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Abstract: Wireless sensor networks have found many applications in detecting events such as
security threats, natural hazards, or technical malfunctions. An essential requirement for event
detection systems is the long lifetime of battery-powered sensor nodes. This paper introduces a
new method for prolonging the wireless sensor network’s lifetime by reducing data transmissions
between neighboring sensor nodes that cooperate in event detection. The proposed method allows
sensor nodes to decide whether they need to exchange sensor readings for correctly detecting events.
The sensor node takes into account the detection algorithm and verifies whether its current sensor
readings can impact the event detection performed by another node. The data are transmitted only
when they are found to be necessary for event detection. The proposed method was implemented in
a wireless sensor network to detect the instability of cargo boxes during transportation. Experimental
evaluation confirmed that the proposed method significantly extends the network lifetime and
ensures the accurate detection of events. It was also shown that the introduced method is more
effective in reducing data transmissions than the state-of-the-art event-triggered transmission and
dual prediction algorithms.

Keywords: wireless sensor network; event detection; lifetime; energy consumption; transmission
reduction; cargo monitoring

1. Introduction

Wireless sensor networks (WSNs) are composed of spatially distributed sensor nodes
with sensing, data processing, and communication capabilities. The combination of these
capabilities allows WSN to detect events and unusual behaviors in a monitored envi-
ronment. Event detection is an important application area of WSNs which has gained
significant attention in recent years [1,2]. There has been growing interest in the potential
use of WSNs for the detection of military targets, physical security threats, natural hazards,
technical malfunctions, etc. [3–6].

Events are usually defined as deviations from normal observations in the temporal or
spatial domain. Temporal events can be detected as abrupt changes in data readings of a
single sensor node. In contrast, spatial events are recognized by taking into account the
sensor readings of neighboring nodes [7]. The spatial events correspond to spatial anoma-
lies that occur in single points or small regions, where the values of monitored attributes
are significantly inconsistent with those of their neighborhoods [8]. Thus, the sensor nodes
in WSN have to exchange collected data in order to detect spatial events. The examples
of such events include the presence of a malfunctioning device emitting pollution [9],
contaminant intrusion to a water distribution system [10,11], oil leak from a pipeline [12],
and stability loss of container during transportation [13].

One of the essential requirements for successful event detection applications is the
long lifetime of WSN [14]. The lifetime of battery-powered wireless sensor nodes strongly
depends on the number of data transmissions. Since wireless transmission is the most
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energy-consuming operation in WSN, the lifetime of sensor nodes can be significantly
extended by reducing the data communication [15]. Thus, for event detection applications,
methods are being sought to enable the accurate detection of events in real time and savings
of energy resources by eliminating unnecessary transmissions.

In the literature, various methods have been presented to date to reduce data trans-
missions in wireless sensor networks. However, the available techniques—which are based
on data aggregation [16], compression [17], prediction [18], or adaptive sampling [19]—do
not take into account the particular algorithm which is used to detect the events in a given
application. Thus, those methods cannot effectively eliminate data transmissions that are
not necessary for a given algorithm to correctly recognize the events of interest. In the
context of event detection, some dedicated data reduction methods were proposed for
simple threshold-based event detection algorithms [20]. Such methods are not suitable
when the threshold value is not explicitly defined. This means that their applicability is
low when the event detection in WSNs is implemented with the use of machine learning
algorithms. It should also be noted here that the event detection approach was used in the
literature to reduce data transmissions in WSN. According to that approach, the reduction
in transmissions is achieved as a sensor node sends data to a sink node only when an event
of interest is triggered at the sensor node [1]. Such event-triggered methods assume that
events have to be detected by a single sensor node—based on its own sensor readings.
This approach is not relevant to detecting spatial events, based on data collected from
neighboring sensor nodes.

The method presented in this paper was devised for the data transmission reduction
in applications where data from neighboring sensor nodes have to be collected for detecting
spatial events. In the considered WSN, events have been detected by the parent sensor node,
which receives data from child sensor nodes. The parent node needs its own sensor readings
and child node readings to correctly recognize the events. The proposed method assumes
that the child node decides whether its current sensor readings must be transmitted to the
parent node. To this end, the child node takes into account the event detection algorithm
and verifies whether its current sensor readings can impact the results of event recognition
performed by the parent node based on previously transmitted data. Specifically, the child
node checks whether the result of event detection based on previously transmitted data
may be different to the event detection result obtained with the current data. If the impact
of current sensor readings on the event detection result is possible, then the child node
sends the new data to the parent node. This approach allows the child node to skip the
transmissions of data that are not necessary for the parent node to correctly recognize
the events.

The proposed transmission reduction method was implemented in a WSN for cargo
monitoring during transportation. The considered WSN detects the instability of cargo
boxes in a vehicle based on data collected from accelerometers and gyroscopes. This system
is composed of a parent sensor node attached to the vehicle body and child sensor nodes
inside the cargo boxes. The parent node detects events related to movements and tilts of
the cargo boxes inside a car by taking into account the measurements of vibrations and
angular velocities made for the cargo boxes and the body of the vehicle. This WSN was
used as a testbed for the experimental assessment of the introduced transmission reduction
method in a real-world scenario. During the experiments, the ability to extend the lifetime
of the sensor nodes and the impact on the event detection accuracy of the proposed method
were compared with those of state-of-the-art approaches.

The main contributions of this work are summarized as follows:

• A new method is presented for data transmission reduction in WSN where spatial
events have to be detected based on data from neighboring sensor nodes. The method
is based on predicting the possible errors of event detection that can be encountered
when current sensor readings are not reported;

• The introduced method was implemented for event detection in a cargo monitoring
system;
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• Feasibility and effectiveness of the proposed method were experimentally verified
using a prototype of WSN. The conducted experiments have involved in comparison
with state-of-the-art approaches.

The remainder of this paper is structured as follows. Section 2 reviews the most
relevant previous works and discusses issues that have motivated our research. Section 3
presents details of the proposed method for data transmission reduction in event-detecting
sensor networks. Experiments and their results are discussed in Section 4. Finally, conclu-
sions are given in Section 5.

2. Related Works

Many works in the literature are devoted to reducing data transmission in WSNs. This
section discusses the limitations of the existing transmission reduction methods suitable for
application in WSN-based event detection systems. These methods fall under the following
main categories: data aggregation and compression, adaptive sampling, dual prediction,
and event-triggered transmission.

2.1. Compression

The compression methods allow us to reduce the size of the transmitted data. How-
ever, the decreased data size does not always translate into a lower number of transmitted
packets and lower energy consumption. In general, compression is helpful when a consid-
erable amount of data are collected (e.g., at the cluster head node, where data are received
from many sensor nodes). For data transmission from a single sensor node, the application
of compression techniques requires data buffering and can lead to significant delays in
reporting important event-related data [17]. Thus, such an approach is not suitable for the
detection of events in real time.

In related works, the compression approach was used for transmissions between
cluster heads and sink nodes. Singh et al. [21] have considered a WSN where sensor nodes
detect many events and report them to a cluster head. The cluster head recognizes impor-
tant events based on data from several sensor nodes. The information about important
events is then transmitted to a sink. In that scenario, the cluster head transmits compressed
data to the sink, where the original data are reconstructed. Nagdive and Ingole [22] im-
plemented the sequential lossless entropy compression (S-LEC) algorithm in WSN for the
detection and localization of heterogeneous events. The S-LEC algorithm was used in their
work to reduce the size of the data transmitted between cluster heads.

2.2. Aggregation

Data aggregation methods have similar limitations to data compression, as they
assume that data from many sensor nodes must be merged. Aggregation usually involves
a fusion of data from multiple sensor nodes at cluster heads (or intermediate nodes). Then,
the aggregated data are transmitted to a sink. In [23], the in-network aggregation method
was used for a cluster-based WSN which was designed to detect early fires. The cluster head
in that WSN aggregates the CO, temperature, photoelectric, and ionization data obtained
from different sensor nodes. After transmission, the sink uses the aggregated data as inputs
of a neural network to recognize fire events. In [24], a multihop tree-based data aggregation
framework was proposed for WSNs that monitor events in large areas. According to that
approach, a multihop path is determined for transmitting event information to a sink via
many intermediate nodes. The intermediate sensor nodes along the path aggregate the
event data with information about other events in the monitored area to minimize the
number of transmissions. Such an aggregation method can reduce the data transmissions
only if there are many events detected in different locations simultaneously.

2.3. Adaptive Sampling

The adaptive sampling approach allows a sensor node to modify its sampling rate
such that the sensor works with a high sampling rate to provide detailed data when
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observing an important event. When the sensor does not observe important events, a lower
sampling rate is used. This method leads to a reduced amount of sampled, processed,
and transmitted data [19]. The primary motivation for introducing the adaptive sampling
mechanisms is that in some sensor nodes, a significant percentage of energy is consumed by
the sensing module, and it is necessary to reduce this energy consumption for the purposes
of WSN lifetime extension [25,26]. The adaptive sampling approach was used in WSN for
detection of water leaks from pipelines [25]. This strategy uses two types of vibration and
pressure sensors that have different precision and energy consumption levels. The sampling
frequency is adjusted with the use of a wavelet-based adaptive thresholding scheme by
taking into account the bandwidth of the acquired vibration signal. Measurements from
energy-efficient low-precision vibration sensors are used in that method to adjust the
sampling rate of the sensors having high precision and high energy consumption.

Adaptive sampling was also used for structural health monitoring and fire event
monitoring. In this context, it was observed that in practice, the application of the adaptive
sampling approach for event detection was challenging since the presence of a physical
event is dynamic or unknown until after sampling [27,28]. Thus, this technique can make
a WSN unable to capture dynamic short-term changes that correspond to the events
of interest.

2.4. Dual Prediction

According to the dual prediction approach, the wireless nodes in WSN use a prediction
model to compute estimates of sensors readings [18,28]. In this approach, predictions are
simultaneously made by a sink and a sensor node. The sensor node needs the prediction
to decide whether its current sensor readings have to be transmitted to the sink. More
specifically, the sensor node sends its data readings to the sink if a difference between the
prediction and real measured value is above a given threshold. The sink uses the predicted
values to reconstruct missing data when the sensor node suppresses transmissions. When
data transmission is performed, the sink substitutes its local predictions with the correct
value received from the sensor node. Hence, measurements are transmitted to the sink
only when the predictions are not sufficiently accurate. As a result, sensor nodes can avoid
unnecessary transmissions, consume less energy, and extend their lifetime [29].

In [28], it was suggested that data reduction techniques based on dual prediction
are more suitable than adaptive sampling for applications in event detection systems
(e.g., intruder detection), where sudden variations of a physical variable may indicate the
occurrence of an important event. However, the effectiveness of the dual prediction scheme
in reducing data transmissions depends on the accuracy of the prediction model. Thus,
extended dual prediction methods were presented in the literature to tackle the problem of
eliminating erroneous sensor data (outliers) that lead to wrong predictions [30].

2.5. Event-Triggered Transmission

The event-triggered approach to data transmission in WSN assumes that data are sent
from sensor nodes only when some specific event occurs. This means that after each data
sampling, the sensor node verifies an event-triggering condition to decide whether or not
to transmit the newly sampled data [1]. The event triggering condition can be verified
using thresholds. Another approach is to detect events with the use of machine-learning
techniques. The threshold-based methods include static and dynamic event-triggered
schemes. Static schemes use fixed threshold values [31]. In the case of dynamic schemes,
the thresholds are dynamically adjusted during the operation of WSN [32]. Different
machine-learning algorithms were used in the literature to enable recognizing various
events by sensor nodes. Support vector machine and decision tree were employed for
occupancy detection [33]. A decision tree was also implemented in a wearable sensor
node to detect the activities of house occupants [34]. In [35], a technique was proposed
for leakage detection in pipelines with the use of the support vector machine, k-nearest
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neighbor algorithm, and the Gaussian mixture model. Another example is the application
of a convolutional neural network for footstep detection [36].

The aforementioned event-triggered methods are suitable for data transmission reduc-
tion when detecting events based on local measurements performed by one sensor node.
Other methods have been proposed for applications, where the events need to be detected
based on data collected from neighboring sensor nodes [36,37]. However, those methods do
not reduce the number of one-hop transmissions between sensor nodes in a neighborhood.
A modified event-triggered approach was formulated in [20] as a domain reduction model.
This method can be implemented only for threshold-based event detection.

3. Proposed Method

The proposed method was designed to reduce data transmissions between the neigh-
boring sensor nodes that cooperate in detecting events. This method can be implemented
together with periodic or adaptive sampling as well as with machine learning or threshold-
based event detection algorithms. It significantly extends the concept of dual prediction
by taking into account the usefulness of sensor readings for a given event detection task.
In contrast to the dual prediction scheme, the proposed method does not use prediction er-
ror to decide whether the sensed data have to be transmitted. Instead, this method verifies
whether the predicted data are sufficient for correctly recognizing the events of interest.

The objective of the considered wireless sensor network is to detect spatial events that
result in divergences between readings of neighboring sensor nodes. The wireless sensor
network is composed of parent nodes and child nodes. The child node reports its sensor
readings to a parent node. The task of the parent node is to detect events based on both its
own sensor readings and sensor readings delivered by the child node. When an event is
detected, the parent node sends information to a base station. Formally, the event detection
task, performed by the parent node, can be described as a binary function:

et = event(sp,t, sc,t, E), (1)

where et = 1 if an event is detected and et = 0 otherwise. Symbols sp,t and sc,t denote
sensor readings registered at time step t by the parent node and child node, respectively.
E stands for the event detection model, which is created (trained) in advance based on
historical data. This model can take different forms, such as decision rules, decision tree,
random forest, neural net, etc.

In order to reduce the data transmission, the child node sends its sensor readings sc,t
to the parent node at selected time steps. For the remaining time steps, the parent node
has to predict the sensor readings of the child node and detect events using the predicted
values ŝc,t. Here, we use symbols et and êt to distinguish between the results et of event
detection from the complete, actual data (sc,t) and results êt that can be obtained with use
of the predicted data (ŝc,t), when transmission reduction is implemented:

êt =

{
event(sp,t, sc,t, E), txt = 1
event(sp,t, ŝc,t, E), txt = 0

, (2)

where txt is a binary variable, which determines whether data from child node are delivered
to parent node at time t (txt = 1 if data are transmitted and txt = 0 in opposite situation).

For the above-discussed scenario of data transmission reduction, the fundamental
problem is to decide when the child node has to send its current sensor readings to the
parent node. Note that the number of data transmissions should be as low as possible,
and at the same time, the transmitted data have to be sufficient for the correct detection of
events. This task can be formulated as an optimization problem:

min
tx1 ...txT

T

∑
t=1

txt

subject to êt = et, t = 1 . . . T

(3)
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Since we require the real-time operation of the event detection system, the decision variable
txt has to be determined at time step t, when the future sensor readings (sp,t+1, . . . , sp,T
and sc,t+1, . . . , sc,T) are unknown and previously taken decisions (tx1, . . . , txt−1) cannot be
changed. Thus, the solution for problem (3) is given by the following formula:

txt =

{
1, event(sp,t, ŝc,t, E) 6= et
0, else

, (4)

which means that at a given time step (t), the data transmission should be performed by
child node (txt = 1) only if the event et cannot be correctly recognized by the parent node
based on the prediction results.

In practice, the solution (4) is not suitable for direct implementation as et cannot be de-
termined by sensor nodes without exchanging data. Specifically, a child node would need
to receive sp,t form the parent node to determine et. Thus, data transmission would be neces-
sary at each time step, which is clearly contrary to the objective of transmission reduction.

Therefore, a different approach was used in the proposed method. According to this
approach, the child node takes into account possible values of sp,t and sends sc,t to the
parent node if there is a possibility that the condition event(sp,t, ŝc,t, E) 6= et is satisfied.
To this end, the child node finds the set Ŝp,t, which includes possible sensor readings of the
parent node. This set is determined based on model Mp, which is created using previously
collected data. Then, the child node verifies whether the results of event detection, obtained
for its actual and predicted sensor readings (sc,t and ŝc,t), are the same. This verification
was made for all possible sensor readings of the parent node in Ŝp,t. If the compared results
of event detection are different for any of the elements in Ŝp,t, then it is possible that event
et is incorrectly recognized when the parent node takes into account the predicted sensor
readings of the child node. Thus, the approximate solution of the problem (3) is obtained
as follows:

t̃xt =

{
1, ∃ ŝp,t ∈ Ŝp,t : event(ŝp,t, ŝc,t, E) 6= event(ŝp,t, sc,t, E)
0, else

, (5)

Obviously, this approach can give a sub-optimal solution of problem (3) as some
unnecessary transmissions may be performed when the condition in (5) is not met for
ŝp,t = sp,t. However, it ensures that the constraint in (3) is fulfilled, which is of primary
importance for correct event detection in the considered sensor network. This approach
is motivated by the requirement that transmission reduction cannot change the results of
event detection.

Details of the proposed transmission reduction method are presented in this section
by pseudo-code. Operations of the parent sensor node are shown in Algorithm 1, while
Algorithm 2 describes the operation of the child sensor node. These algorithms allow us to
summarize the above-discussed concepts.

As shown in Algorithm 1 (line 9), the parent node stores the received sensor readings
of the child node (sc,t) and uses the stored data (sc) for event detection in case the child
node does not send its current data. This means that this algorithm implements the Naive
prediction method [18] to predict the sensor readings of the child node that are denoted
by symbol ŝc,t in Equations (2)–(5). The choice of Naive prediction was motivated by
the fact that this method was found to be effective in predicting a chaotic time series
that correspond to unexpected events, such as accelerations registered for the sudden
movement of an object [15].
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Algorithm 1 Operation of parent node

1: Inputs:
event detection model E

2: Initialize:
determine parameters P of prediction model Mp

3: for each time step t do
4: collect data sp,t from own sensors
5: update parameters P of prediction model Mp

6: wait for data sc,t transmitted from child sensor node
7: if data sc,t received then
8: send acknowledgement with sp,t and P to child node
9: sc ← sc,t

10: end if
11: if event(sp,t, sc, E) = true then
12: report event to sink
13: end if
14: end for

Algorithm 2 Operation of child node

1: Inputs:
event detection model E
parent data prediction model Mp

2: Initialize:
tx ← 1

3: for each time step t do
4: collect data sc,t from own sensors
5: if tx = 0 then
6: predict possible data readings of parent node Ŝp,t ← prediction(Ŝp,t−1, Mp, P̂)
7: if ŝp exists, such that ŝp ∈ Ŝp,t and event(ŝp,t, ŝc, E) 6= event(ŝp,t, sc,t, E) then
8: tx ← 1
9: end if

10: end if
11: if tx = 1 then
12: send sc,t to parent node
13: receive acknowledgement with sp,t and P from parent node
14: Ŝp,t ← {sp,t}
15: P̂← P
16: ŝc ← sc,t

17: tx ← 0
18: end if
19: end for

It should also be noted here that the parent node acknowledges the reception of
messages from the child node (line 8 in Algorithm 1). In addition to ensuring the reliability
of data transmission, acknowledgements are also used to inform the child node about
the current sensor readings of parent nodes and the parameters of the prediction model
Mp. As already mentioned, model Mp is used by the child node to determine the possible
sensor readings of the parent node.
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In the simplest case, the variables sp,t and sc,t are single values (scalars) representing,
e.g., readings collected by a node with only one simple sensor. When the network nodes
are equipped with more complex sensors or algorithms, the variables mentioned above are
vectors that can include many sensor readings or results of data processing. Thus, for the
sake of generality, we use the following vector notation:

sp,t =
〈
sp,t,i, i = 1 . . . n

〉
, sc,t = 〈sc,t,i, i = 1 . . . n〉. (6)

In order to determine the set Ŝp,t of possible parent node readings, an interval of
possible values is assigned to each component of sp,t. This assumption leads to the formula:

Ŝp,t =
〈[

Ŝ−p,t,i, Ŝ+
p,t,i

]
, i = 1 . . . n

〉
, (7)

where the superscripts − and + indicate the lower and upper endpoint of the interval.
At each time step of the sensor network operation, the intervals in Ŝp,t are updated

using the prediction function (line 6 in Algorithm 2) to calculate the new interval endpoints:

Ŝ−p,t,i = Ŝ−p,t−1,i + p̂−i , Ŝ+
p,t,i = Ŝ+

p,t−1,i + p̂+i , i = 1 . . . n (8)

Parameters p̂−i and p̂+i describe the possible range of difference between sp,t−1,i and
sp,t,i. Values of these parameters are evaluated by the parent node with the use of the
algorithm for quantiles tracking in data streams [38]. Specifically, p̂+i corresponds to the
k-th percentile of the positive values of difference (sp,t,i − sp,t−1,i) and p̂−i is determined as
the (100− k)-th percentile of the negative values of this difference between two succes-
sive measurements.

If the data transmission is executed at a given time step, the updated intervals are
determined based on the actual sp,t,i values, reported by the parent node:

Ŝ−p,t,i = sp,t,i, Ŝ+
p,t,i = sp,t,i, i = 1 . . . n (9)

After finding the set of possible sensor readings of the parent node, the child node has
to decide whether its sensor readings must be sent to the parent node. This decision is taken
in line 7 of Algorithm 2. Details of this operation are discussed here using a simple example
of the event detection model E in the form of the decision tree (Figure 1). For illustrative
purposes, it was assumed that both the parent and the child sensor nodes only monitor
one parameter (sp and sc). Moreover, to simplify notation, the indices t and i are ignored.

The decision tree from Figure 1 can be converted into the following set of deci-
sion rules:

1. if sc ≤ 50 then e = 0,
2. if sc > 50 and sp ≤ 20 then e = 0,
3. if sc > 50 and sp > 20 then e = 1.

Let us assume that the interval of the possible parent node readings is Ŝp,t = [10, 25],
the predicted sensor reading of child node is ŝc = 25, and the actual child node reading
equals sc,t = 60.

For the above assumptions, we check whether e = event(ŝp,t, ŝc, E) can take values 0
and 1. To this end, sc in the decision rules is substituted by ŝc = 25 and sp is substituted by
ŝp ∈ [10, 25]. In this case, we obtain e = 0 from the first decision rule. The conditions in
rules 2 and 3 are not satisfied.
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sc > 50

e = 0 sp > 20

e = 0 e = 1

no yes

no yes

Figure 1. Decision tree.

Then, we check whether different event detection results (e = 1) are possible when
taking into account the current sensor reading of the child node. This means that we must
verify whether e = event(ŝp,t, sc,t, E) can take value 1. Thus, in the decision rules, sc is
substituted by sc,t = 60 and sp is substituted by ŝp ∈ [10, 25]. In this case, e = 1 is possible
under the condition that rule 3 is satisfied.

Based on the above analysis, we conclude that the results of event detection for
event(ŝp,t, ŝc, E) and event(ŝp,t, sc,t, E) can be different (e = 0 in the first analyzed case and
e = 1 in the second case), which means that the actual sensor reading (sc,t) has to be
transmitted to the parent node (tx = 1).

Let us consider another situation, when Ŝp,t = [0, 15], ŝc = 25, and sc,t = 60. In this
case, we obtain event(ŝp,t, ŝc, E) = 0 from rule 1 and event(ŝp,t, sc,t, E) = 0 from rule 2.
For the remaining rules, the conditions are not met. It shows that the result of event
detection, obtained for the predicted and for the actual readings of the child node, are the
same. Thus, the data transmission is skipped (tx = 0).

Finally, let us take into account the following assumptions: Ŝp,t = [10, 25], ŝc = 100,
and sc,t = 60. In this case, we obtain event(ŝp,t, ŝc, E) = 1 from rule 3 and event(ŝp,t, sc,t, E) =
0 from rule 2. Rule 1 cannot be satisfied in this case. Here, the result of event detection
can be different due to rules 2 and 3. However, the data transmission is skipped (tx = 0)
because rules 2 and 3 cannot be satisfied for the same sp value, which means that the result
of event detection will not change after reporting sc,t = 60 to the parent node.

From the above example, we can conclude that the sensor readings of the child node
have to be transmitted (tx = 1) if the set of decision rules for model E includes two rules r1
and r2, such that:

• The outcomes of r1 and r2 are different;
• The condition of r1 may be satisfied for sc = sc,t;
• The condition of r2 may be satisfied for sc = ŝc;
• sp ∈ Ŝp,t exists for which conditions of both r1 and r2 may be satisfied.

In the opposite situation, data transmission is not performed (tx = 0).
It should be noted here that the approach presented in the above example can be

implemented in more complex scenarios. If a more elaborate model is used for event
detection, then a larger set of decision rules must be analyzed. The decision rules can be
directly extracted from multiple trees forming the random forest model [39]. Appropriate
algorithms are also available in the literature for the decision tree, and the decision rules’
extraction from neural networks [40] as well as from support vector machines [41]. The pre-
sented approach is also applicable when the sensor nodes collect more than one attribute,
as the decision rules can account for a larger set of attributes.

The sensor nodes have to execute their tasks in a limited amount of time. Thus, it
is important to analyze the computational complexity of Algorithms 1 and 2. We should
especially consider the body of the for loop, which contains operations performed during
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each time step (t). The most computationally expensive process in these algorithms is that
of event detection, i.e., the evaluation of the event function. As discussed above, we can
assume that the event detection model E is a set of decision rules. Thus, the dominant
operation is the verification of a condition for decision rule. Let m denote the number of
decision rules in E. The parent node verifies the conditions m times as the event function
is used once during a time step (line 11 in Algorithm 1). In the case of the child node,
the number of dominant operations is 2m because each decision rule has to be applied
two times to check the condition in line 7 of Algorithm 2, as described above for the
example in Figure 1. This means that both algorithms (Algorithms 1 and 2) have linear
time complexity O(m).

4. Experiments and Results

The objective of the conducted experiments was to test the proposed method on a
real-world working event detection system. Our method was experimentally verified in a
prototype WSN for cargo monitoring during transportation. The monitored events have
included the movements of cargo boxes that are symptoms of improperly secured load in a
vehicle. The objective of this monitoring system was the recognition of threats of possible
damage to cargo and inform the users (e.g., driver, dispatcher, sender). The construction
of the system was inspired by previous works on cargo monitoring in transportation
and logistics systems [13,42,43]. During experiments, the accuracy of event detection
was analyzed, and measurements were performed to determine the energy consumption
of sensor nodes and to evaluate their lifetime. The results obtained for the proposed
method were compared with those of the state-of-the-art dual prediction [18,44] and event-
triggered transmission [33] methods. Moreover, in our research, state-of-the-art methods
were implemented using different prediction and event recognition algorithms.

4.1. Experimental Testbed

A schema of the considered cargo monitoring system is shown in Figure 2. For the
purpose of the conducted experiments, a prototype of the WSN network was built. The ex-
perimental WSN consisted of four nodes. Three of them were attached to cargo boxes and
used as child nodes. The parent sensor node was placed at the vehicle body. This node was
responsible for collecting data from child nodes and recognizing the events of interest.

Figure 2. Schematic view of WSN for cargo monitoring.

Each sensor node of the considered WSN contains a microcontroller, accelerometer,
gyroscope, and a communication module. As discussed in [45], the accelerometer and
gyroscope sensors are useful to identify the forces acting on a vehicle and the cargo.
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In addition, the sensor nodes were equipped with a module responsible for measuring
energy consumption. The measurement of energy consumption was performed by using
the LTC4150 Coulomb counter. This module constantly monitors the current a node
consumes, integrates it, and gives a pulse each time a given amount of amp-hours are
used. The LTC4150 module generates an impulse on an INT pin each time the sensor
node absorbs 0.1707 mAh. It was assumed that all child sensor nodes have the same
battery capacity of 3500 mWh. Moreover, the LTC4150 module has a polarity output (POL).
The signal on the POL output indicates the direction of the current flow. A low state on
this output during the INT impulse means that the battery is discharging.

The data transmitted from a child node to the parent node consist of the accelerometer
reading (7 bytes) and gyroscope reading (7 bytes). The response of the parent node includes
its sensor readings (14 bytes) and updated parameters P of the prediction model (28 bytes).
In the case when the transmission reduction is not performed, the child node sends one
message per second.

Lifetime of WSN is defined in the literature by taking into account different situa-
tions [46]: first node discharge (FND—first node dead), last node discharge (LND—last
node dead) and half of the available nodes discharge (HND—half node dead). For our
cargo monitoring system, all the battery-powered sensor nodes are necessary to detect the
events of interest. In this study, it was assumed that the minimum number of child nodes
is one, which corresponds to one monitored package. Thus, the term lifetime refers to the
time of the WSN operation before the death of the first sensor node. The death of the sensor
node was detected during the experiments each time the sensor node had consumed a
predetermined amount of energy (3500 mWh).

The prototype sensor nodes use ARM microcontrollers (STM32F103C8T6) which allow
us to switch off individual modules that are not used and reduce energy consumption. This
hardware platform also offers a DMA controller, which has enabled the implementation of
time-effective data collection and processing procedures.

The wireless communication of sensor nodes was based on Zigbee technology (xBee
S2C module). The microcontroller was connected with the communication module through
the Universal Asynchronous Receiver Transmitter (UART) interface. The communication
module is put in sleep mode when the data transmission is not performed. Additionally,
this module sends special data frames to inform the system about exceptional situations
(e.g., communication errors).

The sensors’ subsystem of the sensor nodes was based on the GY-91 module. This 10
DoF (degrees of freedom) module contains a combination of single-chip MPU-9250 with
a built-in three-axis gyroscope, three-axis accelerometer, digital compass, and BMP280
improved barometric pressure sensor. As discussed earlier in this section, the data from
the accelerometer and gyroscope were used to detect the movements of cargo boxes in
a vehicle.

The STM32 microcontroller in our prototype has rich peripherals, high computing
power, and a DMA mechanism, which enable fast and energy-efficient communication
with the sensing and wireless transmission modules. The aforementioned features of the
hardware platform are essential for our research studies devoted to various applications of
WSNs (e.g., human activity recognition [14] and road traffic monitoring [47]). The cost of
the microcontroller does not exceed USD 5. The communication module in our prototype
was based on ZigBee technology; however, cheaper alternatives are available for wireless
end-point communication at the cost of USD 2. The cost of the GY-91 sensing module is
USD 8.

4.2. Results and Discussion

A dataset for our experiments was collected using the WSN prototype in a car traveling
on urban roads in Sosnowiec, Poland. The routes were selected to cover many crossroads,
roundabouts, and curves. When collecting data, we avoided traffic congestion and peak
hours. Thus, the movements of unsecured packages in the car were very frequent. The data
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collection was conducted for three working days. A passenger in the car was controlling the
situation by selectively holding and releasing packages for short time periods so that the
released package was moving. We marked the events by registering the time when a given
package was moving inside the car. The dataset includes a total number of 6909 events.

The first experiments were conducted to verify the possibility of detecting the events
of interest and comparing the accuracy of cargo movement detection for various machine
learning classification algorithms. The compared machine learning algorithms include:
k-nearest neighbors (kNN) [48], multilayer perceptron (MLP)—which is a popular example
of neural network [49]—probabilistic neural network (PNN) [50], random tree (RT) [51],
and random forest (RF) [52]. All tests of the above-listed algorithms were performed using
their implementations available in the Konstanz Information Miner (KNIME) and WEKA
package. During the experiments, 60% of the collected data were used for training and 40%
for testing.

During the first part of the experiments, the reduction in data transmission was not
performed; thus, all available data were taken into account. It means that the events were
detected based on sensor readings from both the child and parent node. The results pre-
sented in Figure 3 show that the collected data allow all the considered algorithms to detect
the events of interest with a high level of accuracy. These results confirm that the elabo-
rated WSN is useful for cargo monitoring during transportation. The detection accuracy
obtained for particular machine learning algorithms was as follows: PNN achieved 92.5%;
RF 95.9%; RT 94.6%; kNN 91.2%; and MLP 94.9%. The differences in those results are quite
low, especially for RF, RT, and MLP. Thus, all three of these algorithms are candidates for
practical applications. However, the RF algorithm, which achieved the highest detection
accuracy, was selected for further experiments on data transmission reduction.

Figure 3. Accuracy of event detection for compared machine learning algorithms.

The RF algorithm can be considered as an extended version of the RT method where a
collection of decision trees is built. The RF algorithm creates decision trees using a random
procedure. The construction of a decision tree involves the greedy selection of the best split
point from the dataset at each step. By creating multiple trees with different samples of
the training dataset, the RF algorithm introduces different views of the detection problem.
This algorithm uses the majority voting scheme to determine the final classification result.
As shown in the literature, the RF algorithm can be successfully implemented in embedded
systems [53].

Figure 4 shows the accuracy of event detection with the use of the RF algorithm for
different numbers of trees. Based on this chart, it can be observed that when the number
of trees is increased, the impact on recognition accuracy is not significant. This effect is
especially visible when the number of trees is greater than 10 (the dotted line is almost flat).
It should be noted here that the lower number of trees leads to the lower computational
complexity of the detection procedure, which is desirable from the perspective of the
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implementation in sensor nodes. Thus, the RF algorithm was used in our experiments with
ten trees.

Figure 4. Accuracy of event detection for different numbers of trees.

The second part of the experiments was devoted to the evaluation of the event-
triggered approach [33]. In this case, the child nodes detect events based on their own
sensor readings. The amount of data transfers is reduced in this method since the child
nodes send information to the parent node only when they detect movements of the
packages. In order to detect the events, the same five machine learning algorithms were
used, as in the previous experiments. However, the sensor readings of the parent node were
excluded from the training and testing datasets because when using the state-of-the-art
event-triggered approach, the nodes do not exchange their sensor readings. Thus, the child
sensor node has to detect events based on locally collected data. The results obtained for
the event-triggered approach are presented in Figure 5. When comparing the charts in
Figures 3 and 5, it can be observed that for all considered algorithms, the accuracy of event
detection is significantly decreased when using the event-triggered transmission. These
results show that the events cannot be accurately recognized by the child node only. Hence,
in the proposed method, the child and parent nodes cooperate in detecting events. Due
to the low detection accuracy (between 73% and 77%), we found that the event-triggered
method was not applicable for the cargo monitoring system. Another disadvantage of this
method was the lower network lifetime in comparison to the proposed method (120 h vs.
125 h).

Figure 5. Accuracy of the parcel movement recognition for event-triggered approach.

In the next part of the experiments, the effectiveness of the proposed transmission
reduction method was compared with that of the dual prediction strategy. Two versions of
the dual prediction method use different prediction models—the naive model [44] and the
neural network model [18]—were taken into account.

The results presented in Figure 6 show the dependency between event detection
accuracy and transmission reduction. For all compared methods, the accuracy of event
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detection decreases when increasing the percentage of reduced transmissions. However,
this decrease in accuracy is slowest in the case of the proposed method. Let us assume
that we can accept an accuracy decrease by 10% as a cost of reducing data transmissions.
Then, the proposed method allows us to eliminate almost 79% of data transmissions, while
state-of-the-art methods achieve a transmission reduction of 65.3% for the naive model and
46.9% for the neural model.

Figure 6. Event detection accuracy and transmission reduction for compared methods.

The impact of the WSN lifetime extension on the decrease in detection accuracy is
presented in Figure 7. It can be observed in these results that the state-of-the-art methods
lead to a larger decrease in the detection accuracy in comparison to the proposed approach
for a wide range of lifetime extensions. Thus, the trade-off between lifetime extension and
accuracy decrease is more beneficial for the proposed solution. For instance, if we need to
increase the network lifetime by 15%, then in the case of the proposed method, the accuracy
is decreased by 5.6%. Still, the state-of-the-art methods decrease the accuracy level by 11%
for the naive model and 20.3% for the neural model.

Figure 7. Impact of increasing data suppression on accuracy of event detection for compared methods.

It should be noted here that the particular data points on the charts in Figures 6–8
correspond to the different settings of the transmission reduction algorithms. In the case of
the state-of-the-art dual prediction algorithms, the threshold value was changed to collect
these results. As it already explained in Section 2, the threshold determines how large of a
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prediction error will be accepted without transmitting the actual sensor readings. In the case
of the proposed method, the results were collected for different values of the parameter
k, which determines the percentiles taken into account when updating the interval of
possible sensor readings in accordance with Equation (8). The impact of parameter k on
the extension of the WSN lifetime and decrease in event detection accuracy is presented
in Figure 8. For higher values of k, the interval of possible sensor readings is updated by
taking into account less frequent, larger changes of the sensor readings observed in the
past. Thus, the updated interval is wider and takes into account a larger set of possible
changes that can occur in sensor readings between successive time steps of the sensor node
operation. As a result, a lower decrease in event detection accuracy is observed for higher
values of k because there is lower probability that the actual sensor reading will be outside
the expected interval. The wider interval of possible sensor readings also means a higher
probability that the condition, which determines the decision about transmitting data (line
7 in Algorithm 2) will be fulfilled. Thus, the number of transmission increases, and the
WSN lifetime decreases with the increase in parameter k.

Figure 8. Impact of parameter k on lifetime extension and decrease in event detection accuracy for
the proposed method.

Figure 9 shows the network lifetime that can be achieved for the compared methods
when the accuracy of event detection equals 90%. The dual prediction method with the
neural model allows the WSN to operate for 116 hours on average. In a situation when the
dual prediction is applied with the naive model, the WSN average lifetime reaches 121 h.
The longest average lifetime of 125 h was observed for the proposed method.

Figure 10 compares the accuracy of event detection, which was obtained in a situation
when the lifetime of WSN was equal to 120 h. In this case, the dual prediction based on the
neural model allows us to detect the events of interest with an average accuracy of 85.1%.
When using the dual prediction with the naive model, we achieved the average accuracy
of 91.1%. The highest event detection accuracy (94% on average) was observed for the
proposed method. It should be noted that the columns in Figures 9 and 10 correspond to
average results, while error bars show minimal and maximal values obtained for 10 runs
of the experiment. The better result of the naive approach in comparison with the dual
prediction based on the neural model is a consequence of the fact that the neural network
is less accurate in predicting the sensor readings. The best results were obtained for the
proposed method because this method can better fit the data transmissions to the needs of
event detection by taking into account the algorithm used for event detection. In contrast,
state-of-the-art methods are agnostic with respect to the event detection algorithm.



Sensors 2021, 21, 7256 16 of 21

Figure 9. WSN lifetime for the compared methods in the case of 90% event detection accuracy.

Figure 10. Accuracy of event detection for the compared methods when the WSN lifetime equals
120 h.

As it already explained earlier in this section, we applied the RF algorithm to de-
tect events in our experiments since this classifier achieved the best results during the
preliminary tests (see Figure 3). Additional experiments were performed to compare the
performance of RF with RT and MLP algorithms when detecting events with the use
of the reduced data. For the considered scenarios, 60% of the data transmissions were
reduced. The results of these experiments are presented in Figure 11. They show that the
RF classifier also has a higher event detection accuracy than RT and MLP for reduced data.
The superiority of the RF classifier was observed for all the three considered transmission
reduction methods.

Detailed examples of data transmission reduction are presented in Figures 12–14.
These examples include the original time series of gyroscope readings registered by child
and parent nodes and the time series of child nodes reconstructed by the parent node
after reducing data transmissions. The parent sensor node was attached to the vehicle’s
body, and the child node was placed inside a cargo box. The gyroscope readings shown in
Figures 12–14 were collected when traveling with the incorrectly secured cargo box that
moves inside the vehicle. Therefore, the readings collected by the child node and parent
node significantly differ. These differences allow us to recognize the events of interest,
i.e., the movements of the cargo box. The reconstructed time series, which represents the
sensor readings of the child node assumed by the parent node is depicted by the dark solid
line. In Figure 13, the horizontal line segments correspond to the sensor readings predicted
by the parent node during the periods in which data transmissions are not performed.
In the case of the neural model, the predictions are visible in Figure 12 as the segments
with high-frequency oscillations (e.g., between time steps 170 and 190).
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Figure 11. Accuracy of event detection with the use of different classifiers for the compared transmis-
sion reduction methods.

Figure 12. Sensor readings of the child node assumed by the parent node for the neural model.

Figure 13. Sensor readings of the child node assumed by the parent node for the naive model.
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Figure 14. Sensor readings of the child node assumed by the parent node for the proposed method.

When analyzing the presented examples, it can be observed that in the case of the
dual prediction methods (Figures 12 and 13), for both low and the high values, the sensor
readings of the child node assumed by the parent node (dark solid line) are close to
the original readings of the child node (light solid line). In contrast, when using the
proposed method (Figure 14), the reconstructed time series of the sensor readings (dark
solid line) is close to the original time series (light solid line) only for the low values.
The proposed method does not report the high values of sensor readings (peaks) because,
in the considered event detection algorithm, the child sensor reading may influence event
detection if it is close to the parent sensor reading (dotted line). Thus, the detection results
obtained without transmitting the high values of the child sensor readings (based on
previously transmitted data) are the same as those obtained using the original sensor
readings of the child node.

5. Conclusions and Future Work

The method presented in this paper reduces the number of data transmissions between
neighboring sensor nodes that detect spatial events based on shared sensor readings. As a
result of transmission reduction, the lifetime of WSN is prolonged. Moreover, the lower
number of data transmissions leads to a reduced probability of collisions and delays in
transmitting the data from sensor nodes.

In this study, the proposed method was applied in cargo monitoring systems to detect
the movements of unsecured cargo boxes during transportation. Such a practical applica-
tion example has enabled the demonstration of the advantages of our method. However,
this method can be easily adapted for applications in various event detection systems.

The experiments revealed that the presented approach allows us to detect the events
of interest with an accuracy of 90% when 65% of data transmissions between sensor nodes
are eliminated. Based on the experimental evaluation results, it can be concluded that
the introduced method is significantly more effective in reducing data transmissions and
prolonging the lifetime of WSN than the state-of-the-art event-triggered transmission and
dual prediction methods.

According to the proposed method, the child sensor node has to determine a set of
possible sensor readings of the parent node to decide whether data transmission can be
skipped. The set of possible sensor readings is determined with the use of a percentile
tracking algorithm and represented by intervals. This means that all sensor readings in the
interval are considered equally possible. Future research directions include extending this
approach to distinguish between more and less possible sensor readings by using fuzzy
sets and probabilistic models.
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