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We study how the structure of the interaction network affects self-organized
collective motion in two minimal models of self-propelled agents: the
Vicsek model and the Active-Elastic (AE) model. We perform simulations
with topologies that interpolate between a nearest-neighbour network
and random networks with different degree distributions to analyse the
relationship between the interaction topology and the resilience to noise of
the ordered state. For the Vicsek case, we find that a higher fraction
of random connections with homogeneous or power-law degree distribution
increases the critical noise, and thus the resilience to noise, as expected due
to small-world effects. Surprisingly, for the AE model, a higher fraction of
random links with power-law degree distribution can decrease this
resilience, despite most links being long-range. We explain this effect through
a simple mechanical analogy, arguing that the larger presence of agents with
few connections contributes localized low-energymodes that are easily excited
by noise, thus hindering the collective dynamics. These results demonstrate
the strong effects of the interaction topology on self-organization. Our work
suggests potential roles of the interaction network structure in biological
collective behaviour and could also help improve decentralized swarm
robotics control and other distributed consensus systems.
1. Introduction
In the study of complex systems, the dynamics of multiple interacting com-
ponents is typically analysed using one of two different modelling
approaches: agent-based or network-based. If the components can be character-
ized as particles moving in a physical or abstract space and interactions depend
on their positions, the system is best described using agent-based approaches.
Alternatively, if the components can be characterized as nodes in a network,
with internal states that evolve by interacting through their connections, it is
best described using network-based approaches. Both types of models have
been widely used to analyse the self-organized collective dynamics observed
in a broad range of complex systems.

A simple form of self-organization (that can be observed in, both, agent-
based and network-based systems) consists of individuals reaching the same
consensus state, despite having no central control or global exchange of infor-
mation. A well-known example is the dynamics followed by distributed
consensus algorithms [1–3], where components reach global consensus on the
values of their corresponding variables by communicating only with direct
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neighbours. Specifically, in a distributed average consensus pro-
tocol on networks [2], a variable associated to each node is
iteratively replaced by the average of the variables of the
nodes directly connected to it, a process that is repeated
until they all converge to a common value. An interesting
question in this kind of system is how these consensus
dynamics depend on network topology, noise and local fail-
ures. This is an area of active research with multiple
applications [4].

Distributed average consensus algorithms have been used
in the decentralized control of groups of mobile autonomous
agents, such as robot swarms [5,6], and to model the collec-
tive dynamics of groups of biological agents, such as bird
flocks, fish schools or herds of quadrupeds [7–9]. In all
these cases, the components are self-propelled agents that
must reach decentralized speed and heading consensus in
order to achieve collective motion. The connection between
distributed average consensus and collective motion is appar-
ent in one of the most common flocking algorithms, the
Vicsek model [10], where each agent iteratively replaces its
current heading by the local average heading of all nearby
neighbours (including itself ). In this model, the interaction
network is typically dynamic: the focal agent interacts with
all agents within a given range. Thus, the neighbours of
each agent can change over time.

Although most collective motion algorithms are based on
underlying distributed consensus dynamics, a different
mechanism for achieving self-organization was unveiled in
the recently introduced Active-Elastic (AE) model, where
agents interact by exchanging only their relative positions
[11,12]. In this model, each agent interacts with a fixed
set of neighbours (determined a priori) throughout the
simulation. The interaction topology is therefore fixed.

In this model, collective motion cannot result from a stan-
dard distributed consensus mechanism, since the speed and
heading angles are never communicated between agents.
Instead, collective motion is achieved through the damping
of high-energy elastic modes (corresponding to short wave-
lengths and thus to small scales of coherent motion) and
the focusing of self-propulsion energy into low-energy
modes (corresponding to long wavelengths and thus to
large scales of coherent motion).

In this paper, we explore the relationship between the
interaction topology and self-organization of two different
types of models of collective motion: one velocity-based, rep-
resented by the Vicsek model, and one position-based,
represented by the AE model. We study their resilience to
noise for different fixed interaction networks that are not con-
strained only to nearest neighbours, but can also contain
interactions with randomly chosen agents, which are typi-
cally long-range since these can be located anywhere in the
system. More specifically, we compare the critical noise of
the order–disorder transition when agents interact through
combinations of three different types of connectivity:
(i) nearest-neighbour (NN) networks, (ii) Erdös–Rényi (ER)
random networks, and (iii) scale-free (SF) random networks.
We show that the interaction topology affects both models
strongly but in very different ways and that, surprisingly,
in some cases long-range SF connections can hinder the
collective dynamics.

Our results could have several applications, both in
the study of biological groups displaying collective motion
and in the design of engineered collective dynamics for
robot swarms. In biological systems, our work could help
understand the connection between complex interaction
networks and emergent collective behaviour. For example,
it has been shown in recent experimental studies that
certain fish schools have non-trivial interaction networks
(resulting from their visual, line-of-sight based interactions)
that affect their group dynamics [13]. It could also be
relevant for the ongoing discussion on whether interactions
are distance-dependent or topological in bird flocks [14–16].
In engineered systems, our work could help better exploit
the effects of the communication network in robot swarms
[17–19]. It could even provide insights beyond collective
robotics, for the design of other distributed systems that
exploit, for example, scale-invariant topologies [20] to
achieve consensus on wireless sensor networks with reduced
energy consumption [21–23] or with increased robustness to
failure [23,24].

The paper is organized as follows. In §2, we describe the
alignment-based Vicsek model and the position-based AE
model used in this work. Section 3 details the different inter-
action topologies that we consider and how we interpolate
between them. Section 4 presents our simulations and results,
showing how the order–disorder transition depends on the
interaction topology in both models. The discussion in §5
provides a heuristic explanation of our results. Finally, §6
gives our conclusion.
2. Collective motion models
In this section, we will describe the two models of collective
motion considered in this paper: the Vicsek model [10]
and the AE model [11]. The Vicsek model assumes that
each agent can only know the orientation of its neighbours
and that interactions are purely based on alignment. Conver-
sely, the AE model assumes that each agent can only know
the position of its neighbours and that interactions are
attraction/repulsion-based. We selected these two models
because they are archetypal examples of two different
self-organizing mechanisms that can lead to collective
motion. More realistic models often combine both types of
interactions, as for example in [25].

The main difference in our implementation of these
models is that here we will consider an interaction network
that is not only restricted to nearest neighbours and that is
fixed throughout the simulation. In the case of the AE
model, the original algorithm already considered a fixed inter-
action network, so the only change is to include long-range
connections. In the case of the Vicsek model, however, its orig-
inal formulation establishes interactions through a proximity
network that links all agents within a given distance of each
other at each moment. Here we replace this evolving network
by a fixed network with given topology, to study how the con-
nectivity structure affects self-organization. We will refer to
this version of the Vicsek model (where agents interact
through a fixed arbitrary network) as the Vicsek-Network
(VN) model. Note that the same Vicsek algorithm implemen-
tation on a network was introduced in [26], where it was
referred to as the Vectorial Network model. The topologies
that were considered there were simpler, however, since the
main purpose of that study was to perform analytical calcu-
lations. Each agent thus received information from a fixed
number of nodes through directed connections, with a



Figure 1. Simulation snapshot of a 9 × 9 agent system with its correspond-
ing connectivity diagram. The blue arrows show the positions and
orientations of the agents and the lines represent their interactions. The dis-
played interaction topology is the superposition of a NN network (green links)
and a homogeneous ER random network (red links). The displayed state pre-
sents partial alignment (with agents mostly heading upwards) and has stiff
spring-like forces, so the regular square lattice of agent positions is only
slightly deformed.
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constant fraction of these being first neighbours and the rest
selected at random. The undirected complex topologies con-
sidered here were thus not part of that original Vectorial
Network model formulation.

2.1. The Vicsek-Network model
As stated above, in the VN model the interacting agents are
fixed and predetermined by the interaction network top-
ology. This implies that it is not necessary to keep track of
agent positions in our simulations, since these only serve to
establish which agents are close enough to interact in the
original Vicsek model [10]. We therefore implemented a VN
model where the heading angles θi(t) fully define the state
of all agents at time t. The time step of our VN model is
thus simply given by

ui(tþ 1) ¼ Angle
X
j[Si

n̂j(t)

2
4

3
5þ h ji(t): (2:1)

Here, n̂j(t) is a unit vector pointing in the heading direction of
agent j at time t, the set Si contains the indexes of all agents
that interact with agent i (thus defining the interaction net-
work), the function Angle [ · ] gives the angle of the vector
in its argument, ξi(t) is a random variable uniformly distrib-
uted between − 1/2 and 1/2, and the control parameter η
determines the noise intensity level (with η = 0 for no noise
and η = 2π for fully random motion).

2.2. The Active-Elastic model
We implemented a version of the AE model very similar to
the original one introduced in [11,12]. As in the original
version, agents move on a two-dimensional plane and are
connected by an interaction network of linear spring-like
forces. The position xi and orientation θi of each agent i satisfy
the following two overdamped equations of motion

_xi(t) ¼ v0 n̂i(t)þ a[Fi(t) � n̂i(t)] n̂i(t) (2:2)

and

_ui(t) ¼ b[Fi(t) � n̂?i (t)]þ h ji(t): (2:3)

Here, n̂i(t) is a unit vector that points in the heading direction
of agent i at time t (as in the VN model) and n̂?i (t) is a unit
vector pointing perpendicular to it. The value of v0 deter-
mines the preferred self-propulsion speed, while α and β
are the coupling coefficients that relate the interaction force
Fi(t) to the linear and angular speed of each agent, respect-
ively. As in the VN case, noise is introduced through ξi(t),
a random variable uniformly distributed between − 1/2
and 1/2, and noise intensity is controlled by η. Note that
we chose this noise formulation to be consistent with the
original Vicsek and AE models [10,11], but that the results
presented in this paper should not significantly depend on
the specific way that noise is introduced.

In this version of the AE model, we define Fi as the follow-
ing sum of all elastic forces acting over agent i:

Fi(t) ¼ k
X
j[Si

(krij(t)k � lij)
rij(t)
krij(t)k , (2:4)

where rij(t) = xj(t)− xi(t) and κ is the ‘spring constant’. Each
term in the sum corresponds to the force exerted between
agents i and j by a linear spring with natural length lij. As
in the VN model, each set Si contains the j indexes of all
agents linked to agent i in the fixed interaction topology con-
sidered. A difference with the original AE model is that the
interaction strength κ is the same for any natural length,
while in its original version the spring constant was inversely
proportional to lij. Here, however, we are interested in having
the same interaction strength, regardless of distance, in order
to compare the VN and AE models on equal footing. In our
preliminary analyses, we also checked that the same qualitat-
ive effects described below are observed when simulating the
original AE model.

In practice, our simulations are performed as follows.
Once all agents are placed in a rectangular lattice (as in
figure 1) and the network topology is defined, the lij values
are set to lij = ||xj(0)− xi(0)||, corresponding to the initial dis-
tances between agents i and j. This way, we can be certain
that there are no elastic forces at t = 0 and that all stresses
will be produced later by the self-propulsion dynamics. We
then integrate equations (2.2) and (2.3) in time by implement-
ing a standard Forward Euler Method, as detailed in [12].
Note that, in contrast to our VN simulations, spatial positions
must be tracked here because they determine the distance,
and thus the force, between each pair of interacting agents.

Finally, it is important to point out that although we used
the same variable η to label the noise intensity in the VN and
AE models, the magnitude of this parameter cannot be com-
pared between them, since η controls the noise applied at
each time step in the former, whereas it determines the
noise level in a differential equation in the latter. An interest-
ing possibility to overcome this would be to compute the
effective temperature suggested in [27] for both models and
then compare their critical values. However, a clear interpret-
ation of this temperature was only provided in this reference
for the VN case. Its exact meaning when comparing the criti-
cal noise of two models with very different interactions,
self-organizingmechanisms and time step settings, is therefore
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Figure 2. Degree distributions of the three types of interaction networks
implemented in this paper (nearest neighbour, Erdös–Rényi and scale-free)
for a 9 × 9 = 81 agent system with 272 connections (as in figure 1). Each
plot shows the number of agents that have a given number of interactions
with other agents. In the nearest-neighbour network (red dots), connections
are determined by the number of immediate neighbours in a square lattice,
here three, five or eight for agents in the corners, sides or bulk, respectively.
In the Erdös–Rényi network (blue squares), the degree distribution must be
Poissonian, as approximated by the implemented case displayed. Finally, in
scale-free networks (× and + signs) the degree distribution must follow a
power-law, here well approximated by the modified scale free connectivity
case (which was generated by manually correcting the rounded scale free
case), despite the finite and discrete nature of the system.
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unclear. Using this approach to quantitatively compare the
critical noise values of both models would thus require to
first examine the significance of this effective temperature
for the AE model, which is an interesting analysis but is
beyond the scope of this work. This does not limit our results,
however, since we are only interested here in comparing how
the noise effects depend on the topology within each model,
and not in comparing their actual values between models.
3. Interaction networks
We will now describe the main interaction topologies used in
this work and how we interpolated between them. We will
detail below three different types of networks: (1) NN net-
works [28,29], (2) random ER networks [30] and (3) random
SF networks [31]. Each type has a distinct degree distribution,
as shown in the plots of the number of nodes with a given
number of connections presented in figure 2. These networks
will be later combined to study how our VN and AE simu-
lations change when interacting through different
superpositions of their topologies.

In order to compare the dynamics resulting from various
interaction topologies under equivalent conditions, we must
keep constant the total number of nodes N and the total
number of links K over all connectivity structures. This also
ensures that the average number of connections per node K/
N is constant, although other statistical quantities may change
as a result of the different degree distributions of the networks.
Wewill detail belowhowN,K, and the systemsize are related in
our NN networks and how we prepared ER and SF network
topologies with predetermined N and K values.

3.1. Nearest-neighbour networks
To build our NN networks, we first placed the agents in a L ×
L square lattice configuration with unit distance between
vertical and horizontal neighbours. This determines the
initial positions of N = L × L agents in space, as presented
in figure 1 for L = 9 and N = 81. Each agent is then connected
with its horizontal, vertical and diagonal first neighbours.
The agents in the bulk will thus have eight connections,
those on the sides will have five connections and the four
corner agents will have three connections. The resulting
total number of links will be K ¼ 2(L� 1)(2L� 1) ¼
2(

ffiffiffiffi
N

p � 1)(2
ffiffiffiffi
N

p � 1) and is uniquely determined by the
system size.

We note that the NN topology is the only one, of the three
considered in this work, that is purely based on local connec-
tivity. As in most standard models of collective motion, its
structure is therefore determined by the agents’ positions in
space. In this case, their positions at t = 0 determine the
fixed interaction network at all times, instead of having a
changing proximity interaction network that is redefined at
every t.

3.2. Erdös–Rényi networks
We are interested in considering ER random networks that
match the N and K values set by the system size for our
NN networks. These will be generated using the following
algorithm.

We start by defining N nodes with no connections. We
then randomly select a pair of nodes (i, j ) and connect
them, unless we have i = j or they were already linked. We
repeat this process until K links are established and then
verify that the resulting network is connected. If so, we
have generated our random ER network with N nodes and
K connections. If not, we start the process again until a con-
nected structure is achieved. We expect the degree
distribution to be Poissonian in the resulting ER networks,
which we verify in figure 2 by plotting the number of
nodes with a given number of connections and comparing
it to a Poisson distribution. Finally, we note that here most
interactions are likely to be long range, in contrast to the
NN networks described above.

3.3. Scale-free networks
We show here how we generate SF random networks that
match the N and K values set by our NN network size. In
the SF topology, linked agents are selected at random, as in
the ER topology, but the resulting degree distribution must
follow a power law of the form

nk ¼ C kb: (3:1)

Here, nk is the number of agents with k connections, C is a
constant prefactor, and b is the law’s exponent, which will
always be negative [32,33].

In our finite and discrete system, k can only have integer
values within a certain range, which we define to be from
kmin to kmax. We will set kmin = 2 in all our simulations,
because it is the smallest number of connections for which
an agent can be forced to align with the rest of the group
in the AE model. Indeed, as we can intuitively see in its
mechanical interpretation, any agent attached to the rest of
the group through only one spring would be mechanically
underconstrained (as it can rotate about its connection
point) and thus able to point in any direction, without align-
ing to the collective motion. Note that we did not need to
include the same restriction over kmin in the ER case, since
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the number of agents with less than two connections
is negligible (less than 1%) for the corresponding degree dis-
tribution. At the other end of the distribution, we are
restricted to always choose kmax≤N− 1, because we do not
allow self-connections or more than one connection between
two nodes. Finally, in order to generate SF networks with pre-
determined N and K values, the following two expressions
must be satisfied

Xkmax

k¼kmin

nk ¼ N (3:2)

and

Xkmax

k¼kmin

nk k ¼ K: (3:3)

In principle, for any given exponent b we could find a sol-
ution for C and kmax that satisfies both expressions. In
practice, however, the problem has additional constraints
that make it slightly more complicated. Indeed, the nk
values resulting from equation (3.1) must be rounded to the
nearest integer and they cannot be smaller than 1. We can
thus only impose both constraints by modifying the degree
distribution, redefining it as

nk ¼ Round(C kb) if C kb � 1
1 if C kb , 1,

�
(3:4)

where Round( · ) is a function that rounds to the nearest
integer.

Our problem is now reduced to finding values for C and
kmax that satisfy equations (3.2) and (3.3), using the nk func-
tion defined in (3.4). Given that kmax and all nk values must
be integers, however, there is typically no exact solution for
this system. We thus transform it into an optimization pro-
blem, finding the C and kmax values that minimize the
difference between the left- and right-hand sides of equations
(3.2) and (3.3). The corresponding objective function J is
defined as the weighted sum of the squared error with
respect to the target N and K values, which we define
as Ntgt and Ktgt. We thus have J =WN (Nopt−Ntgt)

2 +WK

(Kopt−Ktgt)
2. Here, Nopt and Kopt are the optimizing variables

while WN and WK are the manually tuned weights. To favour
the convergence to the correct number of agents, we choose
WN = 10 and WK = 1 (our results do not significantly depend
on the exact choice of these values). Figure 2 presents an
example of the resulting nk values, labelled rounded scale
free. Finally, we increase or decrease kmax as needed to exactly
match the required total number of nodes N and then add or
subtract a few connections by hand, to have K in total, so that
all constraints are met. An example of the final nk values
is displayed in the curve labelled modified scale free in figure
2. It confirms that the final degree distribution still follows
an approximate power law. We observe that it is almost iden-
tical to the rounded scale free distribution, showing that the
required final manual adjustments are minimal. We also
note that, for the b =−2 case displayed here, kmax is low
enough for the distribution not to include a long flat region
with nk = 1 at high k-values. This is one of the reasons why
we will set b =−2 in most simulations below.

Once the exact degree distribution is computed, we
associate the corresponding number of links to each node
and then connect all the links (of different nodes) at
random, starting from the nodes with the highest degree.
As in the ER case, we check that the resulting network is con-
nected (which is almost always the case for SF networks) and,
if not, start the process again.

3.4. Network superposition method
In the following sections, we will consider combinations of
the network topologies defined above. To this end, we
devised a superposition protocol that interpolates between an
ordered NN network and either an ER or an SF random net-
work, as a function of a topological control parameter p∈ [0, 1].
For p = 0, we recover exactly the NN structure and for p = 1,
one of the two random networks (ER or SF) with the same
number of nodes and links. We will include these two
extreme cases (which do not require using our superposition
protocol) in our analysis below. In addition, by setting 0 < p <
1, we will be able to interpolate between NN and ER
topologies or between NN and SF topologies.

Our superposition protocol is defined as follows. We
begin by setting up an NN network of a given size, which
determines the values of the total number of nodes N and
total number of connections K. We then generate a realization
of one of the two types of random networks (ER or SF) with
N nodes and K links. Finally, we combine these networks by
first deleting p K links from the NN network and (1− p)K
links from the ER or SF network, at random, and then super-
imposing the two resulting structures. By visualizing the
resulting interaction network, as in figure 1, we verified
that it remained connected for all intermediate p-values.

We note that our superposition protocol is similar to the
rewiring method developed in [34] to generate small-world
networks, but different in its details. In the small-world
algorithm, a parameter βsw (equivalent to our topological
control parameter p) is used in a different way to interpolate
between a regular lattice and a random network. Starting
from a one-dimensional regular ring lattice where nearby
nodes are connected, each link is rewired with probability
βsw to any other node in the ring, selected at random. For
βsw = 0, this approach also recovers the initial proximity net-
work and for βsw = 1 it generates a structure close to an ER
random network. In our preliminary analyses, we verified
that this method produces interaction networks on which
our VN and AE simulations behave in the same qualitative
way as described below. In what remains of this paper we
will use our superposition approach, however, because it
also allows us to interpolate between NN and random SF
networks.
4. Simulations and results
We carried out multiple simulations of the VN and AE
models (implemented as described in §2), using interaction
topologies that interpolate either between NN and ER net-
works or between NN and SF networks (generated as
detailed in §3).

In order to reduce the parameter space, we used the
same AE model parameters in all our runs, setting α = 0.01,
β = 0.12, v0 = 0.002 and κ = 5 while integrating equations
(2.2) and (2.3) with time step Δt = 0.1. These are the same par-
ameters used in [11], which were shown to produce rapid and
reliable self-organization into the aligned stated for systems
with NN interaction topologies. We did not need to
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restrict the parameter space for the VN model, since equation
(2.1) only depends on the noise intensity η and has no
additional parameters.

We considered three different system sizes, all arranged in
a square lattice configuration, as in figure 1: a small system
consisting of 1024 agents (arranged in a 32 × 32 lattice) with
3906 connections, an intermediate system of 10 000 agents
(100 × 100 lattice) with 39 402 connections, and a large
system of 90 000 agents (300 × 300 lattice) with 358 202 con-
nections. Given that reaching a well-converged statistically
stationary state has different computational cost for different
system sizes, models and network structures, we varied the
number and duration of the runs accordingly. These
additional simulation details are thus reported for each case
in the corresponding figure caption. We include several
examples of simulation videos and connectivity diagrams in
the electronic supplementary materials.

In order to monitor the degree of order in the system, we
used the standard polarization order parameter [10], given by

c ¼ 1
N

XN
i¼1

n̂i

�����
�����: (4:1)

With this definition, if all agents are heading in a similar direc-
tion, we have ψ≈ 1, and if they are disordered, we have ψ≈ 0.
For each model, topology and system size, we studied the
degree of order achieved as a function of the angular noise η.
We then identified the critical noise ηc of the order–disorder
transition to analyse how it depends on the topology.

In all simulation results presented below, the swarm was
initialized in the fully aligned state (ψ = 1). For the VN simu-
lations, this choice of initial condition makes no difference in
the resulting bifurcation diagrams, since these always pro-
duce a single branch, that is, a single stationary solution
per noise value. For the AE simulations, however, it was
shown in [11,12] that, in a regular lattice with NN inter-
actions, there is a small region of bistability near the
transition point where an ordered branch coexists with a dis-
ordered one. In the AE case with long-range interactions
studied here, we found that this bistability region displays
a more complex behaviour, since it can extend to η = 0 for
topologies with a certain level of randomness. This implies
that, even without noise, the system never reaches an aligned
self-organized state, remaining instead trapped in some kind
of chaotic dynamics. In our preliminary analysis, we found
that the presence of this disordered branch for η < ηc has a
complex dependence on the topological structure. Its under-
standing would thus require an extensive sampling of the
possible random interaction topologies, which is beyond
the scope of this paper. We will therefore only search here
for the upper branch of each bifurcation diagram (i.e. for
the ordered state, in regions where the system is bistable),
which is why we chose to initialize all simulations in the
fully aligned state. A detailed study of the relationship
between the interaction topology and the disordered branch
will be left for future work.

4.1. Bifurcation diagrams
We begin by presenting bifurcation diagrams that display the
order parameter ψ as a function of noise intensity η for differ-
ent topologies, first in simulations of the VN model and then
of the AE model. Each point in these bifurcation diagrams is
the result of averaging the mean ψ values of multiple runs.
For p > 0, each one of these runs was performed on a different
random superposition of an NN network and a random ER
or SF interaction network, which remained fixed throughout
the simulation. The degree distributions of all the random SF
networks considered in this section were generated using a
b =−2 exponent.

4.1.1. Vicsek-Network model bifurcation diagrams
Figure 3a displays the bifurcation diagrams for the VN
model, with interaction topologies interpolating between
NN and random ER network structures, whereas figure 3b
displays the corresponding diagrams with topologies inter-
polating between NN and random SF networks. The
interpolating parameter p controls the topology, with p = 0
corresponding to the NN case and p = 1 to the random case.

For p = 0, the same curve is displayed in both plots. It
appears to show a continuous transition from an aligned to
a disordered state. We note, however, that this must be a
finite-size effect, since it is well known that (in agreement
with the Mermin–Wagner theorem [35]) the VN model with
fixed NN interactions cannot present long-range order for
any non-vanishing noise η in the ‘thermodynamic limit’ of
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infinite system size. Indeed, for η > 0 and N→∞, the stan-
dard Vicsek model can only reach a stationary state with
ψ > 0 if the interacting agents change throughout the
dynamics [10] or if the interactions are non-local [26]. Despite
its finite-size nature, we display this typical transition curve
for the system size considered, in order to compare it to the
curves obtained with non-local connections.

The p = 1 curves in both panels of figure 3 also correspond
to well-studied cases. The VN case is equivalent to the mean-
field system solved in [26,36], whereas the SF case is equival-
ent to that solved in [37]. This is because, as the system grows,
an interaction network that connects to a given number of
fixed randomly selected agents becomes equivalent to ran-
domly sampling the states of the same number of agents, as
in a mean-field approximation. Note that these analyses pre-
dict a standard mean-field critical exponent of 1/2 for the ER
case and a non-standard critical exponent, which departs
from the standard mean-field universality class and depends
on b, for the SF case [28]. The critical exponents that we
observe in figure 3 for the p = 1 case appear to be consistent
with these results.

The curves with intermediate values of p in figure 3 show
that a few random non-local interactions (with ER or SF top-
ology) are enough to significantly increase the critical noise,
and therefore the resilience to noise of the system. This is
not surprising, since we typically expect a small fraction of
long-range interactions to strongly increase system inte-
gration, and thus resilience to noise, as it has been shown
for small-world networks [38]. In addition, the plots show
that long-range links with SF topology increase more effec-
tively the resilience to noise than those with ER topology.
This is also consistent with expectations, since in SF networks
the mean distance between nodes is significantly reduced
[39], which will improve the convergence of the distributed
average consensus protocol that underlies the VN model,
thus producing higher critical noise values.
4.1.2. Active-Elastic model bifurcation diagrams
Figure 4a presents the bifurcation diagrams for the AE
model with topologies interpolating between NN and
random ER networks, whereas figure 4b displays the
corresponding diagrams with topologies interpolating
between NN and random SF networks. Here again, p is the
interpolating parameter.

In this model, the transition appears to be first-order for
all values of p. This is consistent with previous results
obtained in the p = 0 case [11], where it was shown that the
ordered and disordered branches can co-exist for a range of
η-values close to the critical noise. As explained at the begin-
ning of this section, we only find here the ordered branch (in
the bistable region), because all simulations were started from
a fully aligned (ψ = 1) initial condition. When we include a
small fraction of long-range random connections, for p = 0.2,
we observe a significant increase in the resilience to noise.
In the ER case, the critical noise then continues to increase
with p, as in the previously presented VN case, which is
consistent with the aforementioned expectation that more
long-range interactions favour system integration. In the SF
case (figure 4b), however, the critical η starts decreasing for
p >∼0.6, so resilience to noise is maximized for intermediate
values of p. This is surprising, since it implies that including
more long-range interactions can hinder system cohesion. We
also observe that the fully random SF topology (p = 1) dis-
plays an even lower critical noise value, which contradicts
the common notion that SF networks should improve
system integration by reducing the mean distance between
nodes [39].
4.2. Critical noise as a function of topological structure
We present here the critical noise value ηc, as a function of
the topological control parameter p, for all the bifurcation dia-
grams presented above and for other system sizes. In order to
do this, we must first define objective criteria for computing
the transition point from our numerical data.

For the VN model, given that the transition appears as
continuous, we used a standard method for detecting the
critical noise in second-order phase transitions. We thus
identified ηc as the point where the variance of the order par-
ameter ψ is maximized. To interpolate between the discrete
simulated values of η, we selected the η value with the
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highest Var(ch) (the variance of the order parameter over all
runs performed with noise level η) and the two adjacent η-
values. We then computed ηc as the location of the maximum
of a quadratic curve that passes through the three corre-
sponding (h, Var(ch)) points. For the AE model, since in
this case the transition is discontinuous, we defined ηc as
the point where the ordered solution ceases to exist. The criti-
cal noise level was thus computed as the midpoint between
the highest η value at which we identified an ordered sol-
ution and the next tested value of η, for which no ordered
stationary state could be found. Using these criteria, we com-
puted the critical noise ηc for three different system sizes in
each model and topology considered.

Figure 5 displays ηc as a function of p for the VN model,
with p interpolating between NN and ER networks in panel
(a) and between NN and SF networks in panel (b). As pre-
viously discussed, we observe the same behaviour in both
cases: the resilience to noise increases with p (i.e. with the
fraction of random connections). The only exception is the
N = 32 × 32 case in panel (a), where strong finite size effects
appear to reduce the resilience to noise as p approaches 1.
In both cases, we note that the benefit of adding more
random links starts saturating for larger p.
Figure 6 shows ηc as a function of p for the AE model.
When p interpolates between NN and ER networks, as
shown in panel (a), the resilience to noise increases with p
in a way similar to the VN case. We note, however, that ηc
appears to grow linearly with p for p≥ 0.4 in all system
sizes, without starting to saturate as in the VN case. When
p interpolates between NN and SF networks, in panel (b),
we can clearly see the previously described surprising behav-
iour; the resilience to noise increases initially with p, but then
decreases as p approaches 1. This reduction of the critical
noise for larger p-values is seen to depend on system size,
with ηc becoming smaller at p = 1 in bigger systems.

The reduced resilience to noise for a larger fraction of
random SF connections observed above in the AE model
appears to be a consequence of the overabundance of nodes
with low degree. This is because, as we will discuss in §5,
nodes with low degree are more easily excitable by noise,
since they represent weakly coupled components of the
elastic network that mediates the interactions in the AE
model. This is also consistent with the decrease of resilience
in larger systems, since the fraction of nodes with few
connections increases with N. In order to test this hypothesis,
we will analyse below the relationship between critical
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noise and the exponent of the degree distribution in SF
interaction networks.

4.3. Critical noise as a function of scale-free exponent
We consider here simulations of the AE model interacting
through fully random (p = 1) SF topologies, analysing the
relationship between the critical noise and the exponent b
of the degree distribution in equation (3.4).

Figure 7a shows the different degree distributions that we
implemented in our intermediate (N = 100 × 100) system size,
following the procedure detailed in §3.3. Note that, in order
to keep N and K constant, we must increase kmax for higher
values of |b| , which extends the nk = 1 region where the
distribution is flat.

For each exponent b, we then performed multiple simu-
lations of the AE model, using different realizations of an
SF interaction network with the corresponding degree distri-
bution. Figure 7b presents the resulting bifurcation diagrams.
The inset displays the respective critical noise values as a
function of b. For all SF exponents considered, we find a dis-
continuous order–disorder transition, as in the previously
explored b =−2 case. The figure shows that ηc is reduced as
the slope of the distribution becomes steeper. This implies
that the resilience to noise decreases as b becomes more nega-
tive, that is, as the fraction of nodes with a low number of
connections is increased, in agreement with our hypothesis
in the previous subsection.
5. Discussion
The results presented above show that the structure of the inter-
action network affects very differently the resilience to noise of
the ordered state in the VN model and the AE model. In the
VN case, a larger fraction of random links with either Pois-
sonian or power-law degree distribution always increases the
critical noise. In the AE case, we obtain similar results only
when interpolating between NN and random ER network
topologies. When interpolating instead between NN and
random SF networks, a larger fraction of random links can
reduce the critical noise. As mentioned above, this is contrary
to the common intuition that more long-range connections
tend to improve the collective behaviour of networked systems
by decreasing the mean topological distance between nodes,
which improves the system-wide propagation of information.
This is believed to be especially true when these connections
follow an SF topology, because this connectivity further reduces
the mean distance between nodes.

A heuristic explanation of this phenomenon can be
deduced from the difference in the self-organization mechan-
ism that leads to collective motion in each model. The self-
organizing dynamics of the VN model is based on a distrib-
uted average consensus process, where local orientation
averages of the consensus variable propagate directly
through the network. In the AE model, however, only the
positional information is propagated through the network,
while the consensus variable is still the orientation. This
suggests that the self-organizing mechanism for the AE
model must be different. Indeed, as detailed in [11,12], the
AE model self-organizes by focusing the self-propulsion
energy into low-energy modes, through a combination of a
well-known property of all elastic systems and the coupling
(imposed by its dynamical equations) between the elastic
forces and the individual heading directions. It is well
known that higher energy modes dampen at a faster rate
than slower ones in all elastic systems, because their higher
rigidity produces higher oscillation frequencies that dissipate
faster. The AE model is an active elastic system, however,
where each agent is also continuously injecting energy at
the individual level through its self-propulsion term, so
motion cannot dampen out. Instead, the elastic forces will
tend to steer agents away from the higher modes, which
require more energy to excite. The self-propulsion energy
will thus be channelled to lower and lower modes, until the
first (rotational) mode or the zero (translational) mode is
reached and collective motion is achieved.

With this explanation, we can understand why SF net-
works can lead here to weaker ordered states. Previous
works had only considered homogeneous elastic systems
with NN interactions, in which low-energy elastic modes cor-
respond to large scales of coherent motion. In complex,
networked elastic systems, however, this correspondence
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does not hold, since there can be highly localized and disor-
dered low-energy modes that do not correspond to any large-
scale collective dynamics. In particular, our SF networks will
have an overabundance of agents with few connections, and
therefore low elastic constraints, which will result in multiple
disordered low-energy modes. There will be, for example, a
majority of agents with only two links, which can be easily
excited at very low energy levels.

The discussion above helps us understand why disor-
dered modes can be easily excited by noise in the AE
model with SF interactions. This in turn justifies the lower
critical noise that we observe for the AE model as more
random SF interaction links are included, and when consider-
ing SF interaction networks that are larger or have steeper
degree distributions.

6. Conclusion
In this paper, we have explored for the first time the relation-
ship between the interaction topology and the self-organizing
properties of two different types of models of collective
motion: one velocity-based and one position-based. We
found that the interaction network can have very different
effects on the critical noise of their corresponding order–
disorder transitions. In the position-basedmodel, in particular,
we observed that an interaction network with power-law
degree distribution can hinder self-organization, when com-
pared to a proximity network, despite having a large fraction
of long-range connections.
These results could have implications in various fields. In
the study of biological collective motion, they imply that the
structure of the interaction network may play a fundamental
role in determining how different animal groups self-
organize, which could be tested experimentally. In swarm
robotics, where we can often choose which agents interact
to achieve the desired collective dynamics, these results
could help guide the design of effective interaction networks
for various types of decentralized motion control algorithms.

Finally, the strong differences displayed by the two
models when interacting through various network structures
suggest that they may belong to two distinct classes of self-
organizing systems: one for which the ordered state is
always favoured by long-range interactions and one where
it depends on more subtle structural properties of the inter-
action network. In future work, it would be interesting to
search for other examples of models that belong to each class.
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