to estimate putative cellular proportions or control for potential
confounding from cell type. Reference-based deconvolution is typically applied to blood samples and has potentiated our
understanding of the relation between immune profiles and disease by allowing estimation of immune cell proportions from
archival DNA. Bioinformatic analyses using DNAm to infer immune cell proportions, part of a new field known as
Immunomethylomics, provides a new direction for consideration in epigenome wide association studies (EWAS).

Introduction

Development of multisystem life requires progenitor cells to dif-
ferentiate in a lineage-specific manner and lineage commit-
ment is accompanied by heritable changes to the epigenome
such as DNA methylation (DNAm) (1–3). DNAm is a stable cova-
lent modification to cytosine that can occur in the context of a
Cytosine-Guanine dinucleotide (CpG). Genome-scale measures
of DNAm in samples derived from heterogeneous mixtures of
cells, such as peripheral blood, include signals from all cells pre-
sent (Fig. 1). Therefore, variation in cell-type proportions across

samples has the potential to confound associations of DNAm
with modeled outcomes.

Reference-based cell-type deconvolution uses cell-type spe-
cific differentially methylated regions (DMRs) to infer cell type
proportions, allowing investigators to control for potential con-
founding by cell type when analysing the relation of DNAm
with an outcome of interest. The need to adjust for variation in
cell type proportions emerged when genome-scale DNAm ar-
rays were introduced, allowing epigenome-wide association
studies (EWAS). Large differences in DNAm observed in early
EWAS comparing peripheral blood DNAm between cancer cases
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and controls were driven by different distributions of cell type
proportions between cancer patients and controls. By including
cell type proportions in regression models, a clearer under-
standing of independent DNAm alterations related to disease,
exposure, or other outcome of interest is afforded. Importantly,
inference of cell type proportions from DNAm also allows for
tests of association between cell type proportions (or ratios)
themselves with various outcomes, phenotypes, or exposures
of interest across the spectrum of health and disease.

To date, epigenome-wide association studies (EWAS) that in-
clude adjustment for variation in cell type proportions have
been conducted in a wide range of diseases including mental
health conditions, cardiovascular disease, and cancers.
Methods utilizing DNAm as surrogate estimates of immune cell
proportions were initially developed in 2012 by Houseman et al.
(4) and have gained increasing popularity. More recently, some
investigators have begun to focus on analyses of immune cell
type proportions and ratios with phenotypes/disease states,
termed Immunomethylomics (5). Specifically, in the emerging
era of cancer immunotherapy, having additional tools to inves-
tigate the relation of peripheral immune status with disease
and its response to therapy has potential to accelerate effective
application of precision medicine and may contribute to the de-
velopment of novel therapeutic targets.

In this review, we focus on the most recent applications of
reference-based and reference-free cell-type deconvolution
with an emphasis on reference-based methods and comment
on future directions in the field. Reference-based deconvolution
methods depend on cell-type specific differentially methylated
regions (DMRs) to infer individual cell type proportions within a
sample, typically using constrained projection. Reference-free
deconvolution methods do not require DMRs from purified cell
types in the measured sample to estimate putative number and
proportions of cell types. In both cases, cell type proportions
can be included as covariates in regression models to adjust for
potential confounding.

DNA Methylation Data
Much of the DNAm data used in EWAS are collected using
Illumina BeadArray based technologies. The first version of this
array was the GoldenGate (6) platform that included 1,505 CpG
sites tracking to �800 cancer-related genes. Later, more compre-
hensive genome-scale arrays were developed starting with the
HumanMethylation27 (7) in 2009, then the HumanMethylation450,

(8) which was released in 2011, and the current platform,
MethylationEPIC (9) array, was released in 2015. Established data
processing methods exist for these array-based platforms (10–13).
There are also extensive recommendations on controlling for pop-
ulation stratification (14), bias inflation (15), integrating
data sources (16), and controlling for cell-type heterogeneity (17).
Of the approximately 29 million CpG sites in the human
geome (18), �485,000 sites are measured by the Illumina
HumanMethylation450 BeadArray, where the latest version, the
MethylationEPIC array measures �860,000 CpG sites. Most popula-
tion studies of DNAm use array-based technologies due to cost
considerations and advantages of platform standardization for
data analysis and data sharing. For those studies using different
technologies, such as whole-genome (WGBS) and reduced repre-
sentation bisulfite sequencing (RRBS), cross platform mapping
methods, e.g. methyLiftover (16) may provide additional opportuni-
ties for cell-type deconvolution applications.

Cell-type deconvolution is based on well-established defini-
tions of cell types that are used in gold standard cell sorting meth-
ods, such as fluorescence-activated cell sorting (FACS), which
requires sample preparation, antibody tagging, and flow cytome-
try. Several challenges with flow cytometry methods are the re-
quirement of fresh blood, the need for larger volumes of substrate
to isolate less prevalent cell types, and limited number of cell types
measurable at one time. Once cell type DMR libraries are identified,
cell-type deconvolution using DNAm only requires small amounts
of DNA, which can be obtained from whole blood or buffy coat col-
lected with different types of anticoagulant tubes, and archival
samples can be used irrespective of storage conditions or freeze-
thaw cycles (19). Cell-type deconvolution with DNAm can simulta-
neously measure a panel of immune types and importantly, as
new DMRs for additional cell subtypes or activation states are
identified, the DNAm data are largely forward compatible, allow-
ing integration of past and future studies. Gene expression based
deconvolution is also possible for cell-type resolution. Methods in-
clude CellMix (20) and CIBERSORT (21) for deconvolution of tissue
expression profiles, as well as VoCAL (22) and ImmQuant (23) for
inferring immune cell-type composition from expression data.
These applications have shown promise. However, the number of
transcripts can vary in a manner that is not as proportional to the
number of cells (24). Gene expression is more likely to be influ-
enced by copy number variation (25) than DNAm (26), and RNA is
not as stable as DNA, all of which may increase error in cell type
proportion estimates compared with methods using DNAm.

DNAm-based deconvolution relies on carefully selected cell-
type DMRs using samples of sorted, purified cell populations
from multiple subjects, where DNAm is typically measured using
one of the above-mentioned arrays. Cell-type DMRs are invariant
among subjects within cell type and often occur at regions known
to correlate with expression of genes that are well-established as
cell-type-specific. In addition, because of the fundamental role of
DNAm in lineage commitment, the unidirectional nature of
DNAm changes related to cell-type specification, and the ap-
proach to identify cell-type deconvolution libraries, cell-type
DMRs do not vary with exposures. To date, immune cell-type
DMR libraries have been generated from cells isolated from adults
as well as fetal/newborn cord blood samples. The presence of nu-
cleated erythrocytes in fetal/infant cord blood can confound cell-
type deconvolution based on adult DMRs (27–29) and has
prompted the development of an independent set of DMRs for
deconvoluting cell types in cord blood samples (30,31).

In contrast with DMRs used for cell-type deconvolution,
there has been recent interest in sets of CpG sites that predict
phenotypic characteristics independent of cell type, such as age

Figure 1. Measured DNA methylation is a composite of signals from specific cell

types in a bio-specimen.
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(32) and mitotic clocks (33). In 2013, a library of CpG sites whose
DNAm status can be used to estimate subject age was identified
and validated by Steve Horvath (32). The approach to identify a
cell and tissue-type agnostic set of age-related CpGs included
�8,000 samples across 82 data sets encompassing 51 healthy
tissues and cell types. These sites were identified through
Elastic Net Regression over 21,369 probes shared on the
Illumina HumanMethylation27k and HumanMethylation450k
arrays and introduced the concept of accelerated DNAm aging
for subjects whose estimated DNAm age exceeded their chrono-
logical age. Subsequent publications have applied the age-
related CpG sites to test the relation of DNAm age acceleration
in health and disease (34–36). More recently, an extension of the
idea of DNAm age, the epigenetic mitotic clock, was introduced
by Yang and colleagues (33). We highlight the utility of cell-type
agnostic CpG sets used to predict phenotypes as they have con-
tributed to our understanding of DNAm in human biology, but
note that these sets are distinct from cell-type specific DMRs.

Methylation-Based Deconvolution Algorithms
There are two classes of cell-type deconvolution algorithms:
reference-based and reference-free. Reference-based deconvo-
lution algorithms are supervised methods that take advantage
of known cell-type-specific DMRs (37). The original reference-
based algorithm using these DMRs was developed by
Houseman et al. (38) in 2012 utilizing constrained projection/
quadratic programming. The algorithm models sample DNAm
as a weighted combination of the individual DNAm patterns of
underlying cell types (4,39). The Houseman algorithm has been
independently validated in adult whole blood samples (19,40)
and until recently, it was the only reference-based algorithm
available (21,41) Reference-free deconvolution algorithms do
not require referent cell-type DMRs for inference. Instead,
reference-free methods estimate putative cellular proportions
or the proportion of variation due to unmeasured factors based
on various unsupervised deconvolution methods. In 2014, the
first two reference-free algorithms were proposed by Zou et al.
(42) and Houseman et al. (43) and in 2016, Houseman et al. re-
leased a revised version of their method (RefFreeEWAS2.0)
based on a form of non-negative matrix factorization (38).

Recently, multiple reference-based (4,21,41) and reference-
free (38,42–47) deconvolution algorithms have emerged. In
practical application, recent work (41) has shown that non-
constrained methods (21,41) can outperform the popular
Houseman deconvolution method under certain circumstances
(4) but under most circumstances, the Houseman reference-
based method implemented in the R package minfi (11) is the op-
timal method for reference-based deconvolution (48). In
reference-free deconvolution, recent work (17,48) has shown
that Surrogate Variable Analysis (SVA) (45) has the most robust
sensitivity and specificity in the presence of high confounding.
For a more detailed review of the mathematical (49) and theo-
retical principles behind various deconvolution approaches, see
the recent work by Teschendorff et al. (50).

Applications of Deconvolution Algorithms
The impetus behind developing and refining deconvolution al-
gorithms comes from the confounding due to cell-type specific
DNAm profiles. These signals may impede the discovery of
DNAm changes associated with outcomes of interest. The appli-
cability of cell-type deconvolution algorithms is highlighted in
selected recent work below, which illustrates the broad utility of

these algorithms for identifying both the role of DNAm and im-
mune cell-type shifts in human health and disease.

Breast cancer

Both reference-based and reference-free deconvolution
approaches have been applied to study DNAm in breast cancer,
including work on disease risk and tumor biology. For example,
Yang et al. (51) recently demonstrated evidence that hypomethy-
lation of S100P CpGs 3’ of the TSS in circulating whole blood is sig-
nificantly associated with breast cancer risk. The study included
data from the HumanMethylation27k platform in>1,000 cases
and controls from three independent retrospective cohort studies
at different centers. By applying Houseman’s reference-based
deconvolution algorithm, (4) the authors demonstrated that de-
creased S100P methylation in circulating blood came from the es-
timated leukocyte subpopulations, excepting B cells. Methylation
on the S100P-associated CpG sites was inversely correlated with
expression of S100P in leukocytes and in tumor tissue.

Reference-free approaches to cell type adjustment to study
normal breast tissue and breast tumor DNAm have also
emerged. Applying the Houseman RefFreeEWAS2.0 (38) algo-
rithm to DNAm data from 100 normal breast tissue samples do-
nated by cancer-free women across a wide age range, Johnson
et al. (52) tested the relationship between DNAm and known
breast cancer risk factors including age, body mass index, and
reproductive and family history variables. Johnson et al. identi-
fied and replicated DNAm changes significantly related to sub-
ject age, observed that the CpGs with age-related DNAm in
normal tissue were significantly more likely to occur at breast-
specific enhancer elements, and that these age-related DNAm
changes are implicated in cancer. Another recent study that ap-
plied the Houseman RefFreeEWAS2.0 (38) algorithm to study
breast cancer focused on early stage invasive breast tumors and
identified shared alterations of DNAm relative to normal tissue
across intrinsic molecular subtypes (53). Titus et al. identified
and replicated associations in nineteen differentially methyl-
ated gene regions between tumor and normal tissue across all
PAM50 (54)-intrinsic molecular subtypes (Basal-like, Luminal A,
Luminal B, and Her2). Identification of shared epigenetic alter-
ations in early stage disease across distinct molecular subtypes
suggests some common biology underlying breast carcinogene-
sis irrespective of disease subtype. These examples of varied ap-
plications for deconvolution algorithms investigating DNAm in
breast cancer demonstrate the utility of adjusting for potential
confounding due to cell-type specific DNAm patterns.

Additional applications

There are broad applications for deconvolution of cell type with
DNAm. Many recent studies utilizing such techniques extend to
analyses in cancer types other than breast, such as glioma
(5,55), colorectal (56), and lung (57,58) cancers. In colorectal can-
cer, Heiss et al. (56) extracted DNAm data from leukocytes and
identified two CpG sites in the promoter region of KIAA1549L
with significant differential methylation compared to controls.
Then, using KIAA1549L promoter methylation in logistic regres-
sion models, they created prediction models for colon cancer
with c-statistics accuracies of 0.69 in the screening setting and
0.73 in the clinical setting. In two recent lung cancer studies,
Baglietto et al. (58) identified and replicated significant associa-
tions between pre-diagnostic peripheral blood DNAm and lung
cancer risk in a nested case-control study. Similarly, Zhang et al.
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(57) showed that peripheral blood DNAm at smoking-related
and lung cancer-related genes is associated with lung cancer
mortality. Zhang et al. also showed smoking-related DNAm is
strongly predictive of lung cancer mortality, with an optimism-
corrected c-index of 0.87. Many other studies investigating the
association between smoking and altered methylation profiles
have been similarly conducted (59–65).

Many studies have investigated the effects of environmental
exposures (66–70) such as air pollution and smoking on the meth-
ylome. In 2016, Panni et al. (67) observed that fine particulate mat-
ter air pollution is associated with adverse health effects, in part
through alterations in DNAm measured in peripheral blood. In a
2017 meta-analysis, Gruzieva et al. (66) also demonstrated that
maternal exposure to NO2 air pollution during pregnancy is asso-
ciated with differential DNAm in offspring.

Indeed, the association of child health and development (71)
and overall mental health (72–75) have also been the focus of
many recent investigations of blood DNAm. In a 1,709 subject
study, Walton et al. (72) demonstrated that differential methyla-
tion, measured in peripheral whole blood at birth, is strongly as-
sociated with attention-deficit/hyperactivity disorder (ADHD)
trajectories in children. In the children, the same DNAm alter-
ations identified at birth were no longer associated with ADHD
by age seven, suggesting that alterations in DNAm play a role in
neurodevelopment and maturation.

Studies involving body lipids (76–78), BMI and metabolism
(79–86), and diabetes (87–89) have also employed cell-type
deconvolution methods. Such methods have also been used to
study inflammation (90–92) and physical limitations such as
frailty (93) Cardiovascular diseases (94–99), as leading causes of
mortality in the US, have been the focus of numerous recent
analyses of blood DNAm. Smith et al. (95), using a meta-analysis
of genome wide association studies and follow-up genotyping,
identified a genetic variant on chromosome 5q22 that is associ-
ated with a 36% increased risk of death in patients with heart
failure. The polymorphism was associated with DNAm alter-
ations in peripheral whole blood that also associated with aller-
genic sensitization and expression of the cytokine TSLP in
blood, identifying new factors associated with mortality in pa-
tients with heart failure.

Methylation studies utilizing cell-type deconvolution have
also been shown to strongly predict all-cause mortality (100). In
a study released in early 2017, Zhang et al. (100) conducted an
EWAS in a population-based cohort and, using the Houseman
reference-based deconvolution method (4), identified 11,063
CpG sites that were significantly related with all-cause mortality
at a genome wide level (FDR< 0.05). In addition, these authors
then used LASSO regression to select the 10 most informative
CpGs in the set to develop a risk score for all-cause mortality
where the following ORs for all-cause mortality comparing a

Figure 2. Overview of the Immunomethylomics workflow from 1) reference-based deconvolution and cell proportion estimates to 2) utilizing cell proportion estimates in

analyses.
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score of 0 were noted; a score of 1 (OR 2.16, CI 1.10-4.24), score
ranging from 2-5 (OR 3.42, CI 1.81-6.46), and scores>5 (OR 7.36,
CI 3.69-14.68). The risk score was found to be independent of
cell-type DMRs (4) as well as the Horvath methylation age CpG
loci (32). Ultimately, the goal of many of these studies is the de-
velopment of novel biomarkers (101) of disease risk and progno-
sis that contribute to our understanding of biology and may aid
in risk stratification. There are many applications beyond those
listed here that benefit from methylation and cell-type decon-
volution based analyses.

Immunomethylomics – DNA methylation analysis of the
immune response

Traditional EWAS includes tests of association for methylation
at 400,000 – 800,000 CpG loci with phenotype or disease status.
The burden of correcting for multiple hypothesis testing in such
settings leads to conservative cutoffs that may result in false
negative associations, particularly when smaller sample sizes
are used. An opportunity in this setting, particularly if immune
regulation or response is related to or may mediate associations
with the outcome of interest, is to first test the relation of in-
ferred proportions of immune cell types with the outcome of
interest. Inference of CD4þT-cell, CD8þT-cell, B-cell, NK,
Granulocyte, and Monocyte proportions from DNAm using
deconvolution has allowed researchers to directly use immune
cell proportions or ratios in their analyses (Fig. 2). For example,
the neutrophil-to-lymphocyte ratio (NLR) is a consistent prog-
nostic factor for survival in cancer (102) and can be derived us-
ing cell type proportion estimates from DNAm-based
deconvolution of peripheral blood (103). Koestler et al. (103) have
shown that methylation-derived NLR (mdNLR) from referenced-
based deconvolution is also a robust indicator of patient prog-
nosis. In the paper published in early 2017, the authors demon-
strated the utility of mdNLR as an indicator of prognosis in five
studies: head and neck squamous cell carcinoma, bladder can-
cer, ovarian cancer, breast cancer, and a healthy aging study. In
each instance, Koestler et al. showed that elevated mdNLR was
indicative of disease or clinical characteristics of healthy pa-
tients. In another study of 72 patients with glioma, Wiencke
et al. (5) showed that subjects with gliomas have elevated
neutrophil-to-lymphocyte ratio scores and significantly de-
creased survival times (HR 2.02, 95% CI 1.11-3.69). The authors
also demonstrated that mdNLR is an effective candidate meth-
ylation biomarker with applications in EWAS and clinical
studies of glioma. In addition to the utility of DMRs for deconvo-
lution of cell types, there are also opportunities to identify
DMRs for activation states within cell types such as NK cell acti-
vation. For example, Wiencke et al. isolated naı̈ve NK cells from
six donors, performed in vitro activation treating with antibodies
to the NKp46 and CD2 receptors, and profiled DNAm to identify
DMRs for activated versus naı̈ve NK cells (104). These initial
studies demonstrate the utility of DNA-based methods to
deconvolute cell type to investigate immunomodulation in hu-
man health and disease without the need for fresh or specially-
preserved samples.

Future Directions
Since their introduction, reference-based algorithms such as the
Houseman method have been optimized for more accurate cell-
type estimation by either improving DMR selection and/or by im-
proving the subset of data used from the reference libraries.

Optimization (105) of such DMRs has been shown to explain addi-
tional variation in EWAS (106) and can be used in single step and
multi-step (107) deconvolution algorithms. Accurate estimation
of leukocyte subtypes from DNAm has opened the door for the
development of novel methods to further investigate the relation
of immune profiles with disease and outcomes. In conjunction
with development of additional deconvolution methods and
more complete DMR libraries for immune cell types, directions
for future work include refinement to identify DMRs for further
cell subtypes or cell activation states. Cell estimates provide an
opportunity to independently test associations of immune cell
proportions or ratios with the disease (with a limited number of
statistical tests), before taking more traditional epigenome wide
approaches. Similarly, classifications blocks for phenotypes de-
rived from DNA methylation data such as DNA methylation age
or the epigenetic mitotic clock offer an opportunity to test specific
hypotheses before extensive feature-by-feature tests in an EWAS.

The potential application of deconvolution methods goes be-
yond DNAm in peripheral blood samples. As reference libraries
of purified epithelial, mesenchymal, and progenitor cell sub-
types emerge, it is expected that DMRs for reference-based
deconvolution will be extended to solid tissue samples for use
in pathologically normal and diseased subjects. In this way,
deconvolution methods will improve our understanding of im-
mune cell infiltration in pathogenesis of several diseases. In ad-
dition, reference-free and reference-based deconvolution
approaches in solid tissues can assist researchers in modeling
the relation of exogenous exposures with networks of cell-cell
interactions in the tissue microenvironment in disease patho-
genesis. Collectively, advances in the identification of DMR li-
braries for cell type and biologic phenotypes have broad
potential to accelerate our understanding of immunomodula-
tion, cell systems, and DNAm in human health and disease.
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Schöttker, B., Holleczek, B., Waldenberger, M., Peters, A.
and Brenner, H. (2017) DNA methylation signatures in pe-
ripheral blood strongly predict all-cause mortality. Nat.
Commun., 8, 14617.

101. Langie, S.A.S., Moisse, M., Declerck, K., Koppen, G., Godderis,
L., Vanden Berghe, W., Drury, S. and De Boever, P. (2017)
Salivary DNA Methylation Profiling: Aspects to Consider for
Biomarker Identification. Basic Clin. Pharmacol. Toxicol.

102. Chen, J., Deng, Q., Pan, Y., He, B., Ying, H., Sun, H., Liu, X.
and Wang, S. (2015) Prognostic value of
neutrophil-to-lymphocyte ratio in breast cancer. FEBS Open
Bio., 5, 502–507.

103. Koestler, D.C., Usset, J.L., Christensen, B.C., Marsit, C.J.,
Karagas, M.R., Kelsey, K.T. and Wiencke, J.K. (2016) DNA
methylation-derived neutrophil-to-lymphocyte ratio: an
epigenetic tool to explore cancer inflammation and out-
comes. Cancer Epidemiol. Biomarkers Prev., 26, 328–338.

104. Wiencke, J.K., Butler, R., Hsuang, G., Eliot, M., Kim, S.,
Sepulveda, M.A., Siegel, D., Houseman, E.A. and Kelsey,
K.T. (2016) The DNA methylation profile of activated
human natural killer cells. Epigenetics, 11, 363–380.

105. Koestler, D.C., Jones, M.J., Usset, J., Christensen, B.C., Butler,
R.A., Kobor, M.S., Wiencke, J.K. and Kelsey, K.T. (2016)
Improving cell mixture deconvolution by identifying opti-
mal DNA methylation libraries (IDOL). BMC Bioinformatics,
17, 1–21.

106. Kim, S., Eliot, M., Koestler, D.C., Houseman, E.A., Wetmur,
J.G., Wiencke, J.K. and Kelsey, K.T. (2016) Enlarged leukocyte
referent libraries can explain additional variance in
blood-based epigenome-wide association studies.
Epigenomics, 8, 1185–1192.

107. Waite, L.L., Weaver, B., Day, K., Li, X., Roberts, K., Gibson,
A.W., Edberg, J.C., Kimberly, R.P., Absher, D.M. and Tiwari,
H.K. (2016) Estimation of Cell-Type Composition Including
T and B Cell Subtypes for Whole Blood Methylation
Microarray Data. Front. Genet., 7, 23.

R224 | Human Molecular Genetics, 2017, Vol. 26, No. R2


