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Checklist S1. Preferred Reporting Items for Systematic reviews and Meta-Analyses 
extension for Scoping Reviews (PRISMA-ScR) Checklist 

SECTION ITEM PRISMA-ScR CHECKLIST ITEM REPORTED 
ON PAGE # 

TITLE 
Title 1 Identify the report as a scoping review. 

ABSTRACT 

Structured 
summary 2 

Provide a structured summary that includes (as 
applicable): background, objectives, eligibility criteria, 
sources of evidence, charting methods, results, and 
conclusions that relate to the review questions and 
objectives. 

INTRODUCTION 

Rationale 3 

Describe the rationale for the review in the context of 
what is already known. Explain why the review 
questions/objectives lend themselves to a scoping 
review approach. 

Objectives 4 

Provide an explicit statement of the questions and 
objectives being addressed with reference to their key 
elements (e.g., population or participants, concepts, and 
context) or other relevant key elements used to 
conceptualize the review questions and/or objectives. 

METHODS 

Protocol and 
registration 5 

Indicate whether a review protocol exists; state if and 
where it can be accessed (e.g., a Web address); and if 
available, provide registration information, including the 
registration number. 

Eligibility criteria 6 
Specify characteristics of the sources of evidence used 
as eligibility criteria (e.g., years considered, language, 
and publication status), and provide a rationale. 

Information 
sources* 7 

Describe all information sources in the search (e.g., 
databases with dates of coverage and contact with 
authors to identify additional sources), as well as the 
date the most recent search was executed. 

Search 8 
Present the full electronic search strategy for at least 1 
database, including any limits used, such that it could be 
repeated. 

Selection of 
sources of 
evidence† 

9 State the process for selecting sources of evidence (i.e., 
screening and eligibility) included in the scoping review. 

Data charting 
process‡ 10 

Describe the methods of charting data from the included 
sources of evidence (e.g., calibrated forms or forms that 
have been tested by the team before their use, and 
whether data charting was done independently or in 
duplicate) and any processes for obtaining and 
confirming data from investigators. 

Data items 11 List and define all variables for which data were sought 
and any assumptions and simplifications made. 

Critical appraisal of 
individual sources 
of evidence§ 

12 

If done, provide a rationale for conducting a critical 
appraisal of included sources of evidence; describe the 
methods used and how this information was used in any 
data synthesis (if appropriate). 

Synthesis of results 13 Describe the methods of handling and summarizing the 
data that were charted. 
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SECTION ITEM PRISMA-ScR CHECKLIST ITEM REPORTED 
ON PAGE # 

RESULTS 

Selection of 
sources of 
evidence 

14 

Give numbers of sources of evidence screened, 
assessed for eligibility, and included in the review, with 
reasons for exclusions at each stage, ideally using a flow 
diagram. 

Characteristics of 
sources of 
evidence 

15 For each source of evidence, present characteristics for 
which data were charted and provide the citations. 

Critical appraisal 
within sources of 
evidence 

16 If done, present data on critical appraisal of included 
sources of evidence (see item 12). 

Results of 
individual sources 
of evidence 

17 
For each included source of evidence, present the 
relevant data that were charted that relate to the review 
questions and objectives. 

Synthesis of results 18 Summarize and/or present the charting results as they 
relate to the review questions and objectives. 

DISCUSSION 

Summary of 
evidence 19 

Summarize the main results (including an overview of 
concepts, themes, and types of evidence available), link 
to the review questions and objectives, and consider the 
relevance to key groups. 

Limitations 20 Discuss the limitations of the scoping review process. 

Conclusions 21 
Provide a general interpretation of the results with 
respect to the review questions and objectives, as well 
as potential implications and/or next steps. 

FUNDING 

Funding 22 

Describe sources of funding for the included sources of 
evidence, as well as sources of funding for the scoping 
review. Describe the role of the funders of the scoping 
review. 

JBI = Joanna Briggs Institute; PRISMA-ScR = Preferred Reporting Items for Systematic reviews and Meta-Analyses 
extension for Scoping Reviews. 
* Where sources of evidence (see second footnote) are compiled from, such as bibliographic databases, social media
platforms, and Web sites.
† A more inclusive/heterogeneous term used to account for the different types of evidence or data sources (e.g.,
quantitative and/or qualitative research, expert opinion, and policy documents) that may be eligible in a scoping
review as opposed to only studies. This is not to be confused with information sources (see first footnote).
‡ The frameworks by Arksey and O’Malley (6) and Levac and colleagues (7) and the JBI guidance (4, 5) refer to the
process of data extraction in a scoping review as data charting.
§ The process of systematically examining research evidence to assess its validity, results, and relevance before
using it to inform a decision. This term is used for items 12 and 19 instead of "risk of bias" (which is more applicable
to systematic reviews of interventions) to include and acknowledge the various sources of evidence that may be used
in a scoping review (e.g., quantitative and/or qualitative research, expert opinion, and policy document).

From: Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-
ScR): Checklist and Explanation. Ann Intern Med. ;169:467–473. doi: 10.7326/M18-0850



Table S1. Characteristics of included studies 

Author/Country AI tool  Objective  Sample size Study design/ 

Recruitment strategy  

Population (age and 

exclusion or inclusion 

criteria) 

Blinding Results & conclusions 

Okada et al. (2024) 

Cambodia 

Artificial intelligence-

based computer-aided 

detection (AI-CAD) 

Compare AI-CAD 

versus Xpert and human 

interpretation in 

community-based ACF 

for TB in Cambodia 

8,519 CXR images and medical 

data of participants in the ACFs  

Cross-sectional study; 

Random selection 

across 32 districts 

Participants (≥55 years) 

with any TB symptom, and 

persons at risk for TB 

Yes  The AI-CAD system showed strong correlation with CXR 

classifications, in a high TB prevalence setting, achieving an 

AUROC of 0.86 (95% CI: 0.83–0.89) against 

bacteriological reference. For triage, it reduced the need for 

human reading and bacteriological testing by 21% and 15%, 

respectively, while detecting 95% of Xpert-positive TB 

cases. In screening, it identified 98% of Xpert-positive 

cases. 

Alege et al. (2024) 

Nigeria 

AI driven Bayesian 

predictive model for 

hotspot mapping 

Compare AI model 

versus aggregated 

notification data to 

assess AI-driven hotspot 

mapping for TB ACF 

across 4 southwestern 

states 

7,088 population clusters Multicentric 

retrospective cohort 

analysis of ACF data 

(non-random selection 

of communities for 

screening) 

No socio demographic 

data, age restriction or 

medical restrictions 

specified 

Unclear/not 

stated 

AI-driven hotspot mapping improved ACF efficiency, 

yielding 1.75x higher TB positivity in predicted areas 

Khan et al. (2020) 

Pakistan 

Deep learning-based 

chest x-ray software 

(CXR)(qXRv2 and 

CAD4TBv6) 

Compare diagnostic 

accuracy of AI-CXR 

software as TB triage 

tests versus 

mycobacterial culture in 

a tertiary care hospital in 

Karachi 

2,198 participants Single centric 

prospective cohort 

study with consecutive 

sampling 

Eligible individuals (≥15 

years) and presented with 

TB symptoms or was a 

household contact of 

someone with active TB 

Median age 33(IQR: 23-

49). All were HIV negative 

Yes Both software demonstrated non-inferior accuracy to WHO-

recommended minimum values (qXRv2 sensitivity 0.93 

(95% CI 0.89–0.95), non-inferiority p=0.0002; CAD4TBv6 

sensitivity 0.93 (95% CI 0.90–0.96), p<0.0001; qXRv2 

specificity 0.75 (95% CI 0.73–0.77), p<0.0001; CAD4TBv6 

specificity 0.69 (95% CI 0.67–0.71), p=0.0003. Sensitivity 

was lower for smear-negative pulmonary TB and women 

(for CAD4TBv6), while specificity decreased in men, those 

with previous TB, older individuals, and those with lower 

BMI.  

Nsengiyumva et al. 

(2021) Pakistan 

AI-based CXR   analysis Compare cost-

effectiveness of AI-CXR 

versus smear 

microscopy/Gene Xpert 

triage for TB in Karachi 

2,198 participants Single centric 

prospective cohort 

study with unclear 

sampling strategy   

The cohort included HIV-

negative individuals (≥15 

years) with TB symptoms 

referred for testing at a TB 

clinic 

Unclear/not 

stated 

AI-based CXR triage lowered costs by 19% and averted 3–

4% more DALYs compared to smear microscopy, and 

reduced costs by 37% while preventing 4% more DALYs 

compared to GeneXpert. 

Bosman et al. 

(2024) Lesoto and 

South Africa 

CAD4TBv7 (AI-based 

chest X-ray analysis) 

Compare CAD4TBv7 

versus C-reactive protein 

for TB triage  across 10 

primary health care 

clinics and a government 

hospital.  

1,392 adults Multicentric 

prospective cohort 

study with consecutive 

recruitment  

Adults (≥18 years) 

presenting with ≥1 of the 4 

cardinal TB symptoms 

were recruited. (48% with 

HIV) 

Yes  CAD4TBv7 and CRP had AUCs of 0.87 (95% CI: 0.84–

0.91) and 0.80 (95% CI: 0.76–0.84), respectively. At 90% 

sensitivity, specificity was 68.2% (95% CI: 65.4–71.0%) for 

CAD4TBv7 and 38.2% (95% CI: 35.3–41.1%) for CRP. 

CAD4TBv7 performed comparably to an expert radiologist 

and nearly met TPP criteria for TB triage. 

Biewer et al. 

(2024) Peru 

qXR v3.0 and v4.0 (AI-

based chest X-ray 

analysis). 

Compare qXR versus 

culture and Xpert to 

serve a as a triage and 

screening tool for TB in 

a tertiary-care referral 

hospital in Lima  

578 patients (387 triage cohort, 

191 screening cohort)  

Cross-sectional study 

embedded in a larger 

prospective study with 

consecutive sampling. 

Random sampling for 

the screening cohort 

Adults (≥18 years) with 

cough or TB risk factors, 

excluding those on TB 

treatment 

 

 

 

Yes qXR v4 demonstrated 91% sensitivity (95% CI: 81–97%) 

but low specificity (32%, 95% CI: 27–37%) for pulmonary 

TB diagnosis in the triage cohort, with no AUC difference 

from v3. In the screening cohort, specificity exceeded 90%, 

though only one Xpert-positive case was found. qXR 

detected high lung abnormality rates (81% opacities, 62% 



 

 

 

 

consolidation). While highly sensitive, its low specificity 

limited diagnostic value in hospitalised TB risk groups. 

Luo et al (2022), 

China 

Conditional Random 

Forests (cforest) model 

(machine learning for 

diagnostic algorithm) 

Compare machine 

learning-based cforest 

versus forest model to 

distinguish active TB 

from LTBI using culture 

and/or GeneXpert 

MTB/RIF as references 

across 2 hospitals  

 

 

1,155 participants (892 in 

discovery cohort from Tongji 

Hospital; 263 in validation 

cohort from Sino-French New 

City Hospital 

Multicentric 

prospective cohort 

study (two cohorts: 

validation and 

discovery) with 

convenience sampling 

Patients who received anti-

TB within 1 month prior to 

enrolment and who were < 

18 years were excluded. In 

the active TB discovery 

cohort, mean age was 

52.38 ± SD 14.04 and 

53.08 ± SD 14.47 in the 

LTBI group 

Unclear/not 

stated 

The model demonstrated AUC of 0.978 for distinguishing 

Active TB from LTBI, with high sensitivity (93.39%) and 

specificity (91.18%). The findings support the potential of 

machine learning in clinical diagnostics for Mtb infection. 

Nijiati et al (2022) 

China 

3D ResNet-50 model  Compare deep-learning-

based CT image with 

radiologists to 

distinguish between 

Active TB (ATB) and 

non-ATB using CT scan 

images. 

2,291 patients from The First 

People’s Hospital of Kashi, 

China (1,160 with ATB and 

1,131 with non-ATB), with an 

additional 200 patients (100 

ATB, 100 non-ATB) from 

Shache County Hospital for 

external validation 

Multicentric 

retrospective cohort 

with convenience 

sampling followed by 

random group for 

model development  

Mean age (54.62 ± SD 

17.21 years) in the active 

pulmonary TB group and  

in the non-active 

pulmonary TB group 

(45.12 ± SD18.52) 

 

 

Yes The model demonstrated superior diagnostic accuracy, 

outperforming radiologists, with an AUC of 0.961 in the 

internal testing set and 0.946 in the external testing set. 

Findings underscore its potential as a powerful bedside tool 

for TB differential diagnosis. 

Liu et al (2023) 

Taiwan 

Deep Neural Network 

(deep learning using chest 

X-rays) 

 

Compare deep neural 

network with the 

performance of 

pulmonologists to 

distinguish between 

pulmonary TB, NTM-

LD, and other imitators 

based on chest X-ray 

images 

1,500 chest X-rays (500 from 

TB patients, 500 from NTM-LD 

patients, and 500 from imitators 

with negative mycobacterial 

cultures) collected from two 

hospitals 

Multicentric cross 

sectional study with 

random sampling  

Active pulmonary TB 

group (age: 54.62 ± SD 

17.21 years and in the non-

active pulmonary TB 

group (age: 45.12 ± SD 

18.52 years). Patients with 

extensive pleural effusion 

were excluded 

Yes The Deep Neural Network showed satisfactory 

performance, with AUCs of 0.83 ± 0.005 and 0.76 ± 0.006 

for pulmonary TB, 0.86 ± 0.006 and 0.64± 0.017  for NTM-

LD, and 0.77± 0.007 and 0.74 ± 0.005 for the imitator 

group. It outperformed pulmonologists in classification 

accuracy and maintained stable performance across different 

prevalence scenarios.  

Wang et al (2021) 

China 

3D-ResNet model (deep 

learning framework using 

CT images) 

Compare the 3D-ResNet 

deep learning model 

with 3 radiologists in 

distinguishing NTM-LD 

from MTB-LD using 

chest CT images at 

Tijanjin Haihe Hospital 

1,105 chest CT images (301 

NTM-LD and 804 MTB-LD 

patients) for training, validation, 

and testing, with an external test 

set of 80 patients (40 NTM-LD 

and 40 MTB-LD) 

 

Multicentric 

retrospective cohort  

with random sampling  

Overall mean age was 

48.87 ± SD 18.32. Patients 

with other pulmonary 

diseases and who had a 

history of lung surgery 

were excluded. 

Yes The model achieved AUCs of 0.90 in training, 0.88 in 

validation, 0.86 in testing, and 0.78 in the external test set. 

The model outperformed radiologists in distinguishing 

NTM-LD from MTB-LD and automatically identified 

abnormal lung areas with over 1,000 times more efficiency, 

demonstrating its potential as a rapid diagnostic tool. 

Yang et al (2021) 

China 

ResUNet network model 

(deep learning algorithm) 

Compare the 

performance of 

radiologists with and 

without AI assistance in 

distinguishing COVID-

19 infected pneumonia 

patients from other 

pulmonary infections on 

CT scans across 3 

hospitals 

694 cases (118 COVID-19 

pneumonia and 576 other 

pulmonary infections) with 

111,066 CT slides, evaluated 

with and without AI assistance 

by three radiologists 

Multicentric 

retrospective cohort  

with convenience 

sampling  

Mean age of patients with 

TB. Overall mean age was 

44 (SD ±20) 

Yes The final model achieved a test accuracy of 0.914, with an 

AUC of 0.903, sensitivity of 0.918, and specificity of 0.909. 

When used alongside radiologists, the deep learning model 

improved their performance in distinguishing COVID-19 

from other pulmonary infections, increasing the average 

accuracy from 0.941 to 0.951 and sensitivity from 0.895 to 

0.942. 



Nabulsi et al 

(2021) India, 

China, and the US 

Deep learning model (AI 

system) 

Compare the 

performance of the deep 

learning system against 

multiple independent 

datasets, including 

clinical, TB, and 

COVID-19 cases 

248,445 patients in training data 

from a multi-city hospital 

network in India; evaluated on 6 

international datasets, including 

2 TB  and 2 COVID-19 datasets 

Multicentric 

retrospective study  

with convenience 

sampling   

No sociodemographic data, 

age restriction or medical 

restrictions specified 

Yes The AI model generalised well to new populations and 

unseen diseases, with AUCs varying between 0.95 (95% CI 

0.93–0.97) and 0.97 (95% CI 0.94–0.99) for both TB 

dataset. It reduced turnaround time for abnormal cases by 7-

28% in a simulated workflow, supporting its potential use 

for signalling abnormalities in diverse clinical settings. 

Liu et al (2019) 

China 

Random Forest  model 

(RF) (machine learning) 

Compare 3 machine 

learning algorithms, 

SVM, FNN-BP, and RF 

to develop a radiomics-

based prediction model 

for differentiating 

silicosis and TB nodules 

using CT images 

53 silicosis patients (139 

lesions) and 89 TB patients (119 

lesions)  

Single centric, 

retrospective study. 

Unclear sampling 

Patients who underwent 

routine CT scans. Mean 

age unclear 

Unclear/not 

stated 

The RF model demonstrated the highest accuracy (83.1%) 

for differentiating silicosis from tuberculosis nodules, with a 

sensitivity of 0.76, specificity of 0.90, and an AUC of 0.917 

(95% CI: 0.8431–0.9758). RF outperformed SVM and 

FNN-BP, showing a significantly larger AUC (P < 0.05). 

Feng et al (2020) 

China   

Machine learning (Deep 

Learning Nomogram) 

Compare a deep learning 

nomogram with 

individual models to 

differentiate between 

tuberculous granuloma 

and lung 

adenocarcinoma in 

pulmonary nodules. 

550 patients (training set: 218; 

internal validation: 140; external 

validation: 192) 

Multicentric 

retrospective cohort   

with convenience 

sampling 

Mean age: Training TB 

cohort: 49.92 ± 13.48; 

Internal validation TB 

cohort: 53.68 ± 10.19; 

External TB validation 

cohort: 56 ± 11.36 . No  

medical restrictions 

specified 

Unclear/not 

stated 

The model incorporating deep learning features, clinical 

factors, and CT findings, demonstrated high diagnostic 

accuracy in distinguishing TBG from LAC, with AUCs of 

0.889 (95% CI: 0.839-0.927), 0.879 (95 % 0.813-0.928), 

and 0.809 (95% CI, 0.746-0.862) in the training, internal 

validation, and external validation cohorts, respectively. 

This model can differentiate between lung adenocarcinoma 

and tuberculous granuloma.  

Liu et al (2024) 

China 

Machine learning 

(Support Vector Machine 

- SVM) 

Compare nine machine 

learning algorithms for 

the early diagnosis of 

tuberculous pleural 

effusion (TPE) 

1,435 patients, 433 with TPE 

and the remaining 1002 were 

non TPE with pleural effusions 

An independent cohort of 153 

patients with PEs was used for 

external validation 

Single centric 

retrospective cohort 

with convenience 

recruitment 

Median age of non-TPE 

patients and TPE patients 

were 68.0 (18.0–97.0) and 

47.0 (18.0–95.0) years, 

respectively. Treated TB 

patients were excluded 

Unclear/not 

stated   

The SVM model showed the best performance in predicting 

TPE, achieving an accuracy of 87.7%, an AUC of 0.914, 

and a sensitivity of 94.7%. The model was validated using 

external data.  

Ren et al (2019) 

China 

Machine learning 

(Random Forest - RF) 

Compare machine 

learning algorithms for 

diagnosing TPE (logistic 

regression, k-nearest 

neighbors  support 

vector machine, and 

random forest  

192 TPE, 54 parapneumonic 

pleural effusion (PPE), 197 

malignant pleural effusion 

(MPE) who underwent 

thoracentesis 

Single centric 

retrospective cohort 

with convenience 

recruitment  

Patients with TPE, PPE, 

and MPE who underwent 

thoracentesis and those 

with transudative pleural 

effusion were excluded. 

Median age with TPE 

36.5(IQR:24.3-59) and 67 

(IQR 56-77) with non-TPE 

Unclear/not 

stated 

The RF model outperformed other machine learning 

algorithms and pleural fluid adenosine deaminase, achieving 

a sensitivity of 90.6% and specificity of 92.3%. In a 

prospective study, the RF model had 100% sensitivity and 

90% specificity. The RF model offers a faster and more 

effective approach to diagnosing TPE. 

 

 

Kim et al (2024) 

South Korea 

AI-based radiographic 

extent analysis 

Predict TB treatment 

success and culture 

conversion using AI-

analysed chest X-rays 

and Xpert MTB/RIF 

assay cycle threshold 

(Ct) values across 6 

referral centres. (no 

comparison with 

traditional statistical 

methods) 

230 patients with rifampicin-

susceptible pulmonary TB  

Multicentric 

retrospective study, 

with convenience 

recruitment. No 

comparison with 

traditional statistical 

models  

Adults (age > 19) 

diagnosed with confirmed 

rifampicin-susceptible 

pulmonary TB. Median 

age: 61 (IQR:51-76) 

Unclear/not 

stated 

AI-based TB extent scores from chest X-rays were 

significant predictors of treatment success (OR 0.938) and 

culture conversion at 8 weeks (liquid medium (OR 0.91; 95 

% 0.85-0.97), solid medium: (OR 0.91;95 % CI;0.85-0.97). 

Xpert Ct values were not significantly associated with 

outcomes. AI-based radiographic scoring offers potential for 

personalised management of pulmonary TB.  



Higashiguchi et al 

(2021) Japan 

Convolutional neural 

networks (CNN) 

Predict the duration 

needed to achieve 

culture negativity in 

patients with active 

pulmonary TB using 

CNNs and chest 

radiographs  

239 patients with culture-

confirmed active pulmonary TB, 

divided into training (N = 180) 

and validation (N = 59) datasets 

Multicentric 

retrospective cohort, 

with random sampling 

Patients with a history of 

TB, or coexisting 

conditions that may affect 

chest X-ray findings, 

patients with extensive 

pleural effusion, or with 

NTM were excluded. No 

sociodemographic data 

Unclear/not 

stated 

The CNN model’s predictions were significantly associated 

with actual culture negativity duration (Pearson's correlation 

coefficient = 0.392, p = 0.002), although the accuracy was 

limited. CNNs identified radiographic findings relevant to 

prediction.  

Asad et al (2020) 

Azerbaijan, 

Belarus, Georgia, 

India, Moldova, 

and Romania. 

Machine learning-based 

framework 

Predict TB treatment 

failure using feature 

selection techniques and 

classification algorithms 

across 6 high TB burden 

countries. (No 

comparison with 

traditional statistical 

methods) 

Multinational patient data 

(sample size unknown) 

Multicentric 

retrospective analysis 

with convenience 

sampling 

No sociodemographic data, 

age restrictions, or medical 

restrictions specified 

Unclear/not 

stated  

The machine learning-based framework achieved an average 

accuracy of 78% on the combined dataset and 92% on 

Romania's data. The findings underscore the importance of 

demographic-based features in predicting TB treatment 

failure. 

Rodrigues et al 

(2024) Brazil 

Machine learning-based 

predictive models 

Predict loss to follow-up 

during TB treatment 

using national registry 

data from Brazil 

(SINAN) 

243,726 cases from the 

Brazilian Notifiable Disease 

Information System. Three 

models (Logistic Regression, 

Random Forest, Light Gradient 

Boosting) were developed  

Multicentric 

retrospective cohort 

study using data from 

a national database 

Participants under 18 and 

vulnerable populations 

(homeless individuals, 

incarcerated people, 

pregnant women, 

immigrants, and healthcare 

workers). No mean/median 

age provided. HIV 

population (7.21%) 

 

Unclear/not 

stated 

41,373 experienced LTFU, and 202,353 were successfully 

treated. Light Gradient Boosting had the best prediction 

performance with an AUC between 0.71 and 0.72. A user-

friendly web tool was developed to assist decision-making 

and improve TB treatment adherence. 

Liao et al (2023) 

Taiwan 

6 machine learning 

algorithms, including (1) 

multilayer perceptron 

(MLP), (2) LightGBM, 

(3) random forest, (4) 

XGBoost, (5) logistic 

regression, and (6) 

support vector machine 

(SVM) 

 

Compare 6 AI 

algorithms to predict 

adverse effects (acute 

hepatitis, acute 

respiratory failure) and 

mortality TB treatment 

across 1 medical centre, 

1 regional hospital, and 

one district hospital in 

Taiwan 

2,248 TB patients  Multicentric 

retrospective cohort 

study with 

convenience sampling  

Adult patients (age ≥ 20 

years). Overall mean age 

67.7 (SD: 16.4)  

No The models demonstrated high predictive accuracy for acute 

hepatitis (AUC 0.920–0.766), respiratory failure (AUC 

0.884–0.797), and mortality (AUC 0.834–0.737), providing 

a valuable tool for early detection of adverse prognosis in 

TB patients. 

Sethanan et al 

(2023) Thailand  

Ensemble deep learning 

model embedded in a 

web application (TB-

DRD-CXR) 

Compare TB-DRD-CXR 

web application’s 

ensemble deep learning 

model to state-of-the-art 

methods and standard 

CNN architectures using 

the Portal dataset (TB 

data science for public 

health impact) 

The dataset included 5,039 CXR 

images associated with 

tuberculosis, comprising 1,608, 

470, 2098, 108, and 755 images 

for DS-TB, DR-TB, MDR-TB, 

pre-XDR-TB, and XDR-TB, 

respectively 

Multicentric cross 

sectional data with 

convenience sampling 

No sociodemographic data, 

age restrictions, or medical 

restrictions specified 

Unclear/not 

stated 

The model outperformed existing models by 4.0%-33.9% in 

accuracy, achieving a 96.7% accuracy rate, making it an 

effective and efficient tool for MDR-TB classification. 

Herman et al 

(2021) Indonesia 

Artificial Neural Network 

(ANN), deployed in the 

Compare performance of 

the ANN-based 

487 participants (32 MDR, 57 

Rifampicin resistant (RR) group 

Multicentric 

prospective study with 

Patients with RR /MDR 

regimen before DST were 

Yes The ANN-based CUHAS-ROBUST model achieved an 

accuracy of 88% (95% CI: 85–91) and sensitivity of 84% 



CUHAS-ROBUST 

application 

CUHAS-ROBUST 

model with other AI 

classifiers (Logistic 

Regression, Decision 

Tree, Random Forest, 

Extreme Gradient Boost)  

(RR-TB), 398 drug-sensitive) 

for model building and 157 

participants (23 MDR, 21 RR) 

for testing 

consecutive 

recruitment 

excluded. Mean age in the 

RR/ MDR group: 44.06 +/- 

11.57 and in the non RR 

group: 39.59 +/- 13.84 

(95% CI: 76–89), outperforming other AI models. It showed 

lower specificity 90% (95% CI: 86–93) compared to 

Logistic Regression 99% (95% CI: 97–99). The model, 

integrated into the CUHAS-ROBUST application, offers a 

useful tool for RR-TB screening, especially in settings 

without GeneXpert. 

Tulo et al (2022)  Computer-aided 

diagnostic system using 

machine learning 

techniques 

Compare the diagnostic 

performance of machine 

learning classifiers using 

lung and mediastinum 

features extracted from 

chest X-rays to 

differentiate between 

Drug sensitive (DS)-TB, 

MDR-TB, and XDR-TB 

CXR images obtained from a 

public database (TB DEPOT 

(data exploration portal): a 

multidomain tuberculosis data 

analysis resource) for DS and 

DR-TB patients 

Public database, 

unclear recruitment 

No sociodemographic data, 

age restrictions, or medical 

restrictions specified 

Unclear/not 

stated 

Incorporating mediastinal features with lung characteristics, 

significantly improved the diagnostic performance. The 

Multi-Layer Perceptron classifier achieved maximum F-

measures of 82.4%, 81.0%, and 87.0% for differentiating 

DS vs. MDR, MDR vs. XDR, and DS vs. XDR TB, 

respectively, indicating clinical relevance and utility in early 

detection of DS and DR TB. 

Portelli et al (2020) Structure-based machine 

learning predictor for 

rifampicin resistance 

Compare a 

computational 

rifampicin resistance 

predictor, SUSPECT-

RIF (StrUctural 

Susceptibility 

PrEdiCTion for 

RIFampicin), to the 

current gold-standard 

GeneXpert-MTB/RIF 

Use of clinical M.tb sequencing 

information training set 

contained 203 resistant, and 28 

susceptible mutations obtained 

from the LSHTM. An 

independent test set was curated 

from online databases 

Multicentric 

retrospective cohort 

with convenience 

sampling  

No sociodemographic data, 

age restrictions, or medical 

restrictions specified 

Yes  The predictor achieved an accuracy of up to 90.9%, with a 

sensitivity of 92.2%, specificity of 83.6%, and a Matthews 

Correlation Coefficient of 0.69, outperforming the current 

gold standard. 

Verboven et al 

(2022) 

Hybrid knowledge- and 

data-driven treatment 

recommender Clinical 

Decision Support System  

for DR-TB 

Compare a hybrid 

knowledge- and data-

driven Clinical decision 

support system for DR-

TB treatment with 

expert recommendations 

Dataset of 355 DR-TB patients 

with 129 unique drug resistance 

profiles 

Proof of concept study 

using a multicentric 

retrospective cohort 

with convenience 

sampling   

No sociodemographic data, 

age restrictions, or medical 

restrictions specified 

Unclear/ not 

stated 

The model achieved 95% precision. However, validation 

data revealed overfitting, with precision at 1 reduced to 

78%. Further development and evaluation are needed in 

other medical fields and real-world clinical settings. 

Li et al (2023) 

China 

Radiomics-based 

machine learning model 

for predicting MDR-TB 

in cavitary pulmonary TB  

Compare the radiomics 

model to the clinical and 

the combined model to 

detect MDR-TB in two 

hospitals 

257 patients with proven active 

cavitary TB from two hospitals 

(training cohort: 187 from 

Beijing Chest Hospital; testing 

cohort: 70 from Infectious 

Disease Hospital of 

Heilongjiang Province) 

Multicentric 

retrospective cohort 

with convenience 

sampling  

No age restriction; Patients 

with thoracoabdominal 

trauma, lung cancer, 

silicosis, COPD, diabetes, 

HIV. Mean age among 

Drug susceptible (DS)-TB: 

39.59 (SD: 15.1) and 34.87 

(SD: 11.46) in the MDR 

TB group from the training 

cohort. 36.27 ± 13.12 from 

the DS-TB and 30.16 ± 

7.49 from MDR-TB from 

the testing cohort  

Yes  The radiomics model, using 21 features, significantly 

outperformed the clinical model in predicting MDR (AUC: 

0.844 vs. 0.589 in the training cohort, and 0.829 vs. 0.500 in 

the testing cohort, p < 0.05), showing its strong potential as 

a diagnostic tool for predicting MDR in cavitary TB, 

improving early detection in resource-limited settings. 

Yang et al (2018) 

United Kingdom 

Machine learning models 

for classifying TB res 

Compare machine 

learning models with 

rules set for 

1839 bacterial isolates (Walker 

et al (2015) UK, Sierra Leone, 

South Africa, Germany, and 

Multicentric 

retrospective cohort 

study with 

convenience sampling 

No sociodemographic data, 

age restrictions, or medical 

restrictions specified 

Unclear/not 

stated 

The best-performing models outperformed the rules-based 

approach, increasing sensitivities to 97% for isoniazid, 

rifampicin, and ethambutol (P < 0.01). Sensitivities for 

ciprofloxacin and MDR-TB reached 96%. Moxifloxacin and 



conventional molecular 

diagnostics tests 

Uzbekistan, representing all 

seven global clades 

ofloxacin improved by 12% and 15%, respectively, to 95% 

and 96% (P < 0.01). Pyrazinamide and streptomycin 

sensitivities rose by 15% and 24%, to 84% and 87% (P < 

0.01). The models also increased AUC by 10% for 

pyrazinamide and streptomycin, and 4–8% for other drugs 

(P < 0.01). 

Sibandze et al 

(2020) South 

Africa 

Machine learning to 

explore M.tuberculosis 

(Mtb) genotypes and 

disease transmission in 

extrapulmonary TB 

Investigate Mtb DR and 

transmission patterns in 

extrapulmonary TB 

(EPTB) patients within 

the Tshwane 

metropolitan area, South 

Africa, using genotyping 

and machine learning 

methods. (No control 

group)  

70 Mtb culture-positive non-

pulmonary isolates from Extra 

pulmonary TB patients in 

Tshwane, South Africa  

Multicentric 

retrospective cohort 

study with consecutive 

sampling 

Isolates with NTB and 

M.bovis were excluded. 

The median age and range 

was 34 years (1-82) 

Unclear/ not 

stated 

The largest cluster comprised 25 (36%) East Asian lineage 

strains were significantly more associated with transmission 

chains compared to Euro-American and East-African Indian 

lineages (OR = 10.11, 95% CI: 1.56-116). EPTB forms like 

lymphadenitis, meningitis, and cutaneous TB were more 

likely linked to DR (OR = 12.69, 95% CI: 1.82-141.60).  

Mohidem et al 

(2021) Malaysia 

Artificial Neural Network 

(ANN) 

Compare multiple 

Linear Regression 

models with ANN 

models in predicting the 

number of TB in 

Gombak, Selangor, 

Malaysia, using 

sociodemographic and 

environmental factors 

Sociodemographic data of 3,325 

TB, collected from the MyTB 

web and TB Information System 

database 

Multicentric 

retrospective cohort 

with convenience 

sampling   

No sociodemographic data, 

age restrictions, or medical 

restrictions specified 

Unclear/not 

stated 

Three prediction models were created using 

sociodemographic, environmental, and combined variables. 

The model incorporating both sociodemographic and 

environmental factors, was the most accurate with an 

adjusted R² of 0.47. The integration of sociodemographic 

and environmental variables resulted in more accurate TB 

prediction, with high accuracy above 96%.  

Dixit et al (2024) 

South Africa 

Random Forest Model Estimate country-

specific TB resistance 

antibiograms using Mtb 

whole-genome 

sequencing data and in 

silico resistance 

prediction. Validation 

was conducted using 

data from a national 

drug resistance survey.  

Mtb isolates from 29 countries 

(n=19,149) that met sequence 

quality criteria  

Multicentric 

retrospective cohort 

with convenience 

sampling 

No sociodemographic data, 

age restrictions, or medical 

restrictions specified 

Unclear/not 

stated 

Validation with South Africa’s national drug resistance 

survey showed strong alignment, with minor 

underestimations for isoniazid, ethionamide, and second-

line injectables. 

Cherniaev et al 

(2022) Russian 

Federation 

Dynamic Simulation 

Model based on AI 

technologies 

Compare predicted 

values of the epidemic 

situation of TB from 

2017 versus actual 

values from 2018-2021 

in Sverdlovsk oblast, 

Russian Federation with 

high levels of HIV and 

TB. 

Statistical data on TB patients 

from state reporting for the 

period 2007-2017  

Multicentric centric 

retrospective cohort  

No sociodemographic data, 

age restrictions, or medical 

restrictions specified 

Unclear/not 

stated 

The model effectively identified and calculated trends in TB 

epidemiological indicators. A comparison of TB predictions 

from 2017 with actual data from 2018–2021 showed a 

strong alignment in epidemiological trends, with a 

maximum deviation of 14.82%. 

Abade et al (2024) 

Brazil 

Machine Learning 

models (SVR, XGBoost, 

LSTM, CNN, GRU, 

Compare classical 

statistical methods and 

machine learning models 

for forecasting TB/HIV 

Time series data analysed using 

classical methods  

to establish baseline trends and 

seasonality. Machine learning 

Ecological time-series 

studies  

No sociodemographic data, 

age restrictions, or medical 

restrictions specified 

Unclear/not 

stated 

Deep Learning models, particularly bidirectional LSTM and 

CNN-LSTM, significantly outperformed classical methods 

in predicting TB/HIV co-infection cases. The study 

highlights the effectiveness of Deep Learning approaches 



CNN-GRU, and CNN-

LSTM) 

co-infection cases in 

Mato Grosso 

models captured complex 

dynamics and non-linearities in 

the data 

for accurately modelling TB/HIV co-infection time series 

and improving forecasting accuracy. 

Silva et al (2024) 

Brazil 

Random Forest machine 

learning model 

Compare the Random 

Forest model in its 

capacity to predict TB 

clusters (hot versus non-

hot spots) versus the 

observed spatial 

clustering of TB cases in 

the riverine 

municipalities of the 

Brazilian Amazon   

 

 

  

Data on TB incidence from 

2019 to 2022 was collected 

from the Brazilian Health 

Ministry Informatics 

Department 

Ecological time-series 

studies, with ML 

methods (Random 

Forest) for cluster 

prediction 

No sociodemographic data, 

age restrictions, or medical 

restrictions specified 

Unclear/not 

stated 

The analysis revealed distinct geographical TB incidence 

clusters with a west-to-east distribution. The model, using 6 

surveillance variables, achieved an AUC-ROC of 0.81 for 

predicting hot spots, using key predictors included recurrent 

cases, TB-related deaths, antibiotic regimen changes, new 

cases, and smoking history. This method may help 

policymakers target municipalities at high TB risk. 
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