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Abstract

Background Pyroptosis is an emerging form of programmed cell death associated with progression in malignancies. Yet, there
are few studies reporting on the association between pancreatic ductal adenocarcinoma (PDAC) and pyroptosis. Therefore, we
aimed to construct a pyroptosis-related genetic signature to predict the clinical outcome and immune status in PDAC patients.
Methods RNA-seq data of 176 PDAC patients from The Cancer Genome Atlas (TCGA) and 167 PDAC patients from the
Genotype-Tissue Expression Project were analysed for pyroptosis-related differentially expressed genes (DEGs) between
PDAC and normal pancreas. The risk signature of DEGs was analysed using the least absolute shrinkage and selection oper-
ator (LASSO) Cox regression analysis and its accuracy was validated in the Gene Expression Omnibus (GEO) cohort (n¼190).
Functional enrichment analyses were performed to explore the mechanisms of the DEGs. The immune characteristics were
evaluated using single-sample gene set enrichment analysis and ESTIMATE algorithms for each group.
Results A nine-gene risk signature was generated from LASSO Cox regression analysis and classified PDAC patients into ei-
ther a high- or low-risk group according to the median risk score. The high-risk group had significantly shorter overall sur-
vival than the low-risk group and it was verified in the external GEO database. A nomogram based on the risk signature was
constructed and showed an ideal prediction performance. Functional enrichment analyses revealed that pyroptosis might
regulate the tumor immune microenvironment in PDAC. Immune infiltration evaluation suggested that immune status was
more activated in the low-risk group than in the high-risk group.
Conclusion The risk signature encompassing nine pyroptosis-related genes may be a prognostic marker for PDAC.
Pyroptosis might affect the prognosis of PDAC patients via regulating the tumor immune microenvironment.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC), a malignancy with a
dismal prognosis, accounts for the sixth commonest cause of

cancer deaths in the world [1]. Due to the non-specific clinical
manifestations at the early stage and lack of effective early
diagnostic modalities, many PDAC patients have developed
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advanced-stage disease at the time of diagnosis, thus losing the
opportunity for surgical treatment. On the other hand, chemo-
therapy for patients with advanced PDAC is frequently ineffec-
tive because PDAC cells may develop chemo-resistance through
various mechanisms [2]. Hence, PDAC has a dismal prognosis
with a 5-year survival rate of <9% [3].

Currently, the tumor-node-metastasis stage has been widely
used for evaluating prognosis and assisting treatment deci-
sions. However, its predictive accuracy is still unsatisfactory
due to the lack of consideration of the genetic heterogeneity
and subsequent biological behavior differences among PDAC
patients. With the development of sequencing technology, bet-
ter understanding of the transcriptome in malignancies has
been achieved. Emerging evidence has revealed that molecular
classifications based on genetic characteristics could have prog-
nostic value in some malignancies including colorectal cancer
[4]. Yet, due to the complexity and heterogeneity of PDAC, cur-
rent understanding in molecular classifications was still far
from ideal [5]. Therefore, developing new molecular classifica-
tions for PDAC prognosis is warranted.

Pyroptosis, also known as cell inflammatory necrosis, is a
novel form of programmed cell death [6]. It is characterized by
rupture of the cell membrane due to cellular swelling, which
leads to outflow of cell content, eventually resulting in robust
inflammatory response [7]. Pyroptosis is initiated by caspase-
mediated cleavage of gasdermin (GSDM) family-member pro-
teins following exogenous or endogenous stimulants [8]. In brief,
the N-terminal pore-forming domain is dissociated from the
C-terminal repressor domain during GSDM cleavage and then
forms pores in the cell membrane, which subsequently leads to
release of inflammatory factors and cell pyroptosis [9]. Recently,
accumulating evidence has shown that pyroptosis may be play
contradictory roles in tumors as it could be closely related to
both cell death and the immune microenvironment. Pyroptosis,
as a pro-inflammatory cell-death mode, might promote pancre-
atic cancer by maintaining an inflammation-related immuno-
suppressive microenvironment [10]. Meanwhile, as an innate
immune mechanism, pyroptosis can inhibit the development of
tumors [11]. Mammalian STE20-like kinase 1 (MST1) could be a
potential therapeutic target for PDAC as it is under-expressed in
PDAC; restoration of MST1 expression could inhibit the cell pro-
liferation, migration, and invasion of PDAC through caspase-1-
induced pyroptosis [12]. However, scientific evidence of the
association between PDAC and pyroptosis is still very limited [13].

The present study aimed to explore the expression charac-
teristics of pyroptosis-related genes and their potential prog-
nostic values in PDAC by generating prognostic gene signatures.
In addition, we also assessed the association between pyropto-
sis and the tumor immune microenvironment. Our study may
provide new insight for prognostic biomarkers and potential
therapeutic targets for PDAC.

Materials and methods
Acquisition of data

The messenger RNA expression matrix of The Cancer Genome
Atlas (TCGA) and Genotype-Tissue Expression Project (GTEx)
were obtained from the UCSC Xena website (https://xenab
rowser.net/datapages/) and the corresponding clinical features
were downloaded from the TCGA database (https://portal.gdc.
cancer.gov/). For further verification, the transcriptional infor-
mation and clinical data were obtained from Gene Expression
Omnibus (GEO) database (GSE62452, https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE62452, platform: GPL6244; GSE71729,
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71729,
platform: GPL20769). The GEO series gene-expression matrices
were combined and the inter-batch difference was removed us-
ing the “sva” package. In addition, 57 pyroptosis-related genes
(PRGs) were obtained from the REACTOME_PYROPTOSIS and
GOBP_PYROPTOSIS gene sets in the MSigDB database and prior
reviews [14]. All data sets used in this study are publicly
available.

Identification of differentially expressed PRGs

Due to the lack of normal pancreas tissue data in the TCGA co-
hort, GTEx data were also used to identify the pyroptosis-
related differentially expressed genes (DEGs). The “DESeq2”
package was utilized to screen DEGs with a P-value< 0.05. The
protein–protein interaction (PPI) network of the DEGs was con-
structed using Search Tool for the Retrieval of Interacting Genes
(STRING), v11.5 (https://cn.string-db.org/) with default parame-
ters (confidence¼ 0.4). The correlations of DEGs were generated
by the “corrplot” package to illustrate a correlation matrix
diagram.

PRGs-based classifications of PDAC patients in the
TCGA cohort

In order to explore the molecular classification of TCGA PDAC
cohorts based on the expression of pyroptosis-related DEGs,
“ConsensusClusterPlus” R package was used to perform unsu-
pervised consensus clustering, an algorithm based on k-means
machine learning. The consensus score and the relative change
in area under the cumulative distribution function (CDF) curves
confirmed the optimal classification number. Subsequently,
Kaplan–Meier survival analysis was performed to assess the
prognosis of patients with different clusters. In addition, the
clinicopathological characteristics and the tumor immune mi-
croenvironment of PDAC patients in two clusters were further
compared using “pheatmap” and “beeswarm” packages.

Development and verification of prognostic risk
signature

To evaluate the prognostic roles of PRGs, we further used uni-
variate Cox regression analysis to identify the association be-
tween DEGs and survival status based on the TCGA cohort. The
cut-off P-value was set as 0.15 to avoid omissions and then 12
survival-associated candidate genes were included in the least
absolute shrinkage and selection operator (LASSO) Cox regres-
sion analysis (“glmnet” package) to narrow down and develop
the prognostic risk signature. The prognostic signature was
based on 10-fold cross-validation and the minimum criteria
identified penalty parameter k value. The risk score formula
was calculated as follows: Risk score¼

Pn
i Coef i � xi (Coef i: coeffi-

cients, xi: gene-expression level). The PDAC patients were di-
vided into either a high- or low-risk group according to the
median risk score. The overall survival (OS) time of the two
groups was calculated using Kaplan–Meier analysis and com-
pared using log-rank test. The survival-dependent receiver-
operating characteristic (ROC) curves at 1, 3, and 5 years were
performed by employing the “survival,” “survminer,” and
“timeROC” packages to determine the sensitivity and specificity
of the prognostic risk signature. Principal component analysis
was used for evaluating the ability of the risk signature to dis-
tinguish patients in different risk groups. The prognostic values
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of the risk signatures were also validated in the GSE62452 and
GSE71729 merged database.

Associations between pyroptosis-related genetic
signature and clinical characteristics

The relationship between the risk scores and previously con-
structed molecular clusters was assessed using “pheatmap.” To
explore the prognostic value of each signature gene, the optimal
cut-off value was calculated by using the “survminer” package
and Kaplan–Meier survival curves of OS for the nine hub genes
were plotted.

The associations between individual genes’ signatures and
patients’ clinical features (Supplementary Table 1) were con-
ducted by using the “beeswarm” package. Univariate and multi-
variate Cox regression analyses were performed to evaluate the
prognostic value of the pyroptosis-related genetic signature and
selected clinical factors. Next, factors significantly associated
with the prognosis of patients with PDAC in both univariate and
multivariate analyses (P< 0.05) were selected to plot a nomo-
gram for the TCGA cohort using the “rms” R package. The cali-
bration curves of the nomogram were illustrated to show the
predicted OS of the nomogram against the observed rates.

Functional enrichment and immune characteristics
analyses

DEGs between the high- and low-risk groups were identified by
using the “limma” package with a P-value< 0.05. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis based on DEGs were performed by using the
“clusterProfiler” package. Single-sample gene set enrichment
analysis (ssGSEA) was conducted using the “gsva” package to
calculate the scores of infiltrating immune cells. Also, the
“estimate” package was employed to explore the differences in
immune microenvironment between high- and low-risk groups.
In addition, we calculated the tumor mutational burden (TMB)
score for each patient with PDAC in the two groups.
Furthermore, the expression status of common immune check-
points was compared between high- and low-risk groups using
boxplots.

Statistical analysis

All statistical analyses were conducted by using R software
(v4.1.0). Normally and non-normally distributed continuous
data were compared by using the Student’s t-test and the
Wilcoxon test, respectively. Chi-squared tests were performed
for pairwise comparisons in categorical variables. The OS time
between different groups was compared using Kaplan–Meier
survival analysis with a log-rank test. The two-tailed
P-value< 0.05 was considered significant.

Results
Identification of DEGs between PDAC and normal
pancreas tissues

The overview of the study flow chart is shown in Figure 1. A to-
tal of 171 normal and 179 tumor tissues with 57 pyroptosis-
related gene expressions in TCGA and GTEx were included in
this analysis. Among them, 29 DEGs, including 10 upregulated
genes and 19 downregulated genes, were identified. The
heat map illustrates the expression levels of these DEGs
(Supplementary Figure 1A). To further explore the interactions

between the 29 PRGs, we conducted a PPI network analysis
(Supplementary Figure 1B). The correlation matrix diagram con-
taining DEGs is presented in Supplementary Figure 1C.

Tumor classification based on the PRGs

To explore the associations between the expression patterns of
the 29 pyroptosis-related DEGs and PDAC subtypes, we con-
structed a consensus clustering analysis with all 176 PDAC
patients in the TCGA cohort (Supplementary Figure 2A).
According to the consensus CDF and relative change in area un-
der the CDF curve, the optimal number of clusters was deter-
mined to be two (k¼ 2). In this case, the intragroup correlations
were strong, whereas intergroup correlations were weak; no ap-
parent increase was found in the area under the CDF curve
(Supplementary Figure 2B and C). Thus, the PDAC patients in
the TCGA cohort could be well classified into two clusters (C1
and C2). The results of the Kaplan–Meier survival analysis indi-
cated that patients in C2 exhibited significantly shorter survival
time than patients in C1 (Supplementary Figure 2D).

The gene-expression profile and the clinical features be-
tween the two clusters are presented in a heat map (Figure 2A).
We found that cancer status (with tumor or tumor-free) and
pathological grade were significantly different between the two
clusters. The differences in the immune microenvironment be-
tween the two clusters were further evaluated. The results
revealed that the patients in C1 had significantly higher stromal
score, immune score, and ESTIMATE score but lower tumor pu-
rity than those in C2 (Figure 2B–E). In addition, we analysed the
abundance of 23 infiltrating immune cell types in the two clus-
ters via the ssGSEA algorithm and found that innate immune
cells including activated B cells, activated CD8þ T cells, eosino-
phils, cd T cells, MDSCs, macrophages, mast cells, monocyte,
natural killer cells, plasmacytoid dendritic cells, and T helper
cells were remarkably richer in the patients in C1 than in those
in C2 (Figure 2F).

Development and verification of prognostic risk
signature

To further explore the prognostic value of PRGs in the two clusters,
we included 176 PDAC patients from TCGA with complete survival
information for univariate Cox regression analysis to primarily
screen the prognosis-related genes. The 12 genes (caspase-4
[CASP4], phospholipase C, gamma 1 [PLCG1], apaf-1 interacting pro-
tein [APIP], tumor protein p63 [TP63], charged multivesicular body
protein 6 [CHMP6], gasdermin C [GSDMC], protein kinase cAMP-
activated catalytic subunit alpha [PRKACA], charged multivesicular
body protein 4C [CHMP4C], PYD and CARD domain containing
[PYCARD], absent in melanoma 2 [AIM2], granzyme B [GZMB], and
caspase-6 [CASP6]) that met the criteria of P-value< 0.15 were
chosen for further analysis (Supplementary Figure 3A). Next, we
performed the LASSO Cox regression analysis with these
12 survival-associated candidate genes to identify the best-
weighted coefficient genes for PDAC patients. The signature was
determined according to the minimum criterion optimal k value
(Supplementary Figure 3B and C) and a group of nine genes were
identified as the risk signature. The risk score was calculated as fol-
lows: risk score¼ 0.472� expression level of CASP4þ (�0.569)�
expression level of PLCG1þ (�0.321)� expression level of APIPþ
(�0.256)� expression level of CHMP6þ 0.355� expression level of
GSDMCþ 0.297� expression level of CHMP4Cþ 0.076� expression
level of AIM2þ 0.092� expression level of GZMBþ 0.121� expres-
sion level of CASP6.
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Based on the median risk score calculated using the for-
mula, all patients in the TCGA cohort were classified as in the
high- or low-risk group (Figure 3A). Patients in the high-risk
group had shorter survival times and more deaths than those
in the low-risk group (Figure 3B). The patients in different risk
groups could be well separated according to the principal com-
ponent analysis (Figure 3C). Patients in the high-risk group had
significantly shorter OS and higher mortality than those in the
low-risk group (Figure 3D). Time-dependent ROC analysis was
applied to evaluate the efficacy of the prognostic signature and
we found that the area under the ROC curve (AUC) was 0.753
for 1-year, 0.683 for 3-year, and 0.716 for 5-year survival
(Figure 3E). In the validation sets, similar results to those in the
GSE62452 and GSE71729 merged database were observed
(Figure 3F–J).

Prognostic performance of nine signature genes in the
TCGA cohort

On the clustering heat map of the nine genes, the patients in C2
who had worse clinical outcome were mainly found in the high-
risk group (Figure 4A), which was consistent with our finding
shown above. We used the Kaplan–Meier survival curves to
evaluate the prognostic values of the nine genes and the results
showed that the expressions of AIM2, CASP4, CASP6, CHMP4C,
GSDMC, and GZMB were negatively associated with survival,

whereas the PDAC patients with lower expression of APIP,
CHMP6, and PLCG1 had poorer survival (Figure 4B–J).

Association of risk model with clinical characteristics

We performed the Wilcoxon rank-sum test to figure out the
association between our risk model and the clinical character-
istics of PDAC and found that the high-risk group had
higher pathological grade diseases than the low-risk group
(Figure 5A–G). To verify the accuracy of the risk model, we
used univariate and multivariable Cox regression analyses to
evaluate whether our risk model may work as a PDAC-
independent prognostic factor (Figure 5H and I). The results in-
dicated that the risk score was an independent predictor of
poor survival (HR, 3.453; 95% CI, 2.204–5.410 and HR, 3.659; 95%
CI, 2.293–5.838). Subsequently, we established a nomogram to
predict patients’ OS with three independent prognostic factors
(P< 0.05): age, N stage, and risk score (Figure 5J). Calibration
plots indicated that the nomogram was a well-fitted predic-
tion model (Figure 5K–M). The AUCs of the nomogram were
0.776, 0.764, and 0.798 for 1-year, 2-year, and 3-year OS, respec-
tively (Figure 5N–P).

Functional enrichment analysis based on the risk model

We performed the GO and KEGG analysis to further investigate
the gene functions and pathways of the DEGs identified

Figure 1. The flowchart of the study. PDAC, pancreatic ductal adenocarcinoma; TCGA, The Cancer Genome Atlas; GTEx, Genotype-Tissue Expression Project; PRGs,

pyroptosis-related genes; DEGs, differentially expressed genes; PPI, protein–protein interaction; ROC, receiver-operating characteristic; PCA, principal component

analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; ssGSEA, single-sample gene set enrichment analysis.
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between the high- and low-risk groups. GO analysis suggested
that these genes were mainly concentrated in cell-substrate
adhesion, extracellular matrix organization, laminin complex,
collagen-containing extracellular matrix, extracellular matrix
structural constituent, chemokine receptor binding, etc.
(Figure 6A). Also, KEGG analysis demonstrated that differential
gene pathways were mainly involved the extracellular matrix
(ECM)-receptor interaction, arrhythmogenic right ventricular

cardiomyopathy, the PI3K-Akt signaling pathway, the IL-17 sig-
naling pathway, etc. (Figure 6B).

Relationship between risk score and immune infiltration

Our findings suggested that the risk scores may be useful in
predicting clinical outcomes. We investigated whether risk
score was indicative in treatment decisions, especially

Figure 2. Characteristics of patients in different clusters. (A) Heat map and clinicopathological features C1 and C2 clusters and the significantly different clinical fea-

tures are marked in red. (B)–(E) Comparison of stromal (B), immune (C), ESTIMATE (D) scores, and tumor purity (E) in C1 and C2 clusters. (F) The abundance of infiltrat-

ing immune cell types in C1 and C2 clusters.
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Figure 3. Prognostic performance of risk signature in the TCGA cohort and GEO validation set (GSE62452 and GSE71729). (A) and (F) The distribution of the patients

based on the risk score. (B) and (G) The survival status analysis for each patient based on the risk score. (C) and (H) Principal component analysis (PCA) plot based

on the risk score. (D) and (I) Kaplan–Meier survival curve of high- and low-risk groups. (E) and (J) Validation of time-dependent ROC curves at 1, 3, and 5 years of

the prognostic value of the risk signature. TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; ROC, receiver-operating characteristic; AUC, area under

the curve.
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Figure 4. Prognostic performance of the signature genes in the TCGA cohort. (A) Heat map of pyroptosis-related signature genes by unsupervised clustering. The tumor

classification and risk group as gene annotations are correlated. (B)–(J) Kaplan–Meier survival curve of each pyroptosis-related signature gene based on data from

TCGA. TCGA, The Cancer Genome Atlas.
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Figure 5. Association of risk models with clinical characteristics based on the TCGA cohort. The risk score was significantly associated with pathological grade (A) and

was not significantly correlated with gender (B), age (C), stage (D), maximum tumor size (E), N stage (F), and T stage (G). (H) Univariate Cox regression analysis and (I)

multivariate Cox regression analysis of clinical characteristics. (J) Nomogram to predict 1-, 2-, and 3-year OS of PDAC. (K)–(M) The calibration plot of the nomogram for

internal validation. (N)–(P) The time-dependent ROC curves of the nomogram were compared based on 1- (N), 2- (O), and 3-year (P) OS in the TCGA cohort. TCGA, The

Cancer Genome Atlas; AUC, area under the curve.
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Figure 6. Functional enrichment analysis of differential genes between different risk groups. (A) Bar chart for GO enrichment. (B) Bar chart for KEGG pathways. GO,

Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Pyroptosis-related genetic signature in pancreatic ductal adenocarcinoma | 9



immunotherapy. We examined the 23 types of immune cells
through the ssGSEA and the difference in the immune microen-
vironment between the two risk groups was further compared
through the ESTIMATE algorithm. The results showed that the
low-risk group generally had higher levels of infiltrating acti-
vated B cells, eosinophils, macrophages, monocytes, plasmacy-
toid dendritic cells, and type 1 T helper cells than the high-risk
group (Figure 7A). The ESTIMATE algorithm showed that
the stromal, immune, and ESTIMATE scores were higher in the

low-risk group than in the high-risk group (Figure 7C–E),
whereas tumor purity was higher in the high-risk group than in
the low-risk group (Figure 7F). Validation was performed using
the GSE62452 and GSE71729 databases, and similar results were
observed (Figure 7B and G–J). The expressions of the genes in
immune checkpoints including BTLA, CD160, CD200, and IDO2 in
the low-risk group were notably higher than those in the high-
risk group. However, no statistical difference was observed in
PD-1/PD-L1 between the two groups (Figure 8A). Given the

Figure 7. Relationship between risk score and immune infiltration in the TCGA cohort and GEO validation set (GSE62452 and GSE71729). (A) and (B) Comparison of the

ssGSEA scores of 23 types of immune cells between high- and low-risk groups. (C)–(J) Comparison of stromal (C) and (G), immune (D) and (H), ESTIMATE (E) and (I)

scores, and tumor purity (F) and (J) in the two groups. TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus.
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clinical importance of the TMB, we analysed the inherent
relevance between the TMB and risk score. Although statisti-
cally insignificant, the high-risk group patients tended to have
a greater TMB than the low-risk group (Figure 8B). Correlation
analysis confirmed that the risk score was positively correlated
with the TMB (Spearman coefficient: r¼ 0.18, P¼ 0.028;
Figure 8C). Overall, our results showed that the PDAC patients
in the low-risk group had higher activity in the immune micro-
environment and lower TMB than those in the high-risk group.

DISCUSSION

Pyroptosis, an inflammatory and programmed cell death, has
been found to play an essential role in the development of

various malignancies. It appeared to be significantly related to
tumor proliferation, angiogenesis, migration, invasion, and re-
currence via regulating a series of essential signal pathways to
influence the patients’ prognosis [15]. However, the prognostic
values and the involved mechanisms of PRGs in PDAC have not
been fully elucidated.

In this study, one nine-gene risk signature was generated via
LASSO Cox regression analysis, which was validated in the ex-
ternal data set (GSE62452 and GSE71729 merged database). A no-
mogram was then established to predict the 1-, 2-, and 3-year
OS of PDAC patients. The functional enrichment analyses
revealed that pyroptosis might regulate the tumor immune mi-
croenvironment of PDAC. Immune infiltration evaluation sug-
gested that immune status was more activated in the low-risk

Figure 8. Evaluation of checkpoints and TMB between different risk groups. (A) Expression of immune checkpoints in the high- and low-risk groups. (B) TMB in high-

and low-risk groups. (C) Spearman correlation analysis of the risk score and TMB. TMB, tumor mutational burden.
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group than in the high-risk group. The TMB was also signifi-
cantly positively correlated with risk scores. Our study may pro-
vide new evidence for prognostic biomarkers and therapeutic
targets for PDAC.

When analysing the tumor immune microenvironment in
the two tumor clusters, we found that the C1 cluster had a
higher immune score and lower tumor purity with better sur-
vival. Besides, the antitumor immune cells, such as CD8þ T
cells, activated B cells, and natural killer T cells, were upregu-
lated in the C1 cluster. The reason might be that lower tumor
purity, consistent with a higher immune score, was related to
more robust immune responses, leading to a longer OS [16].

By LASSO analysis, we identified nine signature genes (APIP,
CHMP6, PLCG1, CASP4, CASP6, CHMP4C, GSDMC, AIM2, and
GZMB). APIP has been proven to inhibit two types of pro-
grammed cell death, including apoptosis and pyroptosis, and
was also found to be related to cancers and inflammatory dis-
eases [17]. The previous study demonstrated that the expres-
sion of uveal autoantigen with coiled-coil domains and ankyrin
repeats (UACA) and APIP was downregulated in non-small cell
lung cancer, leading to the loss of Apaf-1 nuclear entry assisted
by UACA, which may underlie the failure of DNA-damage
checkpoint activation, causally contributing to the development
and progression of small cell lung carcinoma [18]. This might
explain the fact that the PDAC patients with lower expression of
APIP in the TCGA cohort had poorer survival. CHMP6 encodes a
member of the chromatin-modifying protein/charged multive-
sicular body protein family. Overexpression of CHMP6 would
cause cell death, mainly via oncosis and to a certain extent via
apoptosis in HeLa cells [19]. PLCG1 was found to contribute to
gasdermin D-mediated pyroptosis through a calcium-
dependent mechanism [20]. Recently, Saliakoura et al. [21] found
that PLCG1 suppression in hypoxia resisted apoptosis, elevated
lung adenocarcinoma cancer cell proliferation, and predicted
poor patient survival. The expressions of the other six genes
(CASP4, CASP6, CHMP4C, GSDMC, AIM2, and GZMB) in PDAC
patients in our study were negatively associated with survival.
CASP4 plays a vital role in pyroptosis as the primary mediator of
non-canonical pathways [22]. Interestingly, evidence indicated
that elevated expression of CASP4 was associated with poor sur-
vival in patients with renal cancer [23]. CASP6 plays an essential
role in promoting the activation of programmed cell death, in-
cluding pyroptosis and apoptosis [24]. However, few studies
have focused on CASP6 in PDAC and the mechanism needs fur-
ther investigation. Upregulation of CHMP4C has been reported
in cervical cancer and it is associated with poor survival [25].
GSDMC is a member of the GSDM family. Hou et al. [26] found
that p-Stat3 interacted with PD-L1 and facilitated its nuclear
translocation, which in turn promoted GSCMC/CASP8 activation
and mediated the non-canonical pyroptosis. Moreover, overex-
pression of GSDMC is associated with poorer survival in breast
cancer [26], which is consistent with our findings. AIM2 can pro-
mote the release of IL-1b and IL-18, thereby promoting pyropto-
sis [27]. The role of AIM2 may be controversial in different
cancer types; in our study, upregulation of AIM2 was associated
with shorter OS time in PDAC, consistently with that in naso-
pharyngeal carcinoma and non-small cell lung cancer [28].
GZMB, a component of our risk signature, is involved in the
cleavage of gasdermin E that directly leads to pyroptosis [29].
Similarly to the finding in cervical cancer [30], GZMB expression
was negatively associated with survival in patients with PDAC
in the present study.

To further explore the mechanisms of the risk signature,
we revealed that DEGs between the high- and low-risk
groups are mainly involved in immune-response pathways,
indicating that pyroptosis might regulate the tumor immune
microenvironment of PDAC. Hence, we next analysed the im-
mune status in different risk groups. We noticed that the im-
mune microenvironment characteristics of different risk
groups were highly consistent with those of patients in differ-
ent clusters mentioned above—that is, patients in the high-
risk group with poorer prognoses had lower immune scores
and higher tumor purity in the immune microenvironment
than those in the low-risk group. It can be explained easily by
the consensus that PDAC is an immunosuppressive tumor
[31]. When considering the ssGSEA analysis, we also found
that the number of most antitumor immune cells declined in
the high-risk group, suggesting immune-function deficiency
and poor survival, which was consistent with previous studies
in PDAC [32].

Immune checkpoint blockade (ICB) therapy targeting CTLA-
4 or PD-1/PD-L1 has a limited effect in advanced PDAC. The
lacking of strong pre-existing T-cell immunity may underlie
the failure of ICB therapy for PDAC [33]. No significant differ-
ence was observed in PD-1/PD-L1 expression between the dif-
ferent risk groups in our study. However, the association
between PD-L1 expression and response to ICB therapy in
PDAC is still unclear. The patients in the low-risk group with
more antitumor immune cells might benefit from a combina-
torial approach of immunotherapy with other modalities.
Although TMB is considered an effective biomarker for pre-
dicting immunotherapy response in patients with solid tumor,
its effectiveness in some immunologically cold tumors, such
as PDAC, remains controversial. Our results showed that
patients in the low-risk group with lower TMB had better sur-
vival than those in the high-risk group with higher TMB. This
may be due to the negative correlation between TMB and
many anticancer signatures, such as CD8þ T cells, macro-
phages, and T helper cells [34].

The present study has several limitations. First, a series of
newly identified PRGs need to be incorporated to optimize the
accuracy of the present model. Second, the present study was
conducted on data acquired from public databases so the
results might be influenced by an inherent case-selection bias,
and further studies with in vitro and in vivo research are needed
to confirm our findings. Moreover, due to the limited resources
of detailed clinical features available from public databases,
treatment methods were not included in the OS analysis and
the nomogram could not be verified in the GEO database. In ad-
dition, currently, there is a lack of sufficient data from patients
without surgery in the TCGA and GEO databases, so we were
unable to assess the nine-gene scoring system in non-resected
PDACs.

Conclusions

In summary, our study provided a good prognostic risk signa-
ture consisting of nine PRGs for patients with PDAC. Notably,
we constructed a prognostic nomogram to assist clinical treat-
ment decisions. Immune characteristics analysis between dif-
ferent risk groups demonstrated that pyroptosis might affect
the prognosis of patients with PDAC via regulating the tumor
immune microenvironment. Our findings suggest that pyropto-
sis might be a promising therapeutic target for PDAC.
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