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SUMMARY

The COVID-19 pandemic has caused devastating economic and social disruption.
This has led to a nationwide call for models to predict hospitalization and severe
illness in patientswith COVID-19 to inform the distribution of limited healthcare re-
sources. To address this challenge, we propose amachine learningmodel, MedML,
to conduct the hospitalization and severity prediction for the pediatric population
usingelectronichealth records.MedMLextracts themostpredictive featuresbased
on medical knowledge and propensity scores from over 6 million medical concepts
and incorporates the inter-feature relationships in medical knowledge graphs via
graph neural networks. We evaluateMedML on the National Cohort Collaborative
(N3C) dataset. MedML achieves up to a 7% higher AUROC and 14% higher AUPRC
compared to the best baseline machine learning models. MedML is a newmachine
learnig framework to incorporate clinical domain knowledge and ismore predictive
and explainable than current data-driven methods.

INTRODUCTION

The COVID-19 pandemic needs no introduction.With over 81.5 million confirmed cases and 995,000 deaths by

May 5, 2022, the mounting burden of this disease on global health has impacted communities on every conti-

nent (Centers for Disease Control and Prevention, 2022). While mortality is dramatically higher in adults than in

children, the recent prevalence of the Omicron variant has sparked a surge in pediatric COVID-19 hospitaliza-

tions worldwide (Belay and Godfred-Cato, 2022; Mowery, 2022). In January 2022, an average of 1,015 pediatric

inpatients were reported by each state, far surpassing last winter’s daily record of roughly 400 per state (Amer-

ican Academy of Pediatrics, 2022). While many of these patients are asymptomatic, others present a wide array

of symptomologies, including bronchiolitis, pneumonia, and laryngotracheobronchitis (croup). The continued

rise in case numbers, variable semiology, and healthcare personnel shortages across the country underscores

the urgent need to accurately predict the severity of COVID-19 in children.

Many machine learning models have been developed to predict the severity of COVID-19. Most of these

works focus on adult patients (Bennett et al., 2021; Pitts et al., 2022; Schmidt et al., 2021). Some works

conduct statistical analyses to identify potential risk factors for pediatric patients on the large multi-site

Electronic Health Record (EHR) dataset (Martin et al., 2022; Nachega et al., 2022). Other works apply sta-

tistical models, such as themulti-variable Bayesianmodel, to single-site pediatric patient cohorts to predict

severity with limited features (Domı́nguez-Rodrı́guez et al., 2021; Oliveira et al., 2022). However, the com-

plex relationships within such heterogeneous data limit the feasibility of statistical approaches. It may be

possible to developmore accuratemodels with specificmachine learning techniques designed for this pur-

pose, but this presents two major technical challenges to be solved:

1. How can we fuse clinical domain knowledge and data-driven discovery? Most existing EHR-based ma-

chine learningmodelsuse featuresprimarily selected from lab testsanddiagnosis codes. If data frommul-

tiple sites are used, the data need tobe homogenized so that labels are consistent across all data sources

(e.g., if two hospitals have different units for the C-reactive protein test, the data need to be converted).

Model complexity grows immensely as the number of input features increases, so limiting the number of

features can lead to a simpler, faster model that is easier to deploy. For large national EHR datasets, the

number of medical features is much greater. In the case of the publicly available National Cohort
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Collaborative (N3C) COVID-19 dataset (Haendel et al., 2021), more than 100,000 heterogeneous features

havebeencollected frommanycare sites tocreateadiversedatasetofoutpatientand inpatient caredata-

sets. Existing machine learningmodels do not perform as well with N3C data because the inputs are too

sparse and noisy. There are two primary methods of addressing this issue: knowledge-driven selection

and data-driven selection. Knowledge-driven selection is most useful if the number of features is small

and the relative importanceof each feature is already known. Someexistingworks address the complexity

of large, feature-rich clinical datasets through amanual selection of clinical features using domain knowl-

edge (Bennettet al., 2021; Elliott et al., 2021). This approach reflects clinician insight, but if themodel is not

allowed to learn independently, it becomes constrained by that knowledge. If a clinical element is not

included (or is simply unknown), it cannot be discovered. To solve this problem, data-driven models

can be used to identify which features are most relevant to the task at hand based on themodel’s perfor-

mance using those features. Identifying the unknownpatterns can therefore be useful for clinical teams in

three ways: 1) it may identify features that were omitted from the knowledge-driven model; 2) it may un-

cover errors in the data; and 3) it may discover strong correlations that were previously unknown andmay

merit further exploration. Therefore, fusing domain knowledge and data-drivenmodels is an exciting op-

portunity to enhance model performance and even discover new clinical insights through data.

2. How can we model the relationships between aspects of clinical knowledge? EHR data consist of

multiple data types, including medications, measurements, procedures, diagnoses, etc. The rela-

tionships between these data elements range from simple paired correlation to highly complex

multi-variable associations, neither of which is captured by traditional knowledge-based or data-

driven modeling. Fusing these complex relationships can guide the model to extract complex pat-

terns in data and lead to better prediction performance. Utilizing the existing clinical knowledge also

increases the trustability of the model because the decision process is much more traceable than the

purely ‘‘black box’’ performance of other deep learning methods.

To address the above two challenges, we suggest a hybridized approach of constructing the model from a

framework of clinical domain expertise in the form of a knowledge graph, and then allowing the model to

improve through data-driven exploration. Our proposed model, MedML, fuses medical knowledge graphs

anddata-driven featureextraction tobetterpredictpediatricCOVID-19hospitalizationandseverity. Specifically,

MedML translates expert knowledge into clinical knowledge graphs, which map granular medical features to

clinical cohorts and connect these cohorts with explicit graphical relationships. The use of knowledge graphs

forgeneratingpatientEHRembeddingsensures thatdomainknowledgecandirectlyguide the learningprocess

and in turn improve clinical understanding. Integrating known expert knowledge and clinical decision-making

processes into deep learning models also allows us to filter out irrelevant or noisy inputs, resulting in a leaner,

more efficientmodel that can beorders ofmagnitude faster than high-featuremodels, while still achieving com-

parable or even superior prediction accuracy.MedMLalso enriches the feature sets usingdata-drivenextraction

methods based on propensity scores, which leads to more accurate predictions.

Our overall pipeline can be divided into four modules: (1) data extraction and cohort labeling, (2) enriched pa-

tient embeddingusinggraph attention networks on the constructedmedical knowledgegraphs, (3) data-driven

feature selection, and (4) feature combining andprediction. The overall pipeline illustration is shown in Figure 1.

RESULTS

Dataset and task description

We use the COVID-19 pediatric cohort from the National COVID Cohort Collaborative (N3C) data enclave

(Haendel et al., 2021). The enclave includes demographic and clinical characteristics of patients who have

been tested for or diagnosed with COVID-19. It also provides information about the strategies and out-

comes of treatments for those suspected or confirmed to have the virus. As of Feb 2022, this enclave

has 4 million COVID cases, over 1200 million clinical observations, and 14 billion record rows.

We develop our MedML model for pediatric COVID-19 prediction tasks by fusing medical knowledge and

data-driven machine learning approaches. We formulate the model inputs and prediction tasks as follows:

Definition 1 (patient records)

Each patient record is represented as a vector p. Each feature dimension in p denotes a patient EHR indi-

cator, including disease and procedure occurrence, lab test values, and drug usage, as well as static fea-

tures including patient demographics.
2 iScience 25, 104970, September 16, 2022
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Figure 1. The proposed MedML pipeline

(A) Record extract and cohort labeling.We extract patient records from theN3C database.We then filter and label patient

cohorts using our task definitions.

(B) Learn enriched patient embeddings by applying graph attention networks (GAT) on domain knowledge graphs. Each

patient is represented as a subgraph of the knowledge graph. We use GATs to learn the hierarchical relationships

between medical concepts and generate the final enriched patient embedding matrix.

(C) Data-driven feature selection. Simultaneously, we use the propensity score to filter the most predictive medical

features as the augmented feature set.

(D) Feature combining and prediction. We combine the patient graph embedding matrix, data-driven features with the

highest propensity scores, patient demographics, and visit patterns to train a gradient boost model. Both tasks follow the

same pipeline, albeit with different patient cohorts.
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Definition 2 (medical knowledge graph)

Amedical knowledge graphGðV; EÞ is constructed by domain experts based on clinical practice from phy-

sicians and relevant published research. G is a directed hierarchical graph representing direct and indirect

risk factors with multiple levels. We use v to denote the node embedding of a medical feature in the node

set V. Edge e between node i and node j indicates that the two features are related. We will introduce the

detailed construction process in the method section.

We aim to predict hospitalization and severity risk for pediatric patients with COVID-19. First, we identify

the patients at the risk of hospitalization from all COVID-19-positive pediatric patients. Then, we identify

the patients at the risk of severe outcomes from all hospitalized patients. To perform an early-stage predic-

tion on high-risk patients, we only use the data available at the outpatient visit start date or hospitalization

date for two pediatric prediction tasks. The concrete problem formulations are shown below:

Task 1 (pediatric COVID-19 patient hospitalization risk prediction)

Given a COVID-19-positive pediatric patient with EHR data p on the first day of outpatient visit after the

COVID-19 diagnosis, our target is to predict the hospitalization risk yh in the coming 35 days. We formulate

this task as a binary classification task as yh ˛ f0; 1g.
iScience 25, 104970, September 16, 2022 3
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Task 2 (pediatric COVID-19 patient severity prediction after hospitalization)

If a pediatric patient with COVID-19 is hospitalized, given EHR data p on the first day of hospitalization, we

further predict the risk of getting severe outcomes (reflected by needing ventilation, cardiovascular inter-

ventions, ECMO, or death) ys during that encounter. We identify ventilated patients based on ventilation

procedure codes in their encounter record and cardiovascular support based on the presence of the inject-

able forms of any of the following medications: dobutamine, dopamine, epinephrine, levosimendan, mil-

rinone, norepinephrine, phenylephrine, and vasopressin. The task is formulated as a binary classification

such that ys ˛ f0; 1g, and our working clinical definition for severe outcomes is consistent with existing works

(Bennett et al., 2021). This task is also formulated as a binary classification task as ys ˛ f0; 1g.

The notations used in this study are listed in the Table S1.
Cohort construction and evaluation metrics

We define COVID-19-positive patients as patients who have received the positive COVID-19 PCR test. We

conduct two prediction tasks—hospitalization prediction and severity prediction—and both are binary predic-

tion tasks. In this study, we include patients from 2020/01/01 to 2022/02/01 to build the patient cohorts. The visit

information is extracted from the visit record table. The patient cohort construction process of the two tasks is

inspired by the pediatric COVID-19 data challenge (The BARDACommunity Challenge, 2022) and thepipelines

are shown in Figure 2. In the severity prediction task, we include thepatients hospitalized not only within 35 days

after the COVID-19 diagnosis but 14 days before the diagnosis following the challenge cohort definitions. This

is to ensure all target patients are included, since somepatients are infectedduring the hospitalization or donot

get diagnosed before hospitalization. The basic statistics of the extracted cohorts are shown in Tables 1 and 2.

For experimental setup, two cohorts are split into training, validation, and testing sets by 6:1:3. We use the

training set to fit themodels and use the validation set to determine the hyper-parameters. Finally, we evaluate

the models on the testing set and report the prediction performance. The evaluation metrics are AUROC (area

under the receiver operating characteristic curve), AUPRC (area under the precision-recall curve), and the

maximum of the minimum between precision and sensitivity under the same threshold, known as Min(Re,Pr),

following existing works (Ma et al., 2020, 2021). An example of Min(Re,Pr) is shown in Figure 3, which evaluates

whether the model can achieve the balance between precision and recall. All three metrics are higher the bet-

ter. Calibration of models was examined to assess how similar the model’s probability predictions are to the

observed probabilities for severity and hospitalized COVID-19 cases (Huang et al., 2020). We also evaluate

the final model’s calibration performance using calibration curves.
Baselines and experiment settings

We first compare the proposed MedML with its different variant versions to validate the predictive perfor-

mance of different feature sets:

1. MedML (Propensity): We remove the knowledge graph embedding g from the overall feature set.

2. MedML (Domain): We remove the data-driven feature m and replace graph embedding g with the

simple concatenation of node features.

3. MedML (KG): We remove the data-driven features m from all features.

The illustration of different feature sets used in these variants is shown in Figure 4.

The hyperparameters of thesemodels are decided tomaximize the highest score (the average of threemetrics,

the same below) on the validation set. We set the node embedding dimension E to 128. The hidden dimension

of the GAT model and the MLP dimension are set to 128. To evaluate the predictive performance of the data-

driven features fairly, we also compare MedML with several well-known machine learning and deep learning

baseline classifiers, which are widely applied in EHR predictive modeling including COVID-19-related predic-

tion tasks. These models are trained with the data-driven feature set m, demographics, and visit features s.

XGBoost (XGB) and decision tree (DT)

XGBoost (Chen and Guestrin, 2016) is a popular and efficient gradient-boosted trees algorithm. We select

hyperparameters that maximize the highest score (the average of three metrics) on the validation set.
4 iScience 25, 104970, September 16, 2022
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Figure 2. Patient cohort construction flow chart

(A) Flow chart of the hospitalization prediction patient cohort.

(B) Flow chart of the severity prediction patient cohort.
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Table 1. Patient characteristics for the hospitalization prediction task

Total Negative (%) Positive (%)

Number of patients 143,505 137,136 (95.6%) 6,369 (4.4%)

Age

0–1 3,591 (2.5%) 3,274 (91.2%) 317 (8.8%)

1–3 12,043 (8.4%) 11,195 (93.0%) 848 (7.0%)

3–6 15,569 (10.8%) 14,840 (95.3%) 729 (4.7%)

6–12 39,217 (27.3%) 38,033 (97.0%) 1,184 (3.0%)

12–18 73,085 (50.9%) 69,794 (95.5%) 3,291 (4.5%)

Mean (Median) 10.8 (12.0) 10.8 (12.0) 10.3 (12.0)

Gender

Male 71,413 (49.8%) 68,380 (95.8%) 3,033 (4.2%)

Female 72,069 (50.2%) 68,733 (95.4%) 3,336 (4.6%)

Others/Unknown 23 (0.01%) 23 (100.0%) 0 (0.00%)

Race

White 99,832 (69.6%) 95,574 (95.7%) 4,258 (4.3%)

Black 17,475 (12.2%) 16,420 (94.0%) 1,055 (6.0%)

Asian 2665 (1.9%) 2,582 (96.9%) 83 (3.1%)

Asian/Pacific 846 (0.6%) 817 (96.6%) 29 (3.4%)

Others/Unknown 22,687 (15.8%) 21,743 (95.8%) 944 (4.2%)

Ethnicity

Not Hispanic or Latino 103,905 (72.4%) 99,178 (95.5%) 4,727 (4.5%)

Hispanic or Latino 27,717 (19.3%) 26,437 (95.4%) 1,280 (4.6%)

Others/Unknown 11,883 (8.3%) 11,521 (97.0%) 362 (3.0%)

Visit statistics - Mean (Median)

# of visits 30.1 (17) 28.9 (16) 43.8 (24.3)

Avg. days between visits 75.2 (44.1) 76.7 (45.3) 55.1 (27)
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XGBoost and decision tree models have been applied in hospitalization and severity prediction tasks for

adult patients with COVID-19 (Bennett et al., 2021; Yan et al., 2020).

Logistic regression (LR)

We use L2 regularization for this baseline and the regularization hyperparameter is selected by maximizing

the highest score on the validation set, which is set 0.7. Since the logistic regression model may have dif-

ficulty converging on the highly imbalanced data, we set the class weight to 0.3 for the hospitalization task

and 0.15 for the severity prediction task. The LR model has also been applied in COVID-19 risk prediction

tasks (Elliott et al., 2021).

Multi-layer perceptron (MLP)

Multi-layer perceptron is a general deep learning classifier. We use a two-layer perceptron to achieve clas-

sification. The layer dimension is set to maximize the highest score on the validation set. The hidden dimen-

sion of the MLP model is set to 128.

The final dimension of g and s is 128 and 90, respectively. The dimension of m depends on how many fea-

tures we selected from the propensity-based feature list (i.e., K). We have a detailed analysis for the selec-

tion of K in the result section.

For LR, XGBoost, and DT models, we use the scikit-learn package (Pedregosa et al., 2011) (version 0.23.2)

and XGBoost (Chen and Guestrin, 2016) (version 1.0.2) to construct and train the models. For MLP and

MedML models, we use the PyTorch (Paszke et al., 2019) (version 1.7.1) to implement the models. We
6 iScience 25, 104970, September 16, 2022



Table 2. Patient characteristics for the severity prediction task

Total Negative (%) Positive (%)

Number of patients 11,465 10,634 (92.8%) 831 (7.2%)

Age

0–1 950 (8.3%) 917 (96.5%) 33 (3.5%)

1–3 1,758 (15.3%) 1,654 (94.1%) 104 (5.9%)

3–6 1,265 (11.0%) 1,162 (91.9%) 103 (8.1%)

6–12 2,102 (18.3%) 1,917 (91.2%) 185 (8.8%)

12–18 5,390 (47.0%) 4,984 (92.5%) 406 (7.5%)

Mean (Median) 9.6 (11.0) 10.1 (11.0) 9.5 (11.0)

Gender

Male 5,551 (48.4%) 5,103 (91.9%) 448 (8.1%)

Female 5,914 (51.6%) 5,531 (93.5%) 383 (6.5%)

Race

White 5,597 (48.8%) 5,222 (93.3%) 375 (6.7%)

Black 3,060 (26.7%) 2,808 (91.8%) 252 (8.2%)

Asian 204 (1.8%) 183 (89.7%) 21 (10.3%)

Asian/Pacific 52 (0.5%) 52 (100%) 0 (0%)

Others/Unknown 2,552 (22.3%) 2,369 (92.8%) 183 (7.2%)

Ethnicity

Not Hispanic or Latino 7,857 (68.5%) 7,305 (93.0%) 552 (7.0%)

Hispanic or Latino 2,929 (25.5%) 2,716 (92.7%) 213 (7.3%)

Others/Unknown 679 (5.9%) 613 (90.3%) 66 (9.7%)

Visit statistics - Mean (Median)

# of visits 50.9 (20) 48.4 (19) 83.2 (26)

Avg. days between visits 57.7 (24.6) 57.9 (25.3) 55.1 (16.1)
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use the mini-batch gradient descent to train the models and the batch size is set to 128. We use Adam opti-

mizer with learning rate 0.001 to train the models. The model training process was stopped if the score on

the validation set did not improve over 30 consecutive iterations. All the experiments are done on the N3C

Data Enclave with Code Workbook. The training process is accelerated using a Tesla T4 GPU. We save the

model with the highest score on the validation set and report the prediction performances on the testing

set.

Model performance analysis

We design the experiments to discuss the following research questions and topics:

1. How does the proposed MedML perform on two pediatric COVID-19 prediction tasks?

2. How does the number of features affect the performance of MedML and baselines?

3. How does MedML perform in different time periods and geographic locations?

4. Analysis for data-driven features, demographic features, and knowledge graph features.

Performance on pediatric COVID-19 prediction tasks

The prediction performance ofMedML and baselinemodels on the two tasks is shown in Tables 3 and 4. For

the number of input features, MedML, knowledge-based baselines (MedML (Domain), MedML (KG)), and

other propensity score-based baselines (XGB, DT, MLP, LR, and MedML (Propensity)) use different feature

sets. For example, the number of input features for knowledge graph-based models is fixed (65 features),

while the number for propensity score-based models depends on the hyperparameter K. To achieve a fair

comparison, we set K to 80 for propensity score-based models and K to 15 for the MedML model, so that
iScience 25, 104970, September 16, 2022 7



Figure 3. An example of Min(Re,Pr)
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these models will be accessing the same number of features (except for two variants, MedML (Domain) and

MedML (KG), which only uses 65 knowledge-based features).

MedML achieves the best performance on both tasks in terms of all three metrics. For the pediatric COVID-19

hospitalization prediction task,MedMLachieves 3%higher AUROC, 4%higherAUPRC, and 12%highermin(Re,

Pr) compared to the best machine learning models, XGB and MLP, which utilize propensity score-based fea-

tures. For the pediatric COVID-19 severity prediction task, the performance gap is much larger. Compared

with the best baselines, MedML achieves 7% higher AUROC, 14% higher AUPRC, and 32% higher min(Re,

Pr). We conduct the Student’s t test to evaluate the significance of the performance differences. The results

show that theperformancedifferencesbetweenMedMLandthebestbaselinemodelsare significant (p<0.001).

MedML also outperforms its variants. We note that on the severity prediction task, using the same GBDT

model, models built on knowledge graph features (MedML (Domain) and MedML (KG)) outperform the

model with propensity score-based features (MedML (Propensity)) in all three metrics. MedML (KG) consis-

tently outperforms MedML (Domain) on both tasks, which suggests that utilizing the structured inter-

feature relationships in the knowledge graph (MedML (KG)) further improves the prediction performance.

For baseline models, we find that deep learning-based and ensemble-based models (MLP and XGB) have

better performance than LR and DT on both tasks. This may be because the high feature dimension and

data imbalance make it difficult for naive machine learning models to learn complex patterns. Generally,

we find the hospitalization prediction task is a more challenging task for machine learning models in terms

of AUPRC and min(Re, Pr) metrics, which are more informative metrics in this data imbalance setting

(Powers, 2011). This is primarily because of the noise in the labels and data. The severity labels (ECMO,

ventilator, death, and cardiovascular interventions) indicate a patient’s health status is at high risk and their

status is much more distinctive. While the hospitalization criteria for patients are more diversified, that di-

versity makes it more difficult for the model to decide whether the patient should be hospitalized.
Figure 4. Features used in MedML and its variants

All models will use patient demographics and visit sequence features.

8 iScience 25, 104970, September 16, 2022



Table 3. Performance comparison for pediatric COVID-19 hospitalization prediction

Model AUROC AUPRC Min(Re, Pr)

XGB 0.7321 (0.002) 0.1302 (0.003) 0.1660 (0.003)

DT 0.6232 (0.002) 0.1198 (0.002) 0.0915 (0.002)

MLP 0.7228 (0.003) 0.1439 (0.003) 0.1770 (0.003)

LR 0.6501 (0.002) 0.1222 (0.001) 0.0928 (0.001)

MedML (Propensity) 0.7446 (0.005) 0.1420 (0.003) 0.1916 (0.003)

MedML (Domain) 0.7204 (0.004) 0.1370 (0.003) 0.1832 (0.002)

MedML (KG) 0.7294 (0.002) 0.1432 (0.002) 0.1879 (0.004)

MedML 0.7544* (0.003) 0.1501* (0.002) 0.1982* (0.003)

The asterisk * denotes the performance differences between MedML and the best baseline models are significant based on

the t-test results (p < 0.001).
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The ROC curve and PR curve of both tasks are shown in Figures 5 and 6. For simplicity, we only show the

curves for XGB and MLP among all baseline models, which achieve better performance in both tasks.

Predictive performance under different K

To evaluate themodel performancewith different numbers of features, we study the effect of different K from 80

to 200.We also keep the total number of features the same for differentmodels for a fair comparison. The results

are shown inFigures 7 and8. ForMedML (Domain) andMedML (KG), they only use knowledgegraph features, so

their performance will not be affected by K and their plots are therefore straight lines in the figures.

Note that MedML achieves the best performance on all metrics for all values of K. The performance gap

between MedML and other propensity score-based models is much larger on the severity prediction

task. As K increases, the newly included features will have relatively lower propensity scores, which means

lower distinctiveness. It is interesting to find that including more features hinders the performance of some

baseline models, such as LR and DT. The worse performance is caused by high feature dimensionality with

the increasing number of features.

Also note that compared with models using 200 propensity score-based features, MedML (KG) can still

achieve almost equivalent performance on the hospitalization prediction task and outperform all other

models on the severity prediction task only using 65 knowledge graph features. This suggests that fusing

domain knowledge into machine learning models and learning the inter-relationships between features

can help reduce the feature set size while maintaining good predictive performance. This reduces compu-

tational load and improves the reliability of the model while still maintaining accurate predictions.

Prediction performance under temporal data split setting

We design experiments to evaluate how model performance evolves over time. We split the time from 01/

2020 to 01/2022 into 8 3-month periods. Each patient will be assigned to the corresponding period based
Table 4. Performance comparison for pediatric COVID-19 severity prediction

Model AUROC AUPRC Min(Re, Pr)

XGB 0.6477 (0.002) 0.1605 (0.005) 0.2049 (0.004)

DT 0.5439 (0.003) 0.1599 (0.004) 0.1326 (0.002)

MLP 0.6395 (0.002) 0.1928 (0.003) 0.1993 (0.003)

LR 0.5448 (0.002) 0.1307 (0.004) 0.1621 (0.004)

MedML (Propensity) 0.6519 (0.004) 0.1615 (0.005) 0.2048 (0.004)

MedML (Domain) 0.6822 (0.002) 0.1810 (0.004) 0.2369 (0.003)

MedML (KG) 0.6915 (0.003) 0.2162 (0.003) 0.2693 (0.003)

MedML 0.6926* (0.002) 0.2202* (0.004) 0.2701* (0.004)

The asterisk * denotes the performance differences between MedML and the best baseline models are significant based on

the t-test results (p < 0.001).
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Figure 5. The ROC curve and PR curve for the hospitalization prediction task

The ROC curve (A) and PR curve (B) for the hospitalization prediction task
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on the COVID-19 diagnosis date. We use patient data from the consecutive two periods to train the model,

then test the model on the next period. For example, we train the model using data from 01/01/2020 to 06/

30/2020 and subsequently test the model on data from 07/01/2020 to 09/30/2020. This process is conduct-

ed in a rolling manner, which means we will test the model on each 3-month period from 07/01/2020 to 12/

31/2022. The results for both tasks are shown in Figures 9 and 10.

We find that for the hospitalization prediction task, MedML and MedML (KG) outperform all baseline

models in all periods except for the earliest stage of the pandemic (2020/07–2020/12). For the severity pre-

diction task, MedML and MedML (KG) generally outperform all other baselines in all periods. MedML

generally performs better than MedML (KG) on most metrics. The relatively lower early-stage performance

reflects the greater effectiveness of propensity score-based features than domain knowledge extracted by

clinicians in the early stage of the pandemic. However, with the virus evolving and the pandemic progress-

ing, the domain knowledge-based features are consistently predictive throughout all subsequent
A B

Figure 6. The ROC curve and PR curve for the severity prediction task

The ROC curve (A) and PR curve (B) for the severity prediction task.
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Figure 7. Hospitalization prediction performance under different K from 80 to 200

Hospitalization prediction performance under different K from 80 to 200 in AUROC (A), AUPRC (B) and min(Re, Pre) (C).
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pandemic stages. At the later stage of the pandemic (2021/07–2022/12), the performance of MedML and

MedML (KG) drops slightly, which seems to correlate with the lower positivity rate that results in a more

unbalanced training set. The positive patient ratios are shown in Figure 11.

Prediction performance under geographical data split setting

We also design experiments to evaluate the geographical generalizability of MedML. We divide patients

into different geographical regions based on their location information. We use 9 divisions based on US

bureau divisions (The United States Census Bureau, 2022). We do not aggregate patients at the state level

because the number of patients is too small to train the model. We use the leave-one-out strategy to eval-

uate our model, which means training MedML on 8 divisions and testing the model on the last division. We

visualize the prediction performance of MedML and the positive patient ratio in different regions in Fig-

ures 12 and 13.

MedML performs better in division 9 Pacific, division 5 South Atlantic, and division 2 Middle Atlantic for

both tasks compared to other divisions. For the severity prediction task, MedML performs worse in Division

1 New England. This may be because the positive ratio of this division is significantly lower than other di-

visions, and the imbalanced data hinder the model.
A B C

Figure 8. Severity prediction performance under different K from 80 to 200

Severity prediction performance under different K from 80 to 200 in AUROC (A), AUPRC (B) and min(Re, Pre) (C).
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Figure 9. Hospitalization prediction performance under different time split

Hospitalization prediction performance under different time split in AUROC (A), AUPRC (B) and min(Re, Pre) (C).
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Feature importance analysis

We list the top 20 features with the highest importance in MedML for both tasks in Figures 14 and 15. For a

specific feature, its importance in MedML is calculated by measuring its average importance in different

trees. Concretely, the feature importance Ji of feature i is calculated as:

Ji =
1

M

XM
m

JiðTmÞ
L� 1
JiðTmÞ =
X
t = 1

I2t 1ðvt = iÞ

whereM denotes the number of trees, JiðTmÞdenotes the feature importance in them-th tree, Ldenotes the

number of leaf nodes, vt is the feature related to node t, and I2t is the reduced squared loss after further split.

In the figures, variables are ranked in descending order, with the darker color indicating a higher ability to

predict each outcome. When predicting hospitalization risk, CG-beta (also known as beta-hCG) is the

strongest predictor, followed by the average days between visits and Inhibin A. Similarly, when predicting

severity, the average days between visits, ventilated status, and BMI were the strongest predictors. It is

important to note that the factors identified in this study are correlated with but not necessarily causative

of COVID-19 hospitalization and severity among the pediatric population.
A B C

Figure 10. Severity prediction performance under different time split

Severity prediction performance under different time split in AUROC (A), AUPRC (B) and min(Re, Pre) (C).
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Figure 11. Positive patient ratio across two tasks
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The feature importance plots show that most of the predictive features in the two tasks are different. However,

these tasks also share a few important features, e.g., levocarnitine, glucose, BMI, and PaO2. We find that the

visit sequence-related features (i.e., average days between visits and number of visits) are highly important

in both tasks. To further understand how feature values affect MedML’s output, we analyze the Shapley values

of the measurement and visit pattern features. Shapley value is a common measurement of individual feature

importance widely used in interpretability analysis for machine learning models (Hyland et al., 2020; Winter,

2002). A positive Shapley values means the feature is positively correlatedwith the target of interest, and higher

values mean higher importance, while negative Shapley values correspond to negative correlations. We plot

the Shapley value ofmeasurement features with the top 4 highest importance, as well as average days between

visits and number of visits. The results are shown in Figures 16 and 17.

In the figures, the x axis is the value of the figure, and the y axis is the Shapley value. Blue dots are COVID-

19-negative patients and red dots are positive patients. For clarity, we only show 1000 random patients in

the figure for some features. The blue line and shade are the means and standard deviations of the inter-

polated regression line. For the hospitalization prediction task, all four measurement features are positively

correlated with the risk. For CG-beta and Inhibin A, the existence of these features positively contributes to

the risk because all Shapley values are larger than 0. For creatinine and PaO2, there is a threshold between

low-risk patients and high-risk patients, around 0.6 mg/dL and 200 mmHg, respectively. (Note: because

PaO2 does not naturally occur at such high values, this is likely acting as a surrogate marker for patients

on supplemental oxygen.) For the severity prediction task, BMI, creatinine, and glucose are positively

correlated with the risk. The thresholds between low-risk patients and high-risk patients are 1.0 mg/dL

for creatinine and 300 mg/dL for glucose. For weight, the model finds that patient’s weight between 60

and 100 kg have lower risk than the average. The risk increases as the weight increases beyond 100 kg.

For visit patterns, the model finds that for both tasks, patients with more frequent visits generally have

higher hospitalization risk and have more severe outcomes. This is consistent with the statistical results

in Tables 1 and 2. The statistics show that hospitalized and severe patients have more frequent visits

(average 55.1 days) than low-risk patients (57.9–76.7 days). However, the total number of visit records

have different effects on the two prediction targets. Themodel finds that patients with fewer recorded visits

have a lower hospitalization risk, which is consistent with the statistics that demonstrate outpatients have,

on average, less records (28.9) than hospitalized patients (43.8). For the severity, the plot shows that pa-

tients with a total number of visits between 10 and 40 have generally lower risks (Shapley value <0), but

there are also some patients with higher Shapley values in this category as well. We conduct further analysis

on the patients with visit records less than 5, and the results validate that these patients indeed have a

higher severity ratio (9.8) than the average severity ratio (7.2). The reason might be that they are younger

(8.0) than average (9.6), or they may have limited accessibility to medical resources.

Demographic patterns

We also analyzeMedML’s performance in different demographic cohorts. We plot the Shapley value of cat-

egorical demographic features including age, ethnicity, race, and gender for both tasks. The results are

shown in Figures 18 and 19.
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Figure 12. Hospitalization prediction performance visualization in different divisions
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Different ages have different Shapley value distributions between the two tasks. For the hospitalization

task, patients under 3 have the highest Shapley value (i.e., higher predicted hospitalization risk) and pa-

tients within 6–12 have the lowest Shapley value (i.e., lower predicted hospitalization risk). For the severity

prediction task, the model finds that patients under 3 have the lowest severity while other patients have

higher severity. These results are consistent with the statistic results in Tables 1 and 2. According to the sta-

tistic results, patients under 3 years of age have a higher hospitalization ratio (7%–9%) than the average hos-

pitalization ratio (4.4%), but they have lower severity ratio (3%–6%) than the average severity ratio (7.2%).

Patients between 6 and 12 indeed have lower hospitalization ratio (3.0%) and higher severity ratio (8.8%).

Gender also has different effects between the two tasks. The model finds that female patients are at higher

risk for hospitalization but lower risk for severe outcomes than male patients. The hospitalization ratio of

female patients is 4.6%, while the ratio for male patients is 4.2%. The severity ratio of female patients is

6.5%, while the ratio for male patients is 8.1%.

Themodel also finds thatWhite/Caucasianpatients generally have lower riskswhileBlack/AfricanAmerican and

Hispanic/Latinx patients have higher risks for both tasks. Asian patients, however, are at lower risk for hospital-

ization but higher risk for severe outcomes. The raw data statistics reveal the actual hospitalization ratio (White –

4.3%, Black – 6.0%, Asian/Pacific – 3.4%, Asian – 3.1%, Average – 4.4%) and severity ratio (White – 6.7%, Black –

8.2%, Asian/Pacific – 0%, Asian – 10.3%, Average – 7.2%). The Hispanic/Latinx patients have higher positive

ration thannon-Hispanic/Latinxpatients inboth tasks (0.1%higher for hospitalizationand0.3%higher for severe

outcomes). The consistency between actual statistics from the data and the model’s Shapley values demon-

strates that MedML accurately captures the patterns from complex heterogeneous data with high reliability.

Model calibration

The calibration plot of the model is shown in Figure 20.

In the calibration plot, the model prediction probabilities are divided into 10 bins representing the ranges of

possible outcomes, e.g., [0–0.1), [0.1–0.2), etc. (i.e., the x axis). For each bin, thepercentageof ground-truth pos-

itive samples is calculated (i.e., the y axis). The positive percentage of a perfectly calibratedmodel should corre-

spond to the bin center. We also use the expected calibration error (ECE) to evaluate the calibration perfor-

mance (Nixon et al., 2019). The ECE is calculated as:

ECE =
XB
b = 1

nb

N

���yb � cyb ���
where B denotes the number of bins between 0 and 1, nb denotes the sample size in the b-th bin, yb denotes

the average of ground-truth labels in the bin, and cyb denotes the average of predicted probability in the

bin. The lower the ECE, the better the model is calibrated. The results in Figure 20 show that after the

sigmoid regression calibration, the models for both tasks are well calibrated, which results in low ECE.
DISCUSSION

Compared to the best baseline model, MedML achieved a 3% higher area under the receiver operating

characteristic (AUROC) and 4% higher area under the precision recall curve (AUPRC) on the hospitalization
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Figure 13. Severity prediction performance visualization in different divisions
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prediction task, and a 7% higher AUROC and 14% higher AUPRC on the severity prediction task. Additional

analysis demonstrates that our hybridized approach built upon domain knowledge-based features can

equal and even outperform the predictive performance of state-of-the-art data-driven methods using far

fewer features. Detailed spatiotemporal analysis shows that MedML is generalizable in all nine national

geographical regions and temporally across all consecutive pandemic stages. General feature analysis

on our MedML can also explicitly show the inter-feature relationships and individual feature contributions

for the final prediction results, which may help clinicians identify potential high-risk patients and related risk

factors to inform individualized patient-care practices.

It should be noted that a previous version of MedML achieved even better performance, with a hospitalization

taskAUROC in the 80th percentile. Thiswasachievedbyweighting a clinical diagnosismoreheavily basedon the

total number of visits associatedwith that diagnosis code, e.g., 30 visits for cerebral palsywould result in a higher

hospitalizationprediction value than 3 visits. However, using such amodel in clinical practice disadvantages, pa-

tients with barriers to accessing healthcare, thereby exacerbating the healthcare inequities faced by those indi-

viduals. Model performance must come secondary to model ethics; we hold ourselves to this principle.

MedML represents a newmethod of evaluating, automating, and informing existing clinical concepts and their

relationships through a hybridized machine learning approach using a customized knowledge graph system.

MedML is purpose-built on a framework of existing clinical knowledge using clinically intuitive concepts and re-

lationships, on top of which it learns to identify newdata-driven featureswhich are both interpretable and quan-

tifiable. In this way, the utility of themodel stems not only from how it performs but also fromwhat it provides in

terms of feature importance.WhenMedML identifies a data-driven feature of high importance that is not within

the original knowledge graph, that feature may represent one of three situations: 1) the feature wasmistakenly

omitted from the original graph and should be added, which serves to improve the underlying clinical knowl-

edge graph; or 2) the feature is clinically irrelevant and represents either an error in the data or its engineering,

which serves to improvedatapreprocessingand featureengineering;or 3) the featuremayhave trueclinical rele-

vance representing a previous unknown clinical relationship that merits further exploration.

To put it another way, our platform allows clinicians to visually compare knowledge-driven with data-

driven features and quantify their relative levels of importance. While this comparison initially serves

to improve the model, progressive iterations naturally lead to a validated set of features and feature

importance values that can swing the pendulum from model improvement toward healthcare improve-

ment by informing how a clinician perceives a patient’s individual risk factors based on the available

data. A clinician may qualitatively understand that asthma and obesity are both predictive of COVID-

19 severity, but they may not know which condition is quantitatively more predictive for particular patient

given their unique combination of data elements and values, which is where MedML comes into play. The

clinician informs the clinically relevant concepts, and MedML evaluates and quantifies those concepts

while also exploring other concepts independently. In this way, the model both performs the automated

predictive task and informs the physician’s internal predictive process in an iterative, synergistic platform

whose impact reaches beyond its own performance to impact clinical practice itself. We hope that

MedML serves as a bridge between clinicians, data engineers, and computer scientists to efficiently

and powerfully augment the clinical decision-making process through intuitive knowledge representa-

tion, explainable construction, and powerful computation.
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Figure 14. Feature importance in MedML for the hospitalization prediction task
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Limitations of the study

This study is not without limitation. First, we did not have information on all pediatric cases in the United

States, so study results may not generalize to all US pediatric population. Future works may include eval-

uating and applying this innovative method on different pediatric EHR datasets to assess its reproducibility

among different cohorts. Our model also does not make additional improvements for the data misbalanc-

ing issues in both tasks, and this is intentional. Developing or utilizing techniques to balance the labels may

further improve the prediction performance, but also risks exaggerating certain features and their
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Figure 15. Feature importance in MedML for the severity prediction task
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importance. Similarly, we only use a simple but efficient metric, i.e., the propensity score, in the data-driven

feature selection process. We do not explore other more complex feature selection algorithms since our

target in this paper is to boost the prediction performance of machine learning models by fusing domain

knowledge, rather than comparing performance differences brought about by feature selection and pre-

processing techniques. In future application works, exploring more complex data preprocessing and

feature selection algorithms may further improve MedML’s performance.
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Figure 16. Shapley values of measurement features with top 4 highest importance and visit sequence features for the hospitalization prediction

task
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Another limitation is that the time related toeachpredictorwasnot includedwhichcould influence results. Future

works may also include integrating recurrent neural networks to model the temporal patterns in EHR data.

Furthermore, it is important tonote that the factors identified in this studyare correlativebut not necessarily caus-

ative forCOVID-19 among thepediatricpopulation. Future studies areneeded toadapt thismodel toother com-

mon conditions among hospitalized children; by comparing the resultant feature lists of several such conditions,

wemay begin to identify risk factors unique toCOVID-19. The knowledge graph used for this task ismeant to be

representative of common relevant relationships; it is not meant to be exhaustive. Future development of the

knowledgegraph is needed to includeall clinically relevant concepts and to connect those concepts to all appro-

priate data elements through detailed concept mappings across a wider breadth of relevant ontologies.
STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
18
B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Background

B Medical knowledge graph construction

B Patient embedding learning using GAT

B Data-driven feature selection

B Feature combining and prediction

d QUANTIFICATION AND STATISTICAL ANALYSIS
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2022.104970.
CONSORTIA

Christopher G Chute, Melissa A Haendel, Davera Gabriel, N3C Consortium.
iScience 25, 104970, September 16, 2022

https://doi.org/10.1016/j.isci.2022.104970


Figure 17. Shapley values of measurement features with top 4 highest importance and visit sequence features for the severity prediction task
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Figure 18. Shapley values of demographic features for the hospitalization prediction task
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Figure 19. Shapley values of demographic features for the severity prediction task

Shapley values of demographic features for the severity prediction task: A for Age, B for Race, C for Gender, and D for

Ethnicity.
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Figure 20. Model calibration curve and expected calibration error (ECE) for two tasks
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Software and algorithms

MedML This Study https://github.com/v1xerunt/MedML

Scikit-learn (version 0.23.2) Pedregosa et al., 2011 https://scikit-learn.org/

XGBoost (version 1.0.2) Chen and Guestrin, 2016 https://github.com/dmlc/xgboost

PyTorch (version 1.7.1) Paszke et al., 2019 https://pytorch.org/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Jimeng Sun (jimeng@illinois.edu).
Materials availability

This study did not generate new unique reagents.

Data and code availability

This paper analyzes existing, publicly available N3C data. These accession URL for the N3C dataset is listed

in the key resources table.

Source code and tutorials for implementing the MedML model are publicly available online at https://

github.com/v1xerunt/MedML.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.
METHOD DETAILS

Background

Current published studies on pediatric COVID-19 severity prediction primarily rely on statistical analysis to

identify individual risk factors. Some also apply basic statistical models to predict severe outcomes such as

death or cardiovascular support (Domı́nguez-Rodrı́guez et al., 2021; Martin et al., 2022; Nachega et al.,

2022; Oliveira et al., 2022). Martin et al. (2022) analyzed the characteristics, outcomes, and risk factors of

children with COVID-19 in the large multi-site N3C database. Nachega et al. (2022) analyzed the clinical

outcomes and factors for children and adolescents hospitalized with COVID-19 in 6 countries in sub-Sa-

haran Africa. Domı́nguez-Rodrı́guez et al. (2021) applied the naı̈ve Bayesian model to predict COVID-19

severity within 350 children. Oliveira et al. (2022) applied the Fine and Gray competing-risks model to pre-

dict death outcomes for 10,017 pediatric patients using age, ethnicity, region, respiratory symptoms, and

comorbidities features. To the best of our knowledge, there is no existing work which attempts these pre-

dictive tasks using a fusion of machine learning models with domain knowledge using heterogeneous,

large-scale, multi-site EHR data.

For general COVID-19 related clinical tasks such as diagnosis (Feng et al., 2020; Zoabi et al., 2021), length of stay

(Dan et al., 2020;Ma et al., 2021), or severity risk (Jamshidi et al., 2022;Wynants et al., 2020; Yan et al., 2020),many

statistical or machine learning models have been proposed. Most of these cited works are purely data-driven,

and none of them involve COVID-19 in children. Most are designed with limited features and are more likely

to performpoorly on large heterogeneous datasets. For example,Ma et al. (2021) conducted length-of-stay pre-

diction forCOVID-19 patients from theHMHospitals in Spain using a total of 66 lab test features for each patient,
24 iScience 25, 104970, September 16, 2022

mailto:jimeng@illinois.edu
https://github.com/v1xerunt/MedML
https://github.com/v1xerunt/MedML
https://ncats.nih.gov/n3c
https://github.com/v1xerunt/MedML
https://scikit-learn.org/
https://github.com/dmlc/xgboost
https://pytorch.org/


ll
OPEN ACCESS

iScience
Article
and Yan et al. (2020) conducted mortality prediction for COVID-19 patients from the Tongji Hospital in China

using 74 lab test features. Most of these methods also have limited explainability due to their use of ‘‘black

box’’ deep neural networks limiting their clinical utility.

The integration of domain knowledge into machine learning models is another ongoing research topic. Most

existing works extract domain knowledge frommedical literature or clinical concept hierarchies such as ICD co-

des. Lin et al. (2020) utilized a medical knowledge graph with medical entity alignment techniques to predict

mortality risk for ICU patients. Choi et al. (2017) enriched their disease code embeddings with ICD-9 health in-

formation for diagnosis prediction.Despite their initial success in specific clinical applications, knowledgegraphs

in these works are extracted from only one clinical aspect, such as disease code ontology; however, different

types of medical concepts, including lab tests, procedures, and disease codes, may have complex relationships.

Bennett et al. (2021) trainedmultiple machine learningmodels on the N3C dataset, including gradient boosted

tree and linear regression, to determine severity prediction for hospitalized adult patients with COVID-19 by se-

lecting 64 input variables based on domain knowledge. Elliott et al. (2021) trained a logistic regressionmodel on

the UK Biobank COVID-19 dataset using 42 potential risk factors selected based on medical literature. In these

works, domain knowledge is used only to limit the input feature size and does not guide themodel learning pro-

cess. Despite these current works, the problem of combining expert clinical knowledge with data-driven ma-

chine learning approaches to extract complex heterogeneous inter-feature relationships while achieving

good predictive performance and interpretability remains an unsolved challenge.
Medical knowledge graph construction

Medical knowledge guides clinicians in making informed decisions for patients with COVID-19. Incorpo-

rating medical knowledge can guide the feature selection process among many medical concepts and

enhance the performance of machine learning models. In this work, we construct a graph-based structure

to represent such medical knowledge.

Concretely, we begin by constructing a heterogeneous COVID-19 medical knowledge graph. The nodes in

the knowledge graph are medical concepts, and the edges are relationships between concepts. Our pur-

pose is to utilize expert knowledge in clinical practice to learn enriched patient embeddings. Therefore, we

build the graph based on both clinical practice from domain experts and risk factors in existing pediatric

COVID-19 research (Bennett et al., 2021; Martin et al., 2022; Nachega et al., 2022; Oliveira et al., 2022).

There are many well-established clinical knowledge bases from which clinical knowledge graphs have

been created, such as SNOMED-CT. However, the relationships inherent within these systems are primarily

ontological. To mimic the clinical hospitalization prediction thought process, we required another layer of

abstraction on top of the ontological layer. This customized layer represents complex clinical concepts,

(e.g., congenital cardiac malformations) and connects them to more discrete concepts (e.g., hypoxemia

during time of illness) through an edge representing an ‘‘increases risk of’’ relationship. This conceptual

hierarchy allows clinicians to more naturally map out their thought processes, and these clinically intuitive

concepts are then connected to nodes representing discrete data elements using ICD-10, SNOMED-CT,

and other processes specific to the N3C dataset task. The nodes in the knowledge graph have five types:

major condition, other condition, drug,measurement, and procedure, which are derived from the reported

major medical feature types in existing works. The primary condition nodes, for example, hypoxemia or res-

piratory distress, are diagnoses; they are the major reasons for hospitalization and underlie the need for

ventilation or cardiovascular intervention for pediatric patients with COVID-19. The drug, measurement,

and procedure nodes are medical concepts associated with other condition nodes. The relationship

(i.e., edge) between two nodes is derived from clinical practice and medical literature. For example, we

consider hypoxemia as a primary reason for hospitalization in children with COVID-19, which is amajor con-

dition node in our graph G. Chronic respiratory failure is one of the direct factors that increases the risk of

hypoxemia from COVID-19 and is therefore classified as other condition. Chronic respiratory failure can

also be related to severe cerebral palsy (which is also considered to be an other condition node) through

several clinical relationships (e.g. kyphosis, scoliosis, upper airway obstruction, central apnea, chronic aspi-

ration, etc.), so a directed edge pointing from cerebral palsy to chronic respiratory failure is created.

To this end, we can use this constructed knowledge graph to represent a patient’s clinical risk factors and

map them to their EHR records. A patient will not have all the medical features in the knowledge graph, so

we represent their historical records asGpðVp;EpÞ, whereGp is a subgraph ofG, Vp and Ep are subsets of the

entire node set V and edge set E. We use an initialized dictionary D˛RF3E to represent node embeddings
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of G, where F denotes the number of nodes (i.e., medical features in the graph) and E denotes the dimen-

sion of the embedding. To enrich the embedding, we also concatenate an extra dimension (i.e., column) to

D, which indicates the historical existence (for conditions), frequency (for drugs and procedures) or the

average value (for measurements) of a medical code in the patient’s entire visit history. For example, we

append the frequency of central venous catheter as the extra dimension for central venous catheter

node and add average blood pressure lab results as extra dimension for the blood pressure node. Finally,

the embedding vector for node i inG is denoted as v i ˛RE + 1. Note that the extra dimension is not learnable

during model optimization. When constructing the patient-level graph Gp, the initial node features are

copied from the enriched dictionary. In this setting, different patients may have different graph structures

and different node embeddings even for the same feature (frequency or average values might vary). This

enables the model to learn personalized predictions for each patient in a flexible way.

The constructed knowledge graph consists of 65 medical features. The feature links in the knowledge

graph can be found in the code repository and the features are listed below:

� Conditions (37): Asthma, Anxiety, Metabolic derangement, Obesity, Depression, Apnea, Dehydra-

tion, Failure to thrive, Respiratory distress, Atrial septal defect, Diabetes, Prematurity, Panic disor-

der, Post-traumatic stress disorder, Malignancy, Immunodeficiency, Malnutrition, Ventricular septal

defect, Cerebral palsy, Renal injury, Congenital cardiac anomaly, Chronic kidney disease, Hypox-

emia, Pulmonary hypertension, Heart failure, Chronic respiratory failure, Tetralogy of fallot, Congen-

ital pulmonary anomaly, Acute heart failure, Marasmus, On ventilator, High altitude, Inborn error

metabolism, Secondary infection, Congenital cystic adenomatoid malformation, Kwashiorkor,

Gaucher disease.

� Drugs (15): Albuterol, Dexamethasone, Clonidine, Insulin, Tacrolimus, Methotrexate, Vincristine,

Levocarnitine, Cyclophosphamide, Filgrastim, Doxorubicin, Daunorubicin, Sirolimus, Vinblastine,

Bleomycin.

� Procedures (5): Tumor resection, Bone marrow biopsy, Central venous catheter, Gastrostomy tube

placement, Cardiac catheterization.

� Measurements (8): BMI, Glucose, Creatinine, Weight, Spo2, GFR, A1c, Pao2.
Patient embedding learning using GAT

In traditional machine learning models, the input features are vectors, where each dimension indicates the

numerical value (e.g., lab test result) or the existence of medical condition features. Common models

cannot process the inter-relationships between features and are thus unable to utilize the hierarchical re-

lationships such as the model representation. In MedML, we employ the graph attention networks (GAT) to

incorporate the hierarchical relationships betweenmedical features into the model. The basic premise is to

learn node embeddings for each medical feature by aggregating information from its neighboring nodes.

For example, since chronic respiratory failure and hypoxemia are closely related, this relationship will be

learned and used to enrich their own node embeddings during the model learning process. The GAT

model is a natural choice since it adaptively learns the attention score between the node and its neighbors

and then aggregates the neighboring information in proportion to the score.

We use a two-layer GAT to learn the hierarchical relationships from the knowledge graph. Concretely,

given a patient’s feature graphGp, we apply the graph attention mechanism to calculate the node embed-

ding zi ˛RFz for node i based on the initial embedding v i and the information aggregated from its neigh-

bors. Fz denotes the dimension of the final node embeddings. Mathematically, given two adjacent nodes i

and j, we calculate the attention weight between the two nodes as:

eij = s
�
W a

�
W zv ikW zv j

��
;

where W z ˛RFz3ðE + 1Þ denotes the weight matrix, Wa ˛R132Fz denotes the attention computation matrix,

ð$jj $Þ denotes the vector concatenation operation, and sð ,Þ is the non-linear activation function. Matching

the original GAT model, we use a leaky rectified linear unit (LeakyReLU) as the activation function:

sðxÞ =

�
x; if xR0;
0:01x; otherwise:
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The attention score of all adjacent nodes is normalized using the SoftMax function:

aij = softmax
�
eij

�
=

exp
�
eij

�
PNi

k = 1expðeikÞ
;

whereNi denotes the number of neighbors of the node i. Each adjacent node j connected to the node i will

have an attention score aij, indicating howmuch information will be aggregated to contribute to the update

of node i. A higher attention score indicates the information from that adjacent node is more important.

Finally, we obtain the updated embedding of node i by summing information from all adjacent nodes using

attention scores as the weights:

zi =
XNi

j = 1

aijW zv i:

The updated embedding zi integrates the hierarchical information from all related nodes. Collectively, all

node embeddings are stored in embedding matrix Z. To guide the learning process of node embeddings,

we need supervision to optimize the weight matrix W and the initial embedding matrix D. After learning

node embeddings, we obtain the graph embedding g with maxpooling over the node embedding Z

and then feed the embedding into a multi-layer perceptron (MLP) for prediction:

g = MaxpoolðZÞ;
byg = MLPðgÞ:
The obtained graph embedding g summarizes the structural information from the knowledge graph. All

model parameters are optimized with back-propagation using binary cross-entropy loss:

L = � y log
�byg

�
� ð1 � yÞlog

�
1 � byg

�
:

We use the back-propagation algorithm with the binary outcome labels y to optimize the graph neural

network parameters. byg here is only an auxiliary output and it’s not the final prediction score.
Data-driven feature selection

The clinical features used in the medical knowledge graph are extracted based on clinical practice and

medical literature. In this section, we further enrich the knowledge-driven feature set with a purely data-

driven method to discover new features that may not be obvious from previous research. By combining

this data-driven feature selection with clinical knowledge graphs, our model can improve the final predic-

tion accuracy and make it possible to identify new knowledge.

To select data-driven features, we consider the propensity score as a selection criterion, which is widely

used to identify the significance of an indicator to the target outcome in the medical area (Haukoos and

Lewis, 2015). We calculate the propensity score of each medical concept pScore based on the ratio of

the positive and negative prevalence as:

pScore =
fpos

�
npos

fneg
�
nneg

:

Here, fpos is the frequency of the medical concept in the positive patient cohort, npos is the population

size of the positive cohort, fneg is the frequency of the medical concepts in the negative patient cohort,

and nneg is the population size of the negative cohort. A higher propensity score means a stronger prev-

alence of the medical concept in the positive cohort, and thus is likely to be a powerful indicator in clin-

ical sense. Based on the propensity score, we select the top-K features, where K is a hyper-parameter.

According to clinical research conventions, we use different encodings for different types of features.

We use a binary encoding for condition features, where 1 denotes that the diagnosis code is recorded

at least twice in the patient’s EHR data. For drug and procedure features, we use the number of encoun-

ters for each feature in the patients’ EHR history. For measurement features, we use the average value of

the features. These K features are finally concatenated as a vector, denoted by m: We conduct an abla-

tion study on hyperparameter K in the experiment. We report the top 300 features with the highest pro-

pensity scores in the Tables S2 and S3.
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Feature combining and prediction

The final step is to extract other medical features, combined with the learned patient graph embeddings

and propensity score-based feature vectors, to make our predictions. In this section, we extract patient

static demographic features, such as age, gender, race, etc., and represent them as multi-hot embedding

vectors. We also consider exploiting evidential features from the dynamic patient visit sequences and

transform them into numerical values, such as the average time gap between visits. For example, frequent

and urgent patient hospital visits may reflect more complex or severe conditions and thus the patient is

more likely to require hospitalization.

The visit features consists of the number of historical visit types, the number of historical visits and the

average days between visits. The visit types include: Outpatient visit, Office visit, Interactive telemedicine

service, Non-hospital institution visit, Telehealth, Emergency room visit, Inpatient visit, Parenteral and

enteral nutrition supplier, Laboratory visit, Pharmacy visit, Ambulatory surgical center, Ambulatory clinic/

center, Health examination, Observation room, Intensive care, Inpatient critical care facility, Home visit,

Local education agency (lea), Mass immunization center, Managed care organization pharmacy, Outpa-

tient skilled nursing facility visit, Case management visit, Nursing care coordination, Other/Unknown.

The demographics are 32 categorical features and they are one-hot encoded into a binary vector. The de-

mographic categories are:

� Gender (3): Male, Female, Other/Unknown

� Age (19): 0-18

� Race (7): White, Black, Asian, Asian or Pacific islander, Multiple races, Other Pacific islander, Other/

Unknown

� Ethnicity (3): Hispanic or Latino, Not Hispanic or Latino, Other/Unknown

The static demographical features and the dynamic visit features are eventually concatenated, denoted as

s. The final feature input into the predictive model comprises patient graph embedding g, propensity

score-based feature vector m, and demographics and visit feature vector s. We use the gradient-boosted

ensemble of decision trees (GBDT) model to perform the final prediction,

by = GBDTð½g; m; s�Þ:
All model outputs are calibrated using Sigmoid regression calibration (i.e., Platt scaling, (Platt, 1999)),

which fits a parametrized logistic regression model to minimize the deviation between the predicted prob-

ability and ground-truth labels.
QUANTIFICATION AND STATISTICAL ANALYSIS

All statistics of the dataset and patient cohorts can be found in Tables 1 and 2 in the results section. Baseline

models, software and codes, hyperparameter and dataset split settings can be found in the baselines and

experiment settings section. All quantification performances are shown in the model performance analysis

section. The standard deviations of performances are calculated by training the models 5 times using

different random seeds. We conduct the Student’s t test to evaluate the significance of the performance

differences. The results show that the performance differences between MedML and the best baseline

models are significant (p <0.001).
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