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Abstract: Background and Objectives: Medial knee osteoarthritis is known to increase the mechanical
load on the medial compartment of the knee joint during walking; however, it is not visually
understood how much the mechanical load increases nor where in the medial compartment of the
knee joint that load is focused. Therefore, we conducted a simulation study to determine the location
and amount of the mechanical load in the medial compartment of the knee joint during the stance
phase. Materials and Methods: Subject was a patient with right medial knee osteoarthritis. Computed
tomography imaging and gait analysis were performed on subject. The CT image of the right knee
was calculated using finite element analysis software. Since this software can set the flexion angle
arbitrarily while maintaining the nonuniform material properties of the bone region, the model is
constructed by matching the knee joint extension image obtained by CT to the loading response phase
of gait analysis. The data of muscle exertion tension and vertical ground reaction force were inserted
into the knee joint model created from the computed tomography-based finite element method, and
the knee joint compressive stress was calculated. Results: With regard to compressive stress, the tibia
showed high stress at 4.10 to 5.36 N/mm?. The femur showed high stress at 4.00 to 6.48 N/mm?.
The joint compressive stress on the medial compartment of the knee joint was found to concentrate
on the edge of the medial tibial condyle in the medial knee osteoarthritis subject. Conclusions: The
measurement method of knee joint compressive stress by computed tomography-based finite element
method can visually be a reliable method of measuring joint compressive stress in the medial knee
osteoarthritis. This reflects the clinical findings because concentration of stress on the medial knee
joint was observed at the medial osteophyte.

Keywords: knee osteoarthritis; finite element method; musculoskeletal model; compressive stress
distribution; ground reaction force

1. Introduction

The onset of knee osteoarthritis (KOA) alters load sharing between the medial and
lateral compartments of the tibiofemoral joint [1]. These changes result in pain, which is
the most common complaint of patients with KOA [2,3]. Medial KOA with higher severity
on X-rays, depicted by narrowing of the knee joint space and formation of osteophytes,
enlarges the knee varus angle and increases the load on the medial compartment of the
knee joint. Because medial knee load cannot be directly measured in vivo, the external
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knee adduction moment during the stance phase is used to assess the dynamic medial
knee load [4]. The external knee adduction moment in medial KOA appears as varus
deformation [5] and causes dysfunction associated with the mechanical load on the knee
joint and degeneration of cartilage [6]. In addition, patients with medial KOA have varus
thrust; that is, they have an increased varus angle characteristically seen during the initial
stance phase during walking [7]. Varus thrust presents as a range of motion limitation and
muscle weakness in medial KOA [8,9], and it increases both the external knee adduction
moment and the mechanical loads in the medial compartment [10]. The medial KOA
rehabilitation strategy attempts to reduce the mechanical load on the knee joint by inserting
insoles and strengthening the quadriceps muscles. Therefore, identifying the characteristics
of the mechanical load is important in considering rehabilitation strategies to reduce the
mechanical load in order to improve knee joint function and walking ability. Medial KOA
increases the mechanical load on the medial compartment of the knee joint; however, it
is unclear exactly which area of the medial compartment experiences the increased load.
We have previously reported the stress on the knee joint by healthy subjects using FEM
from the results of gait analysis, but have not reported on the case of KOA [11]. In this
report, we used a developed measurement method to calculate knee joint stress with
muscle exertion tension and the vertical value of ground reaction force using computed
tomography-based finite element method (CT-FEM), and we examined which part of the
knee medial compartment of the KOA received the most mechanical load at the loading
response phase during walking. We hypothesized that in medial KOA with varus deformity,
the mechanical load at the loading response phase during walking would be concentrated
in the narrow medial area.

2. Materials and Methods
2.1. Subject

Subject was a female patient with medial KOA (Age: 77 years old, Height: 1.44 m,
Weight: 53 kg). The medial KOA subject had a clinical history that included Kellgren—
Lawrence (KL) grades [12] and had bilateral KOA with four levels of KL classification.
We performed CT imaging and gait analysis on subject. The subject’s KL classification
was of equal severity on both sides. However, the Numerical Rating Scale for pain was 6
on the right and 5 on the left. The femoro-tibial angle was 187° on the right and 184° on
the left. The right knee was used for analysis because the right knee was scheduled for
total knee arthroplasty. Subject provided written informed consent, and the protocol for
this study was approved by the Ibaraki Prefectural University of Health Sciences Ethics
Committee (€98).

2.2. Gait Analysis

Participant changed into tight-fitting shorts, removed footwear, and walked barefoot
along a 5 m-long walkway at a self-selected speed (0.96 m/s). Kinematic data were acquired
using a 3D motion analysis system (Vicon Nexus, Oxford, UK) with eight cameras operating
at 200 Hz. Two force platforms (Kistler Instruments, Winterthur, Switzerland) embedded
in the laboratory floor captured ground reaction forces at 1200 Hz synchronized with the
kinematic data. Before measurement, height, weight, lower limb length (from anterior
superior iliac spines to medial malleolus), width of anterior superior iliac spines, knee
width, and foot width of participants were measured. According to a lower extremity model
of the Plug—In—Gait® marker set (Vicon, Oxford Metrics Group) [13], reflective markers were
placed on the following bilateral anatomical landmarks: anterior and posterior superior
iliac spines, lateral thighs, lateral femoral epicondyles, lateral calves, lateral malleoli,
calcanei, and the base of the second metatarsals on the dorsal aspect of the feet. The gait
parameters during the stance phase, determined from the force plate data, were normalized
to the values at 100% during the stance phase (foot-strike to toe-off = 100%) using spline
interpolation. The stance phase of the gait was defined as five periods [14]: initial contact
(0% of the stance: IC), loading response (0~16% of the stance: LR), mid-stance (17~50% of
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the stance: MS), terminal stance (51~83% of the stance: TS), and preswing (84~100% of the
stance: PS). Kinematic and ground reaction force data were filtered using a Butterworth
low pass filter with 6 and 30 Hz cut-off frequencies, respectively.

2.3. Musculoskeletal Modelling

Muscle exertion tensions were estimated using the musculoskeletal model by Any-
Body (Anybody Modeling System, AnyBody Technology, Denmark) [15]. Based on the
marker data obtained from the gait analysis, the segment length and the joint angle was
estimated. AnyBody outputted the optimized segment length and motion angle for each
part and performed kinematic analysis. Thereafter, size scaling was performed by applying
the human body data of the AnyBody system to the calculated size of the subject, and
the segment length and the center of the joint were calculated [16]. Further, by adding
the ground reaction force data and executing the optimization algorithm, muscle strength,
which are the forces inside the body, are calculated. In this study, the estimation of muscle
exertion tension around the knee joint were set as follows: quadriceps femoris, biceps
femoris, semimembranosus, semitendinosus, and gracilis muscles.

2.4. Computed Tomography-Based Finite Element Method (CT-FEM)

The CT image of the right knee was calculated using MECHANICAL FINDER Ex-
tended Edition (Research Centre of Computation Mechanics, Tokyo, Japan), which is
finite element analysis software. Since this software can set the flexion angle arbitrarily
while maintaining the nonuniform material properties of the bone region, the model is
constructed by matching the knee joint extension image obtained by CT to LR phase of
gait analysis. The image calculation range was from the distal end of the femur, about
10 cm above the knee joint, to the distal end of the tibia and fibula. In the subject’s knee
joint model, joint components such as ligaments, meniscus, and articular cartilage were
created based on material properties and reflected in CT images [11]. The quadriceps
femoris, biceps femoris, semimembranosus, semitendinosus, and gracilis muscles based on
AnyBody were set as the muscles that exert tension around the knee joint. The ligaments
included the patellar, anterior cruciate, posterior cruciate, medial collateral, and lateral
collateral ligaments. In the construction of FEM, the bone part was used as a solid element
of the tetrahedral element. In addition, a 1.0-mm-thick triangular prism shell element was
placed to cover the surface of the patella. These values adopted the recommended size
based on previous studies [11,17,18]. For the Poisson’s ratio of the shell element, 0.4, which
is a constant value peculiar to the bone material, was used [19,20]. The length of one side
was about 1.0 to 2.0 mm. Keyak’s conversion formula was used for the material properties
of the bone element [21-23]. In this conversion formula, a linear relationship is established
between the CT value and the bone density, and the bone density is calculated from the CT
value. Three-dimensional modeling software Metasequoia (Tetraface, Inc., Tokyo, Japan)
was used to model soft tissue elements, menisci, ligaments, and cartilage. The ligaments
use truss elements (wire elements) to not become rigid against bending or compression [11].
The constraint condition for this computational model was that the proximal end of the
femur was completely constrained. Furthermore, at the distal ends of the tibia and fibula,
the horizontal direction (defined as the X and Y axes) was constrained. The reaction force
against the sum of the force plate data and each muscle force is the joint reaction force.
Therefore, only the vertical component (defined as the Z axis) was calculated. As a result,
this computational model evaluated only the force plate data in the Z-axis direction [11].
Because the quadriceps can cause improper deformation due to the tension of the truss
elements, we used the forced displacement method for quadriceps traction. The amount
of displacement was 3 mm. Contact conditions were set for the femur and meniscus, the
femur and tibia, the tibia and meniscus, and the cartilage between the femur and patella.
The coefficient of friction in the contact analysis was 0.01. The lateral edge of the medial
meniscus and the lower end of the tibial cartilage were connected to avoid slipping of the
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meniscus under load. In medial KOA cases, much of the medial meniscus had disappeared,
and only its lateral edge was reflected in the model.

3. Results

Figure 1 showed X-rays and MRI images. X-rays showed narrowing of the medial
space, osteosclerosis of the subchondral bone, and widening of the osteophytes. MRI
images also revealed degeneration of the medial meniscus.

Figure 1. X-rays and MRI images of KOA. X-rays was performed at the load position. MRI shows
the results of the coronal plane on the right side and the sagittal plane on the left side. White arrows
deviate from the medial meniscus and indicate degenerative rupture. The yellow arrow indicates
degeneration of the medial meniscus anterior segment, and the red arrow indicates degeneration
rupture of the medial meniscus posterior segment.

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

Table 1 showed the data of knee joint angles and vertical component of ground reaction
force at LR during the stance phase, which were substituted in the analysis by CT-FEM.

Table 1. Knee joint angles and vertical component of ground reaction force.

Knee Joint Angles (Degrees) Vertical Component of Ground

Flexion Adduction External Rotation Reaction Force (N)

KOA Subject

0.3 16.2 11.9 371.9

Figure 2 showed the right knee joint taken during the operation of the subject. The
white arrows indicate that the cartilage on the medial femoral joint surface and tibial joint
surface has was completely destroyed and bone was exposed. The red arrow points the
degenerated and torn medial meniscus. From the results in Figures 1 and 2, this was a
shape very similar to the meniscus created by the CT-FEM model (Figure 3).

It was found that joint compressive stress was concentrated on the edge of the medial
tibial condyle in the KOA subject (Figures 3 and 4). With regard to compressive stress,
in the tibia of Figure 4, the red part showed high stress at 4.10 to 5.36 N/mm?, and the
blue and green parts showed low stress at 1.01 to 3.18 N/mm?. It was concentrated at the
edge of the medial tibial condyle in the KOA subject, and, in the femur of Figure 4, the red
part showed high stress at 4.00 to 6.48 N/mm?, and the blue and green parts showed low



Medicina 2021, 57, 550 50f8

stress at 1.02 to 3.57 N/mm?. The higher stress concentration was also found with medial
femoral condyle in the KOA subject.

Figure 2. Right knee joint removed during Subject’s surgery. The white arrows indicate that the
cartilage on the medial femoral joint surface and tibial joint surface was completely destroyed and
bone was exposed. The red arrow points to the degenerated and torn medial meniscus.

Data Info

Figure 3. Compression stress using computed tomography-based finite element method (CT-FEM)
representing the shape of the meniscus.

The left figure shows the articular surface of the tibia, and the right figure shows that
of the femur.
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Figure 4. Compression stress using CT-FEM on the articulating surface of the femur and tibia.

4. Discussion

In past reports, some studies on the joint stress of the knee joint have been con-
ducted [24,25], but the analysis of the joint stress by CT-FEM of the knee joint based on the
data obtained by the gait analysis of KOA has been not reported. This study showed that by
using CT-FEM, a developed measurement method of knee joint stress which inputs muscle
exertion tension and ground reaction force, compressive stress was concentrated at the edge
of the medial tibial condyle in a patient with severe medial KOA. In severe medial KOA,
collapse of joint structure due to varus deformation occurs, and it is assumed that external
knee adduction moment increases the mechanical load on the medial tibial condyle [4].
From the findings of the knee joint taken during subject’s surgery, X-rays and MRI images,
the shape of the meniscus is almost distorted, and it is difficult to disperse the mechanical
load. Li et al. [26] reported that FEM analysis showed that greater meniscal damage could
lead to greater joint stress and progression to KOA. In the case of this study as well, the
medial meniscus was severely damaged, and the tibia had increased joint stress along
the medial margin. From the X-rays of this case, varus deformity is progressing, and it is
inferred that the external knee adduction moment during walking increases. In addition,
MRI images showed that the medial meniscus was degenerated due to the narrowing of
the medial joint space. It was considered that the formation of osteophytes on the medial
margin of the knee joint caused lateral thrust during the stance phase of walking, and the
load on the tibial joint surface was biased toward the medial margin. Chantarapanich
et al. [27] reported that varus knee joints have higher stresses in the medial compartments
while normal knee joints have higher stresses in the lateral compartments. As a result of
FEM in the case of this study, the stress of the medial femoral condyle became high, and the
result is considered to be valid from the past reports and the intraoperative photographs of
this case.

Increased knee joint loading is a detrimental factor in the progression of KOA [28],
and increased varus thrust and external knee adduction moment cause overload on the
knee joint that deviates from normal. In particular, varus thrust associated with varus
deformity is a factor that accelerates the progression of KOA [28], and should be the target
of intervention [29]. Therefore, preventive intervention that delays the progression of OA
before deformation occurs is considered important. In this study, we targeted the most
severe patient, and it is predicted that the local load on the knee joint will increase as the
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severity increases. In the future, it will be necessary to perform CT-FEM analysis on mild
to moderate patients and perform a detailed evaluation of the load on the knee joint.

The developed measurement method of knee joint compressive stress by CT-FEM can
visually be a reliable method of measuring joint compressive stress in the medial KOA
subject. This reflects the clinical findings because concentration of stress on the medial
knee joint was observed at the medial osteophyte. In this study, we examined the joint
stress of the knee joint at the LR period during stance phase, when the load on the joint
is the largest in the walking. Since varus thrust occurs during this period and the joint
force also increases, it is considered that the stress increased at the site different from the
past reports [25,26]. From the results of knee joint stress in this study, it is inferred that
varus thrust and joint force of knee joint at the LR period are key factors for the progression
of KOA.

There are several limitations to this study. The participants in this study was a female
with severe KOA. Since the measurement was performed by one subject, the results of this
study cannot be generalized. This study is a model in which only the LR period during
stance phase is extracted. Therefore, it does not reflect all of KOA’s varus deformities. We
need to recruit an adequate number of participants to validate the results of this study.

This study showed that in severe KOA, failure of the joint structure due to a decrease
in muscle strength and varus deformation increases the mechanical load on the medial side
of the knee joint. As a result, it may be causing pain in related tissues around the medial
side of the knee joint. The results of the CT-FEM are clinically relevant, and further studies
could be undertaken to improve the accuracy of the measurement of data, analysis other
than stance phases during walking, and investigate for the prevention of KOA progression.
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