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Abstract: 

Objective: To develop an artificial intelligence, machine learning prediction model for 

estimating the risk of seizures 1 year and 5 years after ischemic stroke (IS) using a large dataset 

from Electronic Health Records. 

Background: Seizures are frequent after ischemic strokes and are associated with increased 

mortality, poor functional outcomes, and lower quality of life. Separating patients at high risk of 

seizures from those at low risk of seizures is needed for treatment and clinical trial planning, but 

remains challenging. Machine learning (ML) is a potential approach to solve this paradigm.  

Design/Methods: We identified patients (aged ≥18 years) with IS without a prior diagnosis of 

seizures from 2015 until inception (08/09/22) in the TriNetX Research Network, using the 

International Classification of Diseases, Tenth Revision (ICD-10) I63, excluding I63.6 (venous 

infarction). The outcome of interest was any ICD-10 diagnosis of seizures (G40/G41) at 1 year 

and 5 years following the index IS. We applied a conventional logistic regression and a Light 

Gradient Boosted Machine algorithm to predict the risk of seizures at 1 year and 5 years. The 

performance of the model was assessed using the area under the receiver operating 

characteristics (AUROC), the area under the precision-recall curve (AUPRC), F1 statistic, model 

accuracy, balanced accuracy, precision, and recall, with and without anti-seizure medication use 

in the models. 

Results: Our study cohort included 430,254 IS patients. Seizures were present in 18,502 (4.3%) 

and (5.3%) patients within 1 and 5 years after IS, respectively. At 1-year, the AUROC, AUPRC, 

F1 statistic, accuracy, balanced-accuracy, precision, and recall were respectively 0.7854 

(standard error: 0.0038), 0.2426 (0.0048), 0.2299 (0.0034), 0.8236 (0.001), 0.7226 (0.0049), 

0.1415 (0.0021), and 0.6122, (0.0095). Corresponding metrics at 5 years were 0.7607 (0.0031), 

0.247 (0.0064), 0.2441 (0.0032), 0.8125 (0.0013), 0.7001 (0.0045), 0.155 (0.002) and 0.5745 

(0.0095). 

Conclusion: Our findings suggest that ML models show good model performance for predicting 

seizures after IS.  
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Introduction:  

Stroke units, intravenous thrombolysis, and mechanical thrombectomy have transformed the 

prognosis of ischemic stroke, the most frequent stroke type.1–3 With more patients surviving the 

acute phase of stroke, there is an increased need for human and financial resources for post-

stroke complications management. Seizure is a frequent and arguably underestimated 

complication of stroke. Prospective population-based studies estimate that over 10% of stroke 

survivors will cumulatively develop seizures following the index event in the next ten years.4 

Late-onset post-stroke seizure risk factors include a cortical location, stroke volume, the presence 

of hemorrhagic transformation, and early seizure (seizure developing within 1-2 weeks of the 

stroke).5,6 Models designed to identify these predictors used limited variables and often assumed 

the potential association with post-stroke seizures. Hence, several predicting variables may 

remain to be identified. Hence, at the moment, at the individual level, it remains unclear who will 

develop seizures and who will not develop seizures. A recent systematic review of available risk 

prediction models revealed that when appropriately developed, available models did not include 

heterogeneous and relatively young populations as in the US.7 Such models may be challenging 

to use in busy clinical practices for post-stroke seizure risk classification. Besides the 

impracticability of such models, it may be challenging to allocate resources based on estimated 

post-stroke seizure risks at national and local levels. Further, previous anti-seizure treatment 

trials have failed partly because of inadequate assessment of individual stroke patients' risk of 

seizures. Selecting high-risk patients for post-stroke seizure development from Electronic Health 

Records (EHR) remains nearly insurmountable. Thus, it is critical to have an appropriate risk 

model for post-stroke seizures, using routinely collected clinical information that is easily 

implementable to EHR. In this project, we aimed to use machine learning to aid in predicting the 

risk of seizures after ischemic stroke using a large number of variables in a large population from 

the largest network of electronic health records in the United States.   

 

Methods: 

Data source: We identified patients with ischemic stroke without a prior diagnosis of seizures 

from 2015 until inception (08/09/22) in the TriNetX Research Network. The database collects 

de-identified information such as demographics, vital signs, diagnoses, procedures, patient 
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location, medications, and mortality. In September 2022, 71 healthcare organizations (HCOs) 

participated in the database, with 106 million patients.  

Study population: We identified patients with stroke, aged ≥18 years, using the International 

Classification of Diseases, tenth Revision (ICD‐10), from January 1, 2015, through August 9, 

2022. Ischemic stroke patients were identified using ICD-10 I63 in EHR (excluding I63.6, which 

represents patients with cerebral infarctions due to venous thrombosis). All participants with a 

diagnosis of seizures at baseline were excluded. In all, we identified 430,254 participants with a 

diagnosis of stroke who met the study inclusion criteria.  

Assessment of outcome: The time at risk was 1-year and 5-year after the index stroke event. 

Seizures were identified using any of the ICD-10 codes G40 and G41. 

Covariates: Demographic variables included age (continuous variable), sex assigned at birth 

(male vs. female), and race/ethnicity. Race and ethnicity were grouped into four categories: Non-

Hispanic White (NHW), Non-Hispanic Black (NHB), Hispanic, and others. Clinical variables 

included the following: diagnosis or history of hypertension, diagnosis or history of diabetes 

mellitus, diagnosis or history of atrial fibrillation, history of smoking, history of alcohol use, and 

stroke severity. The National Institute of Health Stroke Scale is the most commonly used score 

for stroke severity assessment; however, as this variable is not available in TriNetX Research 

Network, we assessed stroke severity using a combination of factors and variables described in 

the appendix. Treatment-related variables included the use of intravenous thrombolysis, 

mechanical thrombectomy, antiplatelet drugs, and anti-seizure drugs. 

Procedure codes and codes used to identify drugs are available in the appendix file. Localization 

of ischemic stroke was divided into anterior cerebral artery strokes, middle cerebral artery 

strokes, and posterior cerebral artery strokes. Patients with concomitant diagnoses of brain 

pathologies or surgical interventions associated with an increased risk of seizures were identified 

using ICD-10 codes. These pathologies/surgical interventions included traumatic brain injury, 

benign brain neoplasms, malignant brain neoplasms, unspecified brain neoplasms, severe 

intracranial infection, bacterial meningitis, encephalitis, and decompressive craniotomy. ICD-10 

and CPT codes were used to identify the variables. A list of all ICD-10 codes used is available in 

the supplemental materials. 
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Machine learning model and interpretation: Machine learning model and interpretation: To 

develop and evaluate a generalizable model for seizure prediction at 1 year and 5 years, we used 

5-fold nested cross-validation (CV) with non-overlapping training set (for training the model) 

and validation set (for hyperparameter tuning) and test set (for model evaluation).  Initially, the 

entire dataset is stratified into 5 disjoint subsets, or folds. Subsequently, each fold is iterated 

over, serving once as the test set (red) while the remaining folds comprise the training set (blue). 

Within this training set, an inner cross-validation is conducted, dividing it into 5 further folds. 

This step is crucial for hyperparameter optimization, where each parameter combination is 

trained on 4 folds (gray) and validated on the remaining fold (green), with the process cycling 

through all 5 folds to determine the best-performing hyperparameters. These optimal parameters 

are then used to train a new model on the full training set of the outer loop. The model's 

predictive performance is assessed on the outer test set, ensuring each data point is used for 

testing just once. After completing all 5 iterations, the performance metrics across all 5 outer test 

sets are aggregated to produce a comprehensive evaluation of the model's generalization 

capability (Figure 1). The following classification model types were explored: logistic 

regression, decision tree, random forest, LightGBM, AdaBoost, support vector machine, k-

nearest neighbors, discriminant analysis, and Gaussian naïve Bayes.8–14 Scikit-learn was used to 

train and evaluate all models,15 except LightGBM, where Microsoft's LightGBM library was 

employed.16 The LightGBM model yielded the best-generalized performance results. The 

hyperparameter optimization of LightGBM consisted of a grid search (within the nested cross-

validation) over the tree depth, learning rate, and ensemble size. To account for the class balance 

between patients who developed seizures and those who did not, we used a cost-sensitive 

learning approach. The objective/cost function is modified to yield a stronger penalty for 

incorrectly predicting the minority class, i.e., those who developed seizures (by an amount 

proportional to the imbalance) using LightGBM's 'class_weight='balanced' option. We used 

LightGBM and a set of feature importance scores derived from trained LightGBM models, and 

Shapley values 17 to determine the features most important in predicting seizures. We used 

Shapley values and partial dependence plots (PDP) to investigate the relationship between 

predictors and seizures. PDPs show only the average effect of the input variable, hence 

neglecting the impact of feature interactions, which can be present with tree-based models such 

as LightGBM.  
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The performance of the model was based on the following metrics: area under the receiver 

operating characteristics (AUROC)- a chart that visualizes the tradeoff between true positive rate 

(TPR) and false positive rate (FPR), the area under the precision-recall curve (AUPRC- a curve 

that combines precision (PPV) and Recall (TPR) in a single visualization, the F1 statistic (it 

combines precision and recall into one metric by calculating the harmonic mean between those 

two), model accuracy (measures how many observations, both positive and negative, were 

correctly classified), balanced accuracy, precision, and recall. Performances were assessed, 

including excluding patients on anti-seizure drugs. 

Standard protocol approvals, registrations, and patient consent: This study protocol was 

submitted to the Pennsylvania State College of Medicine institutional review board and was not 

considered human subject research. All records contained within the database are fully de-

identified. Thus, informed consent was waived. 

Data availability: We used data from The TriNetX Research Network: Healthcare organizations 

(de-identified claims data), 106 million patients, which are available to researchers from 

participating centers.  

 

Results: 

General characteristics (Table 1 and Table 2): We included 430,254 patients with ischemic 

strokes and without a prior diagnosis of seizures. Seizures incidence at 1 year was 4.3% (18,502 

patients) and 5.3% (22,675) at 5 years. The median age of patients who developed seizures was 

significantly lower compared to those who did not at one year and five years. The risk of seizures 

was similar between male and female stroke survivors. Patients who developed seizures were 

more likely to be Black individuals, smokers, have hypertension, large artery atherosclerosis 

disease, and develop severe stroke. Anti-seizure drug prescriptions, primarily Levetiracetam, 

were more frequent among those who developed seizures. They were less likely to have a 

posterior circulation stroke or receive intravenous tissue plasminogen activator or antiplatelet 

therapy. Patients who developed seizures were also more likely to be on electroencephalogram. 
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Figure 2 summarizes the performances of the model. Seven metrics are presented, including the 

area under the receiver operating characteristics (AUROC), the area under the precision-recall 

curve (AUPRC), the F1 statistic, model accuracy, balanced accuracy, precision, and recall, with 

and without seizure medication use in the models to allow an independent interpretation by the 

reader. These metrics were used simultaneously to account for the importance of classifying 

seizures and non-seizure patients and the heavily imbalanced sample. At 1 year, the AUROC, 

AUPRC, F1 statistic, accuracy, balanced accuracy, precision, and recall were respectively 0.7854 

(standard error: 0.0038), 0.2426 (0.0048), 0.2299 (0.0034), 0.8236 (0.001), 0.7226 (0.0049), 

0.1415 (0.0021), and 0.6122 (0.0095). Corresponding metrics at 5 years were 0.7607 (0.0031), 

0.247 (0.0064), 0.2441 (0.0032), 0.8125 (0.0013), 0.7001 (0.0045), 0.155 (0.002) and 0.5745 

(0.0095). The two most important features of the model were age and stroke in the middle 

cerebral artery territory (Figure 3). Partial dependent plots and cumulative probabilities of 

seizures for five selected features are presented in figure 4 and figure 5, showing an inverse 

relationship between age and the use of Aspirin but a positive relationship between seizures and 

the following variables: presence of altered mental status, middle cerebral artery location, and 

use of Levetiracetam. 

 

Discussion: 

Our results indicate that the LightGBM model predicts seizures after ischemic stroke at 1 year 

and 5 years with a good performance using real-world data from a large sample of hospitalized 

patients across 71 healthcare organizations.  

Seizures are frequent complications of ischemic stroke, yet strategies to prevent this 

complication are still to be developed and implemented. Preventing seizures is hampered by the 

lack of a generalizable predictive tool. Our systematic review conducted a year ago concluded 

that the only rigorously developed model was the SeLECT mode, a European-based model that 

predicted seizures with an area under the receiver operating characteristics of 77%. This model 

used the following granular clinical and imaging variables: the National Institute of Health 

Stroke Scale, the presence of early seizures, large vessel occlusion, cortical involvement, and 

involvement of the middle cerebral artery. Our model yielded similar performance as our 

AUROC at 1 year and 5 years were, 79% and 76%, respectively. We did not have access to 
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granular data but used claims data, suggesting that seizure prediction is possible using data 

routinely collected in clinical practice. The model can be more easily integrated into electronic 

medical records, offering providers and researchers nearly instantaneous information on the risk 

of seizures after ischemic stroke. Further, our model was developed using data from a diverse US 

population, suggesting that it could be generalized to this population. 

In this analysis, several features were associated with an increased risk of seizures in the 

LightGBM model. Age and strokes in the middle cerebral artery were the two most important 

features predicting seizures after ischemic stroke at 1 year and 5 years. The risk of seizures 

decreased with age, and strokes in the middle cerebral artery were associated with an increased 

risk of seizures. Counterintuitively, the findings of an increased risk of seizures in young 

individuals are in line with recent large-scale epidemiological data. For example, in two large 

datasets, including hospitalized patients in California, Florida, and New York, Stroke was more 

strongly associated with a subsequent seizure among patients <65 years of age compared to older 

patients.18 Similarly, in the population-based South London Stroke Register, younger patients 

were more likely to develop seizures than their older (65 years and above) counterparts.19 Stroke 

in the middle cerebral artery has also been reported as an important predictor of seizures after 

ischemic strokes.20–22  

Our study has several implications. First, machine learning is a powerful tool that can be applied 

to large real-world datasets for predicting clinical outcomes such as seizures after stroke with 

accuracy similar to models developed using granular clinical data. It can, therefore, be purported 

that extracting and incorporating those granular data into Machine Learning-based models could 

lead to improved performances of those models. For example, natural processing language could 

be applied to electronic health records to extract such granular data, which in turn would improve 

the performance of a Machine Learning model, obviating the need to manually search Electronic 

Health Records, which would be impractical in large dataset such as the TriNetX Research 

Network. Second, we included 430,254 patients with ischemic strokes and without a prior 

diagnosis of seizures. This large number of patients and the use of Machine learning is more 

likely to detect predictors that would otherwise been missed using other approaches such as 

logistic regression analyses. This could explain why our model performed similarly to the best 

available model despite relying solely on Claim-based diagnoses and procedures. Third, our 
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study has confirmed that a large dataset could resolve uncertainty about the association of some 

predictors with clinical outcomes. For example, in our study, age was the most important feature 

of our model, which was inconsistently associated with seizures in other studies of post-ischemic 

stroke seizures.23–26  Fourth, we observed that our models performed slightly less well when anti-

seizure medications were not included as predictors. This highlights the complexity of using real-

world data for model prediction and how different clinical scenarios can influence human factors 

(healthcare professionals) behaviors. For example, physicians may be more prone to prescribe 

anti-seizure medications to a patient who has epileptiform activity on the EEG or a patient with a 

large stroke. This has implications for future model development. It can be argued that 

accounting for patterns of human behavior will likely improve models' performance and utility. 

Limitations: 

Our study has limitations that should be accounted for when interpreting its results. First, we 

relied on administrative ICD-10 diagnoses and procedures; therefore, we could not verify the 

accuracy of reporting these diagnoses. Second, stroke severity was not assessed using standard 

severity scales such as the National Institute of Health Stroke Scale; nevertheless, all proxy of 

stroke severity used in the current analysis were associated with an increased risk of seizures, 

suggesting the validity of our approach. Third, we did not have access to original imaging and 

EEG recording, which could have yielded additional predictors and improved the model's 

performance. Despite these limitations, the use of a large sample across 71 healthcare 

organizations suggests that our results are likely to be generalizable to patients with ischemic 

stroke.  

Conclusion: 

In the current study, machine learning and, more specifically, LightGBM for Python library with 

sklearn API applied to the TriNetX Research Network, a large network of healthcare 

organizations in the United States, correctly predicted seizures after ischemic stroke at 1 year and 

5 years about 75% of the time. The study shows the potential for applying machine learning to 

real-world data to predict seizures after ischemic strokes. Future studies will aim to improve the 

performances of ML-based models by incorporating more granular data, which could be 

identified from electronic health records using other features of artificial intelligence, such as 

natural language processing. 
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Figure 1: 5- fold Nested Cross Validation- A visual representation of the nested 5-fold cross 

validation procedure. 

Figure 2: Visual Model Performance. 

Figure 3: Top Important Features for LGBM Model. 

Figure 4: Partial dependence plots (PDP) 

Figure 5: 5 Feature Risk (Cumulative probabilities of Seizure Outcome) Model. 

Disclosure: None 
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Table 1: Demographic and Clinical Characteristics  

Characteristics Total Patient (%)  

430,254 

Seizure Incidence 

following ischemic 

stroke after 1 year 

(N=18,502) 4.3% 

Seizure Incidence 

following ischemic 

stroke after 5 years 

(N=22,675) 5.27% 

Age, Median (SD), a 

years 

 66.35± 14.9 64.2 ± 15.42 64.13 ±15.22 

Sex    

           Male 225,871(52.5) 9,766 (52.8) 11,986 (52.9) 

           Female  204,383 (49.1) 8,736 (47.2) 10,689 (47.1) 

Race a
    

     White 274,882(63.9) 10,925 (59.0) 13,434 (59.2) 

      Black/ African 

American  

 73,914 (17.2) 4,163 (22.5) 5,173 (22.8) 

      Others or 

Unknown 

81,458 (19.0) 3,414 (18.5) 4,068 (17.9) 

Stroke Risk    

     Smoking a 113,593 (26.4) 5,793 (31.3) 6,991 (30.8) 

     Hypertension a 248,347 (57.7) 12,054 (65.1) 14,552 (64.2) 

     Diabetes a
 121,243(27.9) 5,880 (31.8) 7,084 (31.2) 

     Alcohol Use a
 20,156 (4.7) 1,542 (8.3) 1,821 (8.0) 

     Atrial fibrillation 63,781(14.8) 3,186 (17.2) 3,746 (16.5) 

     Hyperlipidemia 164,213 (38.2)  7,468 (40.3) 9,072 (40.0) 

Stroke Location a
    

   Anterior  3,366 (0.8) 205 (1.1) 243 (1.1) 
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   Posterior 6,253 (1.5) 358 (1.9) 412 (1.8) 

   Middle 32,863 (7.6) 1,882 (10.2) 2,267 (10.0) 

Antiplatelet Therapy     

   Aspirin a
 170,384 (38.7) 6,889 (37.2) 8,374 (36.9) 

   Clopidogrel 
a
  60,300 (13.6) 2,070 (11.2) 2,565 (11.3) 

   Ticagrelor    4,304 (1.0) 164 (0.9) 194 (0.9) 

    Prasugrel     1,124 (0.3) 39 (0.2) 46 (0.2) 

Electroencephalogra

ms a
 

   

Continuous EEG 2-

12 

465 (0.1) 117 (0.6) 119 (0.5) 

Continuous EEG 12-

26 

800 (0.2) 207 (1.1) 208(0.9) 

Large artery 

Atherosclerotic 

Disease 

53,670 (12.5)  3,053 (16.5) 3,678 (16.2) 

Intravenous TPA 13,287 (3.1) 651(3.5)  775 (3.4) 
a These characteristics are significantly associated with seizure at both one-year and five years after 

a stroke. (p-value < 0.05) 

TPA: Tissue Plasminogen Activator 

EEG: Electroencephalogram 

SD: Standard deviation 

Table 2: Stroke severity and distribution of antiseizure medications. 

Patient 

Characteristics  

Total Number of 

patients 

N=430,254 (%) 

Seizure Incidence 

following ischemic 

stroke after 1 year 

N=18,502 (4.3%) 

 

Seizure Incidence 

following ischemic 

stroke after 5 years 

N=22,675 (5.27%) 

Stroke severity    

Aphasia 39,596 (9.2)  3,181 (17.2) 3,645 (16.1) 

Unspecific side 

hemiplegia  

 5,232 (1.2)      461(2.5)  534 (2.4) 

Non-dominant side 

hemiplegia 

21,835 (5.1)  1,545 (8.4) 1,821(8.0) 

Aphasia 31,711(7.4)  2,857 (15.4) 3,288(14.5) 

Aphasia- 

Cerebrovascular  

5,137 (1.2)     567 (3.1)   661 (2.9) 
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Dysarthria  28,291 (6.6)  1,948 (10.5) 2,259 (10.0) 

Speech Disturbance 23,786 (5.5)  1,443 (7.8) 1721 (7.6) 

Facial weakness 34,573 (8.0)  2,252 (12.2) 2,646 (11.7) 

Cerebral 

Intracranial edema 

    643 (0.1)       93 (0.5)     113 (0.5) 

Dominant left side 

hemiplegia 

20,406 (4.7)  1,408 (7.6) 1,665 (7.3) 

Altered mental 

status 

46,840 (10.9)  4,523 (24.4) 5,074 (22.4) 

Neurological 

neglect syndrome 

  5,181 (1.2)    604 (3.3)  672 (3.0) 

Respiratory failure  29,673 (6.9)   3,201 (17.3) 3,456(15.2) 

Do Not Resuscitate 16,893 (3.9)  1,516 (8.2) 1,577 (6.9) 

Palliative care 

consult 

11,904 (2.8)  1,142 (6.2) 1,169 (5.2) 

Mechanical 

thrombectomy 

 4,164 (1.0)   205 (1.1)   253(1.1) 

CE 1 25,383 (5.9)  1,260 (6.8) 1,557(7.0) 

CE 2 39,282 (9.1)  2,767 (15.0) 3,222 (14.2) 

Respiratory 

ventilatory 

procedure 

15,611 (3.6)  2,067 (11.2) 2,211(9.8) 

Insertion of 

endotracheal tube  

 8,677 (2.0)  1,168 (6.3) 1,248 (5.5) 

Insertion of feeding 

device 

 1,523 (0.4)     162 (0.9)   192 (0.8) 

Intravenous 

thrombosis 

13,287 (3.1)     651 (3.5)   775 (3.4) 

Antiseizure drug a
    

Carbamazepine  1,898 (0.4)   419 (2.3)    475 (2.1) 

Clobenzepam     157 (0.0)     92 (0.5)     97 (0.4) 

Clonazepam   9,317 (2.2)  592 (3.2)  722 (3.2) 

Eslicarbazepine        96 (0.0)   76 (0.4)   78 (0.3) 

Ethosuximide        67 (0.0)   62 (0.3)   64 (0.3) 

Felbamate     141 (0.0)   64 (0.3)   64 (0.3) 

Gabapentin 46,762 (10.9) 2,202 (11.9) 2,742 (12.1) 

Lacosamide   1,114 (0.3)  504 (2.7)    529 (2.3) 

Lamotrigine  3,298 (0.8)  559 (3.0)    634 (2.8) 

Levetiracetam 22,223 (5.2) 5,910 (31.9) 6,489 (28.9) 

Oxcarbazepine   1,385 (0.3)   311(1.7)   345 (1.5) 

Perampanel        88 (0.0)     67 (0.4)     70 (0.3) 

Phenobarbital   1,957 (0.5)   308 (1.7)   349 (1.5) 
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Phenytoin   3,360 (0.8) 1,002 (5.4)  1,100(4.9) 

Pregabalin   8,834 (2.1)   503 (2.7)   615 (2.7) 

Primidone   1,368(0.3)  140 (0.8)    148 (0.7) 

Rufinamide        66 (0.0)     62 (0.3)    62 (0.3) 

Tiagabine       81 (0.0)     62 (0.3)    62 (0.3) 

Topiramate  5,721 (1.3)   532 (2.9) 640 (2.8) 

Valproate  4,608 (1.1)   861 (4.7)  951 (4.2) 

Vigabatrin       63(0.0)     60 (0.3) 60 (0.3) 

Zonisamide     541 (0.1)   175 (0.9) 189 (0.8) 
a These characteristics are significantly associated with seizure at both one-year and five years after 

a stroke. (p-value < 0.05) 

CE 1(Clinical encounter 1): Describes a detailed interval history; A detailed examination; Medical 

decision making of high complexity. 

CE 2 (Clinical encounter 2): Critical care, evaluation and management of the critically ill or 

critically injured patient; first 30-74 minutes 
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Leveraging large dataset from Electronic Health Records to predict seizures after ischemic 

strokes: A Machine Learning approach. 

 

Figure 1:  5- fold Nested Cross Validation.  

 

A visual representation of the nested 5-fold cross validation procedure. The outer loop partitions 

the data into 5 folds, where each fold serves as a unique and non-overlapping test set (red) once, 

while the remaining data forms the training set (blue). Within each outer training set, an inner 5-

fold cross-validation is conducted, further dividing the data into 5 new folds. In this inner loop, 

one fold is used as the validation set (green) for hyperparameter tuning each iteration, and the 

other folds act as the training set (gray).  
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Figure 2: Visual Model Performance. 

 

 

Metrics (standard 

error) 

 

LGBM all 

features added at 

1 year 

 

LGBM without 

anti-seizure 

medication at 1 

year 

LGBM all 

features added at 5 

years 

LGBM- without 

anti-seizure 

medication at 5 

years 

AUROC 0.7854 (0.0038) 0.6904 (0.0046) 0.7607 (0.0031) 0.6731 (0.0072) 

AUPRC 0.2426 (0.0048) 0.1149 (0.0026) 0.247 (0.0064) 0.1237 (0.0049) 

F1 0.2299 (0.0034) 0.1561 (0.0015) 0.2441 (0.0032) 0.1716 (0.0056) 

Accuracy 0.8236 (0.001) 0.7569 (0.0023) 0.8125 (0.0013) 0.7456 (0.0032) 

Balance 0.7226 (0.0049) 0.6452 (0.003) 0.7001 (0.0045) 0.6296 (0.0082) 

Precision 0.1417 (0.0021) 0.0918 (0.0008)  0.155 (0.002) 0.1036 (0.0035) 

Recall 0.6122 (0.0095) 0.5229 (0.0077) 0.5745 (0.0095) 0.5 (0.0143) 
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Figure 3: Top Important Features for LGBM Model. 

 

 

SS_CE1(Stroke Severity_Clinical Encounter 1): Describes a detailed interval history; A detailed 

examination; Medical decision making of high complexity.  

SS_CE2 (Stroke Severity_Clinical Encounter 2): Critical care, evaluation and management of the 

critically ill or critically injured patient; first 30-74 minutes. 

SS_aphasia: Stroke Severity_Aphasia 

ICH: Denotes patient with subsequent intracerebral hemorrhage ICD-10 codes. 

AS_: Ansitiseizure drugs. 
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Figure 4: Partial dependence plots (PDP) 
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Figure 5: 5 Feature Risk (Cumulative probabilities of Seizure Outcome) Model.  
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