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Abstract
Variations in the carbon isotope signature of leaf dark-respired CO2 (δ

13CR) within a single

night is a widely observed phenomenon. However, it is unclear whether there are plant func-

tional type differences with regard to the amplitude of the nighttime variation in δ13CR.

These differences, if present, would be important for interpreting the short-term variations in

the stable carbon signature of ecosystem respiration and the partitioning of carbon fluxes.

To assess the plant functional type differences relating to the magnitude of the nighttime

variation in δ13CR and the respiratory apparent fractionation, we measured the δ13CR, the

leaf gas exchange, and the δ13C of the respiratory substrates of 22 species present in the

agricultural-pastoral zone of the Songnen Plain, northeast China. The species studied were

grouped into C3 and C4 plants, trees, grasses, and herbs. A significant nocturnal shift in

δ13CR was detected in 20 of the studied species, with the magnitude of the shift ranging

from 1‰ to 5.8‰. The magnitude of the nighttime variation in δ13CR was strongly correlated

with the daytime cumulative carbon assimilation, which suggests that variation in δ13CR

were influenced, to some extent, by changes in the contribution of malate decarboxylation

to total respiratory CO2 flux. There were no differences in the magnitude of the nighttime

variation in δ13CR between the C3 and C4 plants, as well as among the woody plants, herbs

and graminoids. Leaf respired CO2 was enriched in 13C compared to biomass, soluble car-

bohydrates and lipids; however the magnitude of enrichment differed between 8 pm and 4

am, which were mainly caused by the changes in δ13CR. We also detected the plant func-

tional type differences in respiratory apparent fractionation relative to biomass at 4 am,

which suggests that caution should be exercised when using the δ13C of bulk leaf material

as a proxy for the δ13C of leaf-respired CO2.
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Introduction
The stable C isotope composition (δ13C) has been widely used to trace the carbon flow within
ecosystem components or between the ecosystem and the atmosphere [1–7]. The applications
of stable carbon isotope technique require a mechanistic understanding of the temporal and
spatial variation in the δ13C signature of component fluxes [8–10]. As an important component
of ecosystem carbon fluxes, leaf respired CO2 has been reported to vary substantially in its car-
bon isotope composition at diurnal timescale [11–15]. Unfortunately, we still lack a compre-
hensive understanding of the processes controlling the dynamics in the δ13C signature of leaf
respired CO2 [9, 16].

It has been extensively reported that δ13CR varied substantially, up to 14.8‰, on a diurnal
timescale [12, 13, 17, 18]. Several mechanisms have been developed to explain short-term vari-
ation in δ13CR. Firstly, intramolecular 13C distribution is not homogeneous in hexose mole-
cules, which combined with changes in the relative contribution of the metabolic pathways to
the respiration could lead to variation in δ13CR [14, 19–22]. Secondly, shifts in δ13CR can be
attributed to the changes in the contribution of malate (13C-enriched) decarboxylation to the
overall respiratory flux [8, 23]. Thirdly, changes in the use of the respiratory substrates having
different δ13C may subsequently affect δ13CR [16, 18]. Finally, short variation in carbohydrate
pool size may also influence δ13CR through affecting the allocation of respiratory intermediates
[24]. The results of previous study showed substantial intraspecific and interspecific differences
in the amplitude of the short-term variation in δ13CR [14, 18, 25]. Intraspecific differences in
the range of the diurnal variation in δ13Cl are caused mainly by the availability of resources
associated changes in the substrate availability and the allocation of the respiratory intermedi-
ates [25]. The findings of previous studies by Werner et al. (2007) and Priault et al. (2009) indi-
cated large diurnal variations in the δ13CR of slow-growing aromatic plants, whereas no
apparent diurnal shift was found in the δ13CR in temperate trees and fast-growing herbs. These
results highlight the potential plant functional type differences relating to the extent of the vari-
ation in δ13CR on a diurnal timescale [11, 14, 22]. However, plant functional type differences in
the magnitude of short-term variation in δ13CR need to be further explored, especially for C3

and C4 species which differed substantially in the magnitude of heterogeneous 13C distribution
within hexose molecules [21, 26].

Leaf dark-respired CO2 is often enriched in 13C compared with leaf bulk tissue or other
potential respiratory substrates, such as starch, soluble carbohydrates, and others [27–29]. This
phenomenon is attributed mainly to non-homogeneous 13C distribution among the carbon
atoms within the hexose molecules and the incomplete oxidation of hexoses. However, the phe-
nomenon is also attributed partially to the utilization of isotopically different respiratory sub-
strates [21, 24, 30]. Because of the intramolecular 13C/12C differences, CO2 that evolved from
pyruvate decarboxylation contains more 13C relative to that derived from acetyl-CoA oxidation
[31, 32]. Depending on substrate availability, 13C-depleted acetyl-CoA could be used for the
biosynthesis of lipids and secondary compounds, or decarboxylation in the TCA cycle to gener-
ate adenosine triphosphate (ATP). Therefore, the incomplete oxidation of acetyl-CoA could
lead to 13C enrichment in leaf dark-respired CO2 relative to respiratory substrates. The plant
functional types differed substantially with regard to the allocation of 13C-depleted com-
pounds. Trees, for instance, allocated proportionally more acetyl-CoA to the synthesis of lipids
and lignin than did grasses [14, 26]. This could lead to the leaf-respired CO2 in trees being
more enriched in 13C in comparison with the putative respiratory substrates or the bulk leaf
material. Indeed, plant functional type differences in respiratory apparent fractionation have
been reported between C3 and C4 species, but not between woody plants and C3 herbs [15, 16].
However, these findings were derived from meta-analysis of results obtained under various
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growing habitats and using different methods, which makes the conclusions unreliable. There-
fore, the existence of plant functional type differences with regard to respiratory apparent frac-
tionation needs to be further verified and, if they do exist, we need to incorporate these into the
flux partitioning.

The vegetation of the agricultural-pastoral zone of the Songnen Plain is characterized as
mosaics of grassland and cultivated land, dominated mainly by C3 species and C4 species,
respectively. We measured the δ13CR and δ

13C of the putative primary respiratory substrates of
22 species at 8 pm and 4 am. The leaf gas-exchange parameters, including net assimilation rate,
stomatal conductance, and nighttime respiration rate were also measured. The plant species
were grouped into C3 and C4 species, trees, graminoids, and herbs. The objectives of the pres-
ent study were to assess the plant functional type differences in the range of nighttime variation
in δ13CR and the respiratory apparent fractionation relative to the bulk leaf material and the
putative respiratory substrates.

Materials and Methods

Ethics Statement
No specific permissions were required for the field studies described, because the Songnen
Grassland Ecological Research Station is a department of the Northeast Normal University. No
specific permissions were required for the study either, as it was conducted in accordance with
the guidelines set by the Northeast Normal University. No specific permissions were required
for the locations or the activities. No location was privately owned or protected in any way, and
the field studies did not involve endangered or protected species.

Study site
The study was conducted in the agricultural-pastoral zone of the Songnen Plain (44°400–44°
440N, 123°440–123°470E, elevation 138–144 m) in northeast China. The study area has a semi-
arid continental climate, with a mean annual temperature of 6.4°C. The mean annual rainfall is
471 mm, with over 70% of the precipitation occurs from June to August (Fig 1A). Drought,
especially spring drought, occurs frequently in the studied area during the growing season;
however there is no fixed drought period. The duration of the frost-free season is approxi-
mately 150 days. Detailed information on daily precipitation and daily temperature in 2012 is
provided in Fig 1B. The main soil type of the study area is chernozem, with a soil organic car-
bon content of 2.0% and a soil total nitrogen content of 0.15% [33]. The vegetation in the study
area is characterized as mosaics of grassland and cultivated land. The grassland is dominated
by Leymus chinensis, while Phragmites australis and Chloris virgata are present in abundance
[34]. The major crops on the cultivated land are Zea mays, Setaria italica, Helianthus annuus,
and Sorghum bicolor. We studied 22 plant species, representative of the major species present
on the grassland and the cultivated land. The details of the species studied are provided in
Table 1. The field studies were conducted from July 25th to August 5th in 2012, which is the
peak biomass season for the study area. None of the studied species showed signs of senescence.
Information on the development stage of the studied species is provided in Table 1.

Leaf gas-exchange measurement
Leaf photosynthesis was measured every three hours, from 6 am to 6 pm, using a LI-6400 infra-
red gas-exchange analyzer (LI-COR Biosciences Inc., Lincoln, NE, USA). We selected fully
expanded leaves from the sunny side for leaf photosynthetic rate measurements. Before each
measurement, the leaf chamber conditions were set to match the environmental conditions,
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including the photosynthetically active radiation, air temperature, and relative humidity. Leaf
respiration rates at 8 pm and 4 am were measured under zero light intensity. The leaf photo-
synthesis and respiration measurements for each species were conducted on five randomly
selected plants.

Fig 1. Growing season average monthly precipitation (mm) from 1963 to 2012 (a), and daily precipitation (mm) and daily mean air temperature (°C)
from April 1th to October 31th in 2012 (b). The shaded area in panel b denotes the field sampling period.

doi:10.1371/journal.pone.0137575.g001

Table 1. Information on species studied. List of plant species studied, and their photosynthetic pathway, classification and phenological phase.

Species Photosynthetic pathway Functional type Class Phenological phase

Leymus chinensis C3 Graminoids Monocotyledoneae Fructescence

Phragmites australis C3 Graminoids Monocotyledoneae Florescence

Lespedeza bicolor C3 Trees Dicotyledoneae Florescence

Malus asiatica C3 Trees Dicotyledoneae Fructescence

Populus simonii C3 Trees Dicotyledoneae Post-fruiting vegetative stage

Prunus salicina C3 Trees Dicotyledoneae Fructescence

Chenopodium glaucum C3 Herbs Dicotyledoneae Florescence

Glycine max C3 Herbs Dicotyledoneae Flowering and pod formation stage

Helianthus annuus C3 Herbs Dicotyledoneae Florescence

Saussurea amara C3 Herbs Dicotyledoneae Florescence

Vigna radiata C3 Herbs Dicotyledoneae Flowering and pod formation stage

Vigna unguiculata C3 Herbs Dicotyledoneae Flowering and pod formation stage

Xanthium sibiricum C3 Herbs Dicotyledoneae Florescence

Chloris virgata C4 Graminoids Monocotyledoneae Florescence

Echinochloa crusgalli C4 Graminoids Monocotyledoneae Florescence

Hemarthria altissima C4 Graminoids Monocotyledoneae Heading stage

Panicum miliaceum C4 Graminoids Monocotyledoneae Florescence

Setaria italica C4 Graminoids Monocotyledoneae Florescence

Setaria viridis C4 Graminoids Monocotyledoneae Florescence

Sorghum bicolor C4 Graminoids Monocotyledoneae Elongation stage

Zea mays C4 Graminoids Monocotyledoneae Tasseling stage

Amaranthus retroflexus C4 Herbs Dicotyledoneae Florescence

doi:10.1371/journal.pone.0137575.t001
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Collection of leaf-respired CO2

Leaf-respired CO2 was collected in the field using the gas-tight syringe incubation method
[11]. In brief, young and fully expanded leaves (comparable to those used to measure the pho-
tosynthesis and the respiration rates), were detached and placed inside a gas-tight syringe bar-
rel. The syringe barrel was subsequently flushed with CO2-free air to remove the background
CO2. The syringe barrel was then sealed and incubated for 15 min to allow for the buildup of
leaf-respired CO2. After the incubation, 5 ml of air, containing leaf-respired CO2, was injected
into a 12 ml vial. The vial was filled with helium and fitted with septum caps. For each studied
species, the leaf-respired CO2 was collected twice (8 pm and 4 am) during a single night. For
the period of field sampling, sunset time ranged from 7:17 pm to 7:04 pm, therefore the collec-
tion of leaf-respired CO2 at 8 pm was conducted at least 40 min after sunset and in the dark-
ness. The leaf-respired CO2 was sampled each time on five randomly selected plants or
populations.

Lipids, soluble carbohydrates, and starch extractions
Simultaneously with the leaf-respired CO2 sampling, we collected leaves for measuring the
carbon isotope composition of leaf bulk materials and potential respiratory substrates. The
collected leaves were comparable (age and canopy position, etc.) with those used for the leaf
photosynthesis measurements. The collected leaves were immersed in liquid nitrogen to stop
the metabolic activities. They were subsequently stored at -80°C in a deep freezer before
being freeze-dried with a Labconco freeze drier (Labconco Kansas City, MO, USA). A ball
mill (MM 400 Retsch, Haan, Germany) was used to grind the freeze-dried leaves into fine
powder.

We used the protocols described by Wanek et al. (2001) and Göttlicher et al. (2006) [35, 36]
for the extraction of lipids, soluble carbohydrates, and starch. In brief, the powdered leaf mate-
rial was extracted with methanol/chloroform/water (MCW; 12:5:3, v/v/v). After centrifugation,
the chloroform and the deionized water were added to the supernatant for phase separation.
The chloroform phase (containing lipids) was dried in a ventilation device and subsequently
analyzed for the carbon isotope composition.

The upper water phase (containing soluble carbohydrates) was transferred into a reaction
vial and oven dried for carbohydrate extraction. The residue was re-dissolved in deionized
water. After centrifugation, the phase containing the soluble carbohydrates was purified by an
ion-exchange column, including both anion- and cation-exchange resin. The eluent was col-
lected and oven dried, and the carbon isotope composition was subsequently analyzed, using
an isotope ratio mass spectrometer.

The plant materials were re-extracted with MCW to remove the residual lipids and the solu-
ble carbohydrates. After the starch in the plant materials had been gelatinized and hydrolyzed,
the aqueous phase was separated from the pellet by centrifugation. The upper aqueous phase
was subsequently purified by a centrifugal filter unit (Microcon YM-10; Millipore, Billerica,
MA, USA). The filtrate containing glucose originated from starch was oven dried in a tin cap-
sule and then analyzed for the carbon isotope composition.

Carbon isotope ratio analysis
All carbon isotope ratio analyses were performed using an isotope ratio mass spectrometer
(Isoprime 100, Isoprime Ltd., Manchester, UK). The precision of repeated δ13C measurements
on solid and gaseous working standards was< 0.1‰. The C isotope ratios are reported in
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parts per thousand relative to Vienna Pee Dee Belemnite (VPDB) as

d13Cð‰Þ ¼ ðRsample=Rstandard � 1Þ � 1; 000

Respiratory apparent 13C/12C fractionation
Respiratory apparent 13C/12C fractionation, relative to potential respiratory substrates, was cal-
culated as:

DR;X ¼ d13CX � d13CR

1þ d13CR

ð1Þ

where ΔR,X represents the respiratory apparent
13C/12C fractionation, relative to substrate X,

and δ13CX represents the carbon isotope composition of substrate X. X represents the leaf bulk
materials, lipids, starch, or soluble carbohydrates, while δ13CR represents δ

13C of the leaf-
respired CO2.

Statistical analysis
We used one-way analysis of variance (ANOVA) to assess the differences between the photo-
synthetic pathways in the range of the nighttime variation of δ13CR, the leaf net CO2 assimila-
tion rate (A), stomatal conductance (gs), Ci/Ca, and the respiratory rate (R). Linear regression
analysis was employed to assess the dependence of the magnitude of the nighttime variation in
δ13CR on the cumulative carbon assimilation. One-way analysis of variance was conducted to
assess the plant functional type differences with regard to the leaf gas-exchange parameters, the
magnitude of the nocturnal shifts in δ13CR, and the nighttime respiratory apparent fraction-
ation. The Statistical Package for the Social Science (SPSS) (version 13.0, IBM, Armonk, NY,
USA) was used for all statistical analyses. Data are reported as mean ± 1 standard error.

Results

Leaf gas exchange
For the species studied, the maximum leaf net CO2 assimilation rate (Amax) in the C3

species varied from 15.1±1.2 to 38.4±5.8 μmol m-2 s-1; whereas it ranged from 22.3±1.7 to
33.7±1.6 μmol m-2 s-1 in the C4 plants (Table 2). The average Amax value in the C4 plants
(28.1 μmol m-2 s-1) was greater than it was in the C3 plants (22.4 μmol m-2 s-1) (Table 3).
The mean leaf net CO2 assimilation rate (Mean A) varied substantially between 9.6±0.4 and
24.0±0.5 μmol m-2 s-1 (Table 2). There were no statistically significant differences in Mean A
between the C3 and C4 species (Table 3). Moreover, no apparent differences in Amax and
Mean A were detected among the different plant functional types (Table 3).

The maximum daily stomatal conductance (gsmax) varied from 0.10±0.01 to 0.94±0.05
mol m-2 s-1. Moreover, the apparent differences in gsmax were detected between the C3 and the
C4 species (Tables 2 & 3). In addition, we detected significant differences in gsmax among the
woody plants, forbs, and graminoids (Table 3). The mean respiration rate (Mean R) varied
from 0.51±0.06 to 2.22±0.17 μmol m-2 s-1 (Table 2). There was no significant difference in the
mean R among the functional groups, and it did not differ between the C3 and the C4 species
either (Table 3). The mean ratio of the leaf intercellular air space to the ambient CO2 concen-
tration (Mean Ci/Ca) varied from 0.20±0.03 to 0.81±0.01 and 0.27±0.02 to 0.59±0.03 for the C3

and C4 species, respectively. The mean Ci/Ca in the C3 plants was significantly greater than it
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was in the C4 plants (Tables 2 & 3). Furthermore, no apparent differences in the Mean Ci/Ca

were detected among the different functional types (Table 3).

δ13C of nighttime leaf-respired CO2

We observed a significant nocturnal shift of the δ13C of leaf-respired CO2 (δ
13CR) in 20 of the

22 species studied, the exceptions being Chenopodium glaucum and Saussurea amara
(Table 4). The leaf-respired CO2 at 8 pm was enriched in 13C compared with that at 4 am.
However, the C3 and C4 plants showed no statistical significant difference in the amplitude of
the nighttime variation in δ13CR (Table 3). Moreover, no significant differences in the noctur-
nal shift in δ13CR were detected among the plant functional types (Table 3).

Correlations between the nocturnal shift in δ13CR and cumulative carbon
assimilation
We calculated the daytime cumulative carbon assimilation, using gas-exchange data to
explore the potential effects of the pool size of the daytime cumulative photosynthates on the
magnitude of the nighttime variation in δ13CR. A strong positive correlation was found
between the amplitude of the nighttime variation in δ13CR and the cumulative carbon assimi-
lation (Fig 2).

Table 2. Leaf gas-exchange data. Maximum leaf net CO2 assimilation rate (Amax, μmol m-2 s-1), mean leaf net CO2 assimilation rate (Mean A, μmol m-2 s-1),
maximum stomatal conductance (gsmax, mol m-2 s-1), mean ratio of intercellular air space to ambient CO2 concentration (MeanCi/Ca), and nighttimemean respi-
ratory rate (Mean R, μmol m-2 s-1) of the species studied. Data are reported as mean ± 1 SE.

Species Amax Mean A gsmax Mean Ci/Ca Mean R

L. chinensis 19.9±3.99 11.8±0.82 0.295±0.022 0.75±0.01 1.32±0.16

P. australis 17.2±0.35 11.8±0.35 0.268±0.011 0.71 ±0.01 0.71 ±0.08

L. bicolor 22.6±1.87 12.2±0.67 0.586±0.047 0.78±0.01 2.07 ±0.26

M. asiatica 22.3±0.90 17.0±0.63 0.446±0.017 0.69±0.01 0.74 ±0.09

P. simonii 23.2±0.32 17.1±0.52 0.511±0.041 0.73±0.03 1.22 ±0.11

P. salicina 15.3±1.65 11.2±0.75 0.531±0.057 0.65±0.01 0.51 ±0.06

C. glaucum 28.8±1.04 21.1±0.43 0.943±0.051 0.80 ±0.01 1.28 ±0.13

G. max 17.0±0.54 10.8±0.49 0.098±0.005 0.20±0.03 1.45±0.11

H. annuus 21.1±0.13 13.1±0.28 0.128±0.002 0.44 ±0.01 1.10 ±0.10

S. amara 15.1±1.20 9.6 ±0.36 0.443±0.022 0.82 ±0.01 0.73 ±0.17

V. radiata 26.3±2.98 14.8±1.64 0.247±0.009 0.81 ±0.01 2.22±0.17

V. unguiculata 23.9±4.90 15.2±2.66 0.712±0.072 0.59 ±0.14 1.54 ±0.17

X. sibiricum 38.4±5.80 21.2±1.20 0.814±0.083 0.79 ±0.02 2.12 ±0.13

C. virgata 28.1±1.71 15.5±1.14 0.179±0.005 0.42 ±0.03 0.91 ±0.13

E. crusgalli 22.6±1.34 13.1±0.20 0.212±0.017 0.49 ±0.03 0.87 ±0.08

H. altissima 22.3±1.68 13.8±1.57 0.146±0.015 0.49 ±0.03 1.36 ±0.24

P. miliaceum 27.9±0.31 18.1±0.28 0.204±0.019 0.41 ±0.03 1.54 ±0.07

S. italica 30.8±2.27 18.0±0.63 0.247±0.013 0.41 ±0.03 0.82 ±0.40

S. viridis 27.6±1.88 15.3±0.57 0.199±0.007 0.49 ±0.01 1.15 ±0.11

S. bicolor 26.2±1.34 17.0±0.47 0.183±0.034 0.27 ±0.02 1.45 ±0.16

Z. mays 33.7±1.62 23.6 ±0.93 0.367±0.051 0.54 ±0.06 0.82 ±0.05

A. retroflexus 33.3±0.53 24.0±0.49 0.520±0.040 0.59 ±0.03 1.80 ±0.10

doi:10.1371/journal.pone.0137575.t002
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Respiratory apparent 13C/12C fractionation
We calculated respiratory apparent 13C/12C fractionation (ΔR) relative to the δ

13C values of the
bulk leaf material, soluble carbohydrates (ΔR, sugar), starch (ΔR, starch), and lipids (ΔR, lipid) at 8
pm and 4 am, respectively (Table 5). Differences in ΔR, biomass between the C3 and the C4 spe-
cies were detected at 4 am, but not at 8 pm (Table 3; Fig 3A and 3B). There were no nighttime
ΔR, biomass differences among the trees, graminoids and herbs at either 8 pm or 4 am (Table 3;
Fig 3A and 3B). Significant differences were found in the ΔR, sugar between the C3 and the C4

species at 8 pm (Table 3). Neither photosynthetic pathway nor plant functional type differences
in ΔR, starch were detected (Table 3). The C3 and C4 plants differed significantly in the ΔR, lipid at
both 8 pm and 4 am (Table 3; Fig 3G and 3H). We also detected plant functional type differ-
ences in the ΔR, lipid (Table 3), with the ΔR, lipid values in the graminoids being more negative
than they were in the trees or herbs (Fig 3G and 3H).

Discussion

Variation in δ13C of leaf-respired CO2

For most of the species studied, leaf-respired CO2 collected at 8 pm and 4 am differed signifi-
cant in its carbon isotope composition, with the leaf-respired CO2 at 8 pm was enriched in 13C
compared with the evolved CO2 at 4 am (Table 4). This result is consistent with the findings of
previous studies [12, 18, 30]. No significant variation in δ13CR were detected in two C3 herbs
(Chenopodium glaucum and Saussurea amara), which is in agreement with the finding of
Priault et al. (2009). However, we observed a significant variation in δ13CR in the other three
herbs (Table 4) with the magnitude of the nighttime shift was up to 4.7±0.4‰ in a C4 herb
Amaranthus retroflexus. In contrast with the results of Priault et al. (2009), the three tree spe-
cies we studied showed significant nocturnal shifts in δ13CR. Large nocturnal shifts in δ13CR

Table 3. Statistical data. The df and P values from the photosynthetic pathway and the plant functional type
differences in the maximum leaf net CO2 assimilation rate (Amax, μmol m-2 s-1), the mean leaf net CO2 assim-
ilation rate (Mean A, μmol m-2 s-1), maximum stomatal conductance (gsmax, mol m-2 s-1), mean ratio of leaf
internal to ambient CO2 concentration (Mean Ci/Ca), nighttime mean respiration rate (Mean R, μmol m-2 s-1),
magnitude of nocturnal shift in δ13CR (Variation in δ13CR), and respiratory apparent 13C/12C fractionation (‰)
comparative to biomass (ΔR, biomass), soluble carbohydrates (ΔR, sugar), starch (ΔR, starch) and lipids (ΔR, lipid) at
8 pm and 4 am, respectively.

Photosynthetic pathway Functional type

df P df P

Amax 1 0.03 2 0.40

Mean A 1 0.39 2 0.77

gs max 1 0.02 2 0.02

Mean Ci/Ca 1 <0.01 2 0.09

Mean R 1 0.59 2 0.14

Variation in δ13CR 1 0.07 2 0.29

ΔR, biomass-8pm 1 0.90 2 0.78

Δ R, biomass-4am 1 0.02 2 0.52

ΔR, sugar-8pm 1 <0.01 2 0.09

Δ R, sugar-4am 1 0.22 2 0.27

Δ R, starch-8pm 1 0.89 2 0.60

Δ R, starch-4am 1 0.11 2 0.33

Δ R, lipid-8pm 1 <0.01 2 <0.01

Δ R, lipid-4am 1 <0.01 2 <0.01

doi:10.1371/journal.pone.0137575.t003
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have also been reported in other tree species, such as Prosopis velutina and Celtis reticulata
[25]. To assess potential plant functional type differences in the magnitude of variation in
δ13CR, we grouped the studied species with significant variation in δ13CR according to their dif-
ferences in photosynthetic pathway and growth form. However, there were no differences in
the magnitude of variation in δ13CR between the C3 and C4 plants, as well as among the woody
plants, herbs and graminoids (Table 3).

The amplitude of the nighttime variation in δ13CR was strongly correlated with the daytime
cumulative carbon assimilation (Fig 2). Similar phenomenon has also been reported previously
and was mainly attributed to changes in the contribution of light-enhanced dark respiration
(LEDR) associated malate decarboxylation to the total respiratory CO2 flux [8, 14]. In the light,
malate, fixed by phosphoenolpyruvate carboxylase (PEPc), accumulates because of the inhibi-
tion of the key respiratory enzymes, such as the mitochondrial isocitrate dehydrogenase, the
succinate dehydrogenase, and the 2-oxoglutarate dehydrogenase [16, 37]. In darkness, the
mitochondrial malic enzyme and the mitochondrial malate dehydrogenase catalyzed decarbox-
ylation of the 13C-enriched malate pool caused the respired CO2 to be

13C enriched [38]. In a
study by Barbour et al. (2011), they reported the effects of LEDR associated malate decarboxyl-
ation on 13C-enrichment in leaf-respired CO2 can last up to 100 min after sunset. For the pres-
ent study, 13C enrichment in leaf-respired CO2 at 8 pm (40–50 min after sunset) may partially
be attributed to the decarboxylation of malate.

Large diel variation in photosynthetic discrimination (ΔP) has also been hypothesized to
affect δ13CR by changing the δ

13C of the primary respiratory substrates [18, 28]. We observed
no significant differences in the primary respiratory sources (soluble carbohydrates, starch,
and lipids) between 8 pm and 4 am. A previous report [24] has also found no apparent varia-
tion in the δ13C of the leaf primary respiratory substrates. However, we could not discount the

Fig 2. Dependence of the amplitude of the variations in δ13C of leaf-respired CO2 (δ
13CR,‰) on the

amount of cumulative carbon assimilation (mol CO2 m
-2 d-1). The data contains 19 of the 22 studied

species, the exceptions being Chenopodium glaucum, Saussurea amara and Xanthium sibiricum. The r2 and
P values are provided. The data are reported as mean ±1 standard error (n = 5).

doi:10.1371/journal.pone.0137575.g002
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effects of the changes in the use of respiratory substrates having different δ13C, because we,
along with most other studies, measured the δ13C of the entire leaf respiratory substrate pools.
It is difficult to identify the pool size and the isotopic signature of the fast- and the slow-turn-
over pools.

Other mechanisms, such as heterogeneous 13C distribution within hexose molecules and
nighttime variation in the utilization of respiratory intermediates [14, 21], short term variation
in carbohydrate pool size and respiration rate, have also been employed to explain nighttime
variation in δ13CR [15, 16]. However, with the current data set we are unable to test these
hypotheses.

Respiratory apparent 13C/12C fractionation
Leaf-respired CO2 was enriched in

13C compared with the biomass, starch, soluble carbohy-
drates, and lipids (Table 5). This finding is in agreement with the results of previous studies
[16, 19, 27, 28, 39, 40]. 13C enrichment in leaf-respired CO2, relative to the potential respiratory
substrates, could be caused by the incomplete oxidation of hexose molecules, which cause a
greater ratio of C-3 and C-4 atoms (13C enriched compared with other C atoms) being con-
verted to CO2 [30, 37]. However, there were some differences in the magnitude of the respira-
tory apparent fractionation between the C3 and C4 species, and among the different plant
functional types (Fig 3, Table 3). Differences in ΔR, biomass were detected between C3 and C4

species at 4 am, but not at 8 pm, which were caused primarily by different magnitude of

Table 5. Respiratory apparent fractionation. Respiratory apparent 13C/12C fractionation (‰) of the nighttime leaf-respired CO2, comparative to biomass
(ΔR, biomass), soluble carbohydrates (ΔR, sugar), starch (ΔR, starch) and lipids (ΔR, lipid) at 8 pm and 4 am, respectively.

Species ΔR, biomass-8pm

(‰)
ΔR, biomass-4am

(‰)
ΔR, sugar-8pm

(‰)
ΔR,sugar-4am

(‰)
ΔR, starch-8pm

(‰)
ΔR,starch-4am

(‰)
ΔR, lipid-8pm

(‰)
ΔR,lipid-4am

(‰)

L. chinensis -4.00±0.28 -2.12±0.27 -4.80±0.69 -3.52±0.28 -2.07±0.48 -0.77±0.52 -7.36±0.51 -4.93±0.60

P. australis -4.23±0.63 -2.35±0.23 -7.49±0.20 -6.10±0.12 -1.31±0.33 -0.68±0.16 -8.72±0.34 -6.19±0.31

L. bicolor -3.67±0.31 -1.91±0.26 -5.49±0.21 -4.40±0.43 -4.81±0.15 -3.37±0.21 -5.22±0.27 -4.00±0.34

M. asiatica -5.72±0.33 -2.19±0.29 -4.42±0.32 -0.97±0.22 -2.90±0.16 0.19±0.23 -10.35±0.20 -6.13±0.13

P. simonii -5.02±0.43 -2.67±0.33 -4.62±0.39 -3.05±0.18 -3.27±0.40 -3.02±0.25 -7.90±0.55 -6.41±0.29

P. salicina -4.41±0.41 -1.38±0.33 -3.40±0.40 -0.07±0.20 -3.46±0.34 -0.05±0.27 -8.15±0.27 -4.51±0.12

C. glaucum -2.60±0.83 -2.44±0.44 -6.86±0.61 -7.41±0.45 -0.70±0.43 0.70±0.37 -5.11±0.45 -4.33±0.40

G. max -5.35±0.57 -3.16±0.33 -6.14±0.34 -3.85±0.36 -4.28±0.11 -3.08±0.15 -10.06±0.24 -7.65±0.30

H. annuus -1.99±0.57 -0.08±0.48 -1.49±-0.86 -1.35±0.27 -0.77±0.41 0.55±0.35 -6.21±0.59 -4.06±0.11

S. amara -3.03±0.52 -3.56±0.96 -3.71±0.14 -4.50±0.32 -1.54±0.23 -1.86±0.10 -6.05±0.20 -7.03±0.41

V. radiata -6.73±1.03 -3.22±0.52 -7.76±0.20 -4.31±0.11 -6.75±0.29 -3.36±0.13 -13.3±0.51 -7.39±1.08

V.
unguiculata

-5.90±0.23 -2.34±0.45 -5.93±0.70 -1.09±0.56 -3.99±0.26 -1.84±0.59 -7.74±0.26 -3.92±0.55

X. sibiricum -2.60±0.36 -1.62±0.45 -1.92±0.28 -0.73±0.44 -1.25±0.98 0.24±0.37 -5.98±0.39 -4.65±0.36

C. virgata -4.42±0.26 -2.47±0.29 -7.21±0.19 -5.32±0.35 -3.49±0.11 -1.78±0.38 -13.49±0.20 -11.70±0.35

E. crusgalli -3.68±0.38 -1.89±0.50 -6.21±0.28 -2.78±0.34 -2.02±0.38 0.12±0.06 -10.6±0.33 -6.68±0.68

H. altissima -3.44±0.32 -1.39±0.35 -5.94±0.30 -3.58±0.31 -2.31±0.20 -0.72±0.16 -11.97±0.18 -9.93±0.23

P. miliaceum -4.37±0.49 -0.22±0.30 -7.13±0.41 -5.12±0.65 -2.46±0.34 1.19±0.21 -12.48±0.26 -8.20±0.74

S. italica -3.49±0.87 -0.24±0.39 -8.92±0.49 -5.09±0.64 -2.59±0.23 0.74±0.34 -13.64±0.38 -9.02±0.45

S. viridis -4.91±0.20 -2.68±0.19 -10.46±0.21 -9.99±0.19 -4.14±0.12 -2.30±0.18 -13.91±0.50 -11.09±0.59

S. bicolor -2.81±0.55 -0.04±0.67 -4.00±0.25 -0.71±0.34 -1.30±0.29 0.74±0.43 -12.6±0.22 -9.11±0.38

Z. mays -7.07±0.61 -1.28±0.38 -9.58±0.75 -2.56±0.40 -4.97±0.14 0.11±0.66 -16.8±0.80 -10.88±0.34

A. retroflexus -4.72±0.40 -0.04±0.54 -9.07±0.95 -4.31±0.40 -3.24±0.58 -0.08±0.51 -13.53±0.65 -8.69±0.56

doi:10.1371/journal.pone.0137575.t005
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Fig 3. Plant functional type differences in respiratory apparent fractionation comparative to leaf bulk materials (ΔR, biomass), soluble carbohydrates
(ΔR, sugar), starch (ΔR, starch) and lipids (ΔR, lipid) at 8 pm and 4 am, respectively. Data are reported as mean ± 1 standard error (n = 5). The different letters
within each panel indicate the significant differences (P <0.05) among the plant functional types.

doi:10.1371/journal.pone.0137575.g003
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variation in δ13CR between the two photosynthetic types. In a recent review paper, Ghashghaie
& Badeck (2014) reported that C3 and C4 species differed in ΔR, biomass. There were no differ-
ences in the ΔR, biomass among the trees, the herbs, and the graminoids (Fig 3A), which is in line
with the results of Ghashghaie & Badeck (2014). The detected differences in ΔR, biomass between
C3 and C4 species needs to be incorporated into the partitioning of the CO2 exchange between
the ecosystem and the atmosphere when leaf bulk materials are used as a proxy for δ13CR [25].

ΔR, lipid significantly differed between the C3 and the C4 plants, as well as among the plant
functional types (Table 3), which could have resulted primarily from the carbon allocation dif-
ferences associated with the plant functional group types. Compared with the woody plants or
the herbs, the grasses allocated a smaller proportion of acetyl CoA to the synthesis of lipids.
This leads to grass lipids being generally more depleted compared with the bulk tissue [26, 41].

Soluble carbohydrates are often found to be 13C-enriched compared to bulk leaf material [9,
15, 28]. However, we observed that soluble carbohydrates in 16 of the 22 studied species were
depleted in 13C relative to the leaf biomass (Table 4). Similar results with up to 4‰ depletion
in soluble carbohydrates compared to bulk materials have also been reported previously in var-
ious C3 and C4 species [3535, 36, 42]. This discrepancy may be attributed to both differences in
the extraction method and timing of leaf sample collection.

Conclusions
For both the C3 and the C4 species (except Chenopodium glaucum and Saussurea amara), the
δ13C of leaf-respired CO2 (δ

13CR) showed a significant nocturnal shift. The leaf-respired CO2

at 8 pm was enriched in 13C, relative to what it was at 4 am. The amplitude of the nighttime
variation in δ13CR was strongly correlated with the daytime cumulative carbon assimilation,
which suggests that variation in δ13CR were influenced, to some extent, by changes in the con-
tribution of malate decarboxylation to total respiratory CO2 flux. There were no differences in
the magnitude of the nocturnal shift in δ13CR between the C3 and C4 plants, as well as among
the woody plants, herbs and graminoids. The plant functional group differences in respiratory
apparent fractionation relative to biomass indicate that caution should be exercised when the
δ13C of bulk leaf material is used as a proxy for the δ13C of leaf-respired CO2.
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