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Abstract: On a crowdsourcing platform, in order to cheat for rewards or sabotage the crowdsourc-
ing processes, spam workers may submit numerous erroneous answers to the tasks published by
requesters. This type of behavior extremely reduces the completion rate of tasks and the enthusiasm
of honest users, which may lead a crowdsourcing platform to a failure. Defending against malicious
attacks is an important issue in crowdsourcing, which has been extensively addressed by existing
methods, e.g., verification-based defense mechanisms, data analysis solutions, trust-based defense
models, and workers’ properties matching mechanisms. However, verification-based defense mecha-
nisms will consume a lot of resources, and data analysis solutions cannot motivate workers to provide
high-quality services. Trust-based defense models and workers’ properties matching mechanisms
cannot guarantee the authenticity of information when collusion requesters publish shadow tasks to
help malicious workers get more participation opportunities. To defend such collusion attacks in
crowdsourcing platforms, we propose a new defense model named TruthTrust. Firstly, we define a
complete life cycle system that from users’ interaction to workers’ recommendation, and separately
define the trust value of each worker and the credence of each requester. Secondly, in order to
ensure the authenticity of the information, we establish a trust model based on the CRH framework.
The calculated truth value and weight are used to define the global properties of workers and re-
questers. Moreover, we propose a reverse mechanism to improve the resistance under attacks. Finally,
extensive experiments demonstrate that TruthTrust significantly outperforms the state-of-the-art
approaches in terms of effective task completion rate.

Keywords: crowdsourcing; trust model; collusion requester; spam worker; truth inference

1. Introduction

In the last decade, an increasing number of businesses have transformed their business
models by going online [1]. In recent years, the process of transformation has accelerated
and businesses have entered into the cloud computing era, where virtually turning every-
thing as a service (XaaS) [2] has become a distinct possibility [3]. A notable example is
the emergence of crowdsourcing platforms. Some well-known crowdsourcing platforms,
such as Wikipedia (https://www.wikipedia.org, accessed on 1 April 2021), FreeLancer
(https://www.freelancer.com, accessed on 1 April 2021) and Amazon Mechanical Turk
(https://www.mturk.com, accessed on 1 April 2021), have proved that the wisdom of
crowds [4] possesses tremendous potential in addressing complex problems [5]. On a
crowdsourcing platform, a crowdsourcing process starts when a requester publishes Hu-
man Intelligence Tasks (HITs) and workers who satisfy the requirements can submit their
answers according to the task descriptions [6].

Such a crowdsourcing process is extremely vulnerable to spam workers who want to
get a profit from cheating since they can easily get permission from participating in tasks [4].
More seriously, the collusion strategy is widely used in malicious users, known as Rank
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Boosting [7], where dishonest workers boost their overall trust levels by participating in
easy tasks or in fake tasks published by themselves or conspiracy requesters. Furthermore,
in the case that more than 50% of the workers are malicious, spam workers can manipulate
specific answers to destroy the system [8]. The extensive existence of spam workers will
greatly reduce the reliability of crowdsourcing platforms and the enthusiasm of honest
participants, which will lead a crowdsourcing platform to a failure [9]. Thus, the issues of
how to establish trust ratings and choose trustworthy workers become prominent.

A well-known attack launched by spam workers has happened on the Waze [10],
the most popular crowdsourced map service, which offers users more ways to actively
share information on accidents, landmarks, local fuel prices, etc. [10]. However, in recent
years, people adopt collude strategies such as simulating a traffic jam by not moving to
decrease the efficiency of the platform [11]. Due to the existence of attacks, there is a lot
of misinformation on Waze. The fake information resulted in urban road congestion and
reduced the enthusiasm of normal users to provide right answers. In fact, there are few
effective tools today to identify whether the origin of traffic requests are real mobile devices
or software scripts [12].

In practice, spam workers can take strategies to masquerade themselves as trustworthy
participants, which make them extremely hard to be detected [13], and it can often be
difficult to identify whether the requester who posts the task is a normal user or plays a
role conspiring with malicious workers [14]. In general, according to whether to provide
effective services or feedback, workers and requesters can be generally classified into three
strategies:

• S1: Honest Strategy. Workers with honest strategies always provide good services,
and requesters give objective and real evaluations over all workers.

• S2: Collusive Strategy. Spam workers through collusive requesters always get high
ratings to make themselves disguised as normal workers. When the collective workers
are chosen to complete a HIT published by a normal requester, they always provide
invalid services. On the other hand, requesters with a collusive strategy only recruit
spam workers.

• S3: Camouflage Strategy. When the workers with camouflage strategy are chosen to
complete a HIT published by an honest requester, they will provide valid services
with a certain probability. On the other hand, the requester with the S3 strategy will
also recruit some honest workers to complete HITs and give them real evaluations
with a certain probability.

With the strategies S2–S3, spam workers may acquire a “good” reputation and then
continuously pose threats to crowdsourcing platforms. According to previous research, it
can be divided into four categories to improve the service quality: (1) Verification-based
Defense Model [15–17]; (2) Data Analysis Solution [18–21]; (3) Workers’ Properties Match-
ing Mechanism [22–25]; and (4) Trust-based Model [4,26–28].Verification-based Defense
Models adopt the method of re-checking the submitted answers to discover spam workers
so that these models require a lot of resources. Data Analysis Solutions filter out valuable
services by analyzing data submitted by workers. This approach is limited to mobile
crowdsourcing platforms and cannot motivate workers to provide high-quality services.
Workers’ Properties Matching Mechanisms usually establish match models to distribute
tasks to workers. However, the attributes of the workers are submitted by workers or
requesters. These mechanisms cannot guarantee the authenticity of workers’ properties.
Trust-based Models select workers by establishing trust evaluations. However, existing
trust models rarely consider the impact of collusion attacks, resulting in the effectiveness
of these models decreasing significantly.

Therefore, ensuring the authenticity of the information about workers and requesters
in the crowd has become the main challenge. In order to solve this problem, we use the
truth inference algorithm [29] which can find the truth value from various information
sources. Truth inference is widely used in big data and social media analysis where noisy
information is inevitable [30]. Specifically, our model is established based on a simple and
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efficient CRH [31] algorithm which can obtain the closest real information by assigning
weights and minimizing the loss function in the information set.

In this paper, we focus on colluding attacks and mixed camouflage strategies attacks
and propose a new trust model TruthTrust based on the CRH algorithm. Furthermore,
in order to motivate workers to provide high-quality services, we present a three-layer
complete life cycle model in which past behaviors can also affect the current trust evaluation.
We separately define the trust evaluation of workers and the reliability of requesters to
distinguish malicious users more effectively. Furthermore, we design a reverse mechanism
to solve the problem that the CRH algorithm is invalid under specific attacks. Finally,
during the experiment, we compare our model with different existing crowdsourcing trust
management models and analyze its effectiveness. The main contributions of this paper
are listed as follows:

(1) We propose TruthTrust, a complete life cycle system that separately considers the
trust evaluation of workers and the reliability of requesters to resist colluding and mixed
camouflage strategy attacks.

(2) We establish a reverse mechanism to counter special attack scenarios, and define
the global trust vector to improve the anti-attack performance as well as motivate workers
to provide high-quality services.

(3) We implement adequate experiments to simulate malicious strategies S2–S3 and
compare the performance of TruthTrust with many existing trust management models. Our
results illustrate that the proposed TruthTrust model could provide accurate and reliable
results in the presence of different attacks.

The rest of the paper is organized as follows: Section 2 presents related work about
improving the quality of service in crowdsourcing platforms. In Section 3, we introduce our
TruthTrust model in detail. In Section 4, we conduct simulation experiments to compare
with existing models and evaluate the effectiveness of our model. In the last section, we
conclude our work and outline future research directions.

2. Related Work

In order to improve the service quality of the crowdsourcing platform and reduce the
attacks of malicious workers, previous studies have mainly made the following solutions.

2.1. Verification-Based Defense Model

In general, verification-based defense models utilize testing questions to estimate
whether a worker is honest or not and organizes reviewers to re-check the submitted
answers to discover spam workers. In particular, Kittur et al. [15] pointed out that
publishing tasks with preset testing tasks (i.e., the tasks with known answers) together
can effectively differentiate the quality of different workers in a task. Chen et al. [16]
designed a verification mechanism that regards workers who always give consistent
answers as trustworthy workers. Correspondingly, the workers who commonly submit
contradictory answers are marked as suspiciously spam workers. Hirth et al. [17] proposed
two mechanisms (MD and CG) to detect the cheating behaviors of workers. They proposed
that it is ineffective or costly to apply verification problems and manual re-checking
simultaneously. In general, verification-based defense models may identify malicious
workers with high accuracy. However, such a type of model cannot prevent spam workers
from participating in tasks beforehand and may consume a large number of extra resources
to verify the quality of all workers.

2.2. Data Analysis Solution

The solution of data analysis usually focuses on the data analysis phase by using data
processing methods such as Bayesian [18], machine learning clustering algorithm [19], and
truth inference [20,21], in order to find the low quality of service. Lin et al. [20] proposed
a Sybil-resistant truth inference framework for MCS, which included three account group-
ing methods in pair with a truth inference algorithm to defend against the Sybil attacks.
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Liu et al. [19] proposed a probabilistic model to jointly infer multi-dimensional trust of work-
ers, multi-domain properties of questions, and true labels of questions. Du et al. [18] proposed
a novel Bayesian co-clustering truth inference model, which produced an estimation while
taking into account the entity clusters and the user clusters for the task of observation ag-
gregation. Huang et al. [21] investigated the data poisoning attacks on truth inference and
proposed an approach against such attacks through additional source estimation and source
filtering before data aggregation.

This type of solution has good timeliness and has no need for a priori knowledge.
However, if the system is under Sybil attacks, the effectiveness of these solutions will be
significantly reduced. At the same time, data analysis solutions cannot motivate workers
to provide high-quality services.

2.3. Workers’ Properties Matching Mechanism

Workers’ properties matching mechanisms are often matched and optimized choices
between workers and tasks based on previous worker records and task requirements.
Ye et al. [22] proposed a context-aware trust model which consists of two types of context-
aware trust: task type based trust (TaTrust) and reward amount based trust (RaTrust).
Moreover, they regarded the issue of model trustworthy worker selection as a multi-
objective combinatorial optimization problem, which is NP-hard. Yuen et al. [23] proposed
a task matching idea that utilized the past preference of a worker and a task to produce a
list of available tasks in the order of best matching with the worker during its task selection
stage. Jiang et al. [24] proposed an approach for context-aware reliable crowdsourcing in
social networks. This approach decomposed complex tasks according to social attributes
while taking into account the social reputation of workers. Karger et al. [25] proposed a
method to learn the crowdsourcing outcomes iteratively for assigning tasks to the appro-
priate workers. Workers’ properties matching mechanisms can match more suitable tasks
according to workers’ preferences and improve the efficiency of crowdsourcing. However,
such models can not guarantee the authenticity of the property of the workers and may be
vulnerable to attack when workers counterfeit fake records.

2.4. Trust-Based Model

Trust-based models usually build trust evaluation models based on the performance
of workers or feedback from requesters, regard the staff with a lower trust level as spam
workers, and then prohibit such spam workers from participating in any task. Yu et al. [26]
proposed a recommendation model based on the similarity of workers and requesters.
Kantarci et al. [27] proposed a collaborative trustworthiness approach for mobile crowd-
sensing, which leverages the naive centralized reputation value by incorporating statistical
and vote-based trust scores that take advantage of social network theory. Ye et al. [4]
proposed a new Trust Sub-network Extraction algorithm (TSE) to discover more requesters
who can provide opinions for generating recommendations. Ye et al. [28] proposed a trust
vector-based threat defense model CrowdDefense. They established a Crowdsourcing
Trust Network (CTN) composed of requesters, workers, and their transaction relations,
and analyzed three threat patterns of spam workers. Moreover, they assumed that there
exist requesters with different identities, and part of them is trustworthy.

Trust-based models can motivate workers to provide high-quality services, and the
computational overhead of other solutions is relatively low. However, existing trust models
rarely consider the scenario where the requesters in the crowd collude with malicious
workers, which may lead to a significant reduction in the effectiveness of current trust-
based models.

3. TruthTrust Model

In this section, we clearly illustrate the design of TruthTrust. As shown in Figure 1,
TruthTrust is a complete life cycle and divided into three layers: Interaction Layer, Truth
Calculation Layer, and Rating Calculation Layer. The Interaction Layer mainly illustrates
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the interaction and attack model of workers and requesters using S2 and S3 strategies. In
the Truth Calculation Layer, we propose a feedback calculation model based on a truth
inference algorithm. Specifically, we set up a reverse mechanism to defend threat patterns
that the truth inference framework is invalid. In the Rating Calculation Layer, we define a
global trust vector of workers and requesters based on truth and weight calculated by the
Truth Calculation Layer, and then recommend workers according to the global trust.

Truth Calculation 

Layer

Rating Calculation 

Layer

Truthtrust Management 
Mechanism

Truth and 

Credibility 

Interaction Layer

①Publish 

tasks

②Send tasks

 

③Allocation

⑤Submit 

answers

⑥Feedback

④Answer

Requester

Workers

Reverse 

Mechanism

Figure 1. TruthTrust System.

3.1. Interaction Layer

A typical crowdsourcing process can be decomposed into four procedures: (1) Re-
quester publishing tasks; (2) Task assignment; (3) Worker submit answers; and (4) Feedback
and reward. At the beginning of a crowdsourcing process, a requester publishes tasks to all
the workers in the form of an open call [32]—then according to trust evaluation or worker
preferences to decide who can submit the answer to the task. Afterward, if a worker’s
answer is approved in a task, the worker will be granted the reward of the task according
to the reward mechanism deployed [33]. In the end, requesters can rate the staff after the
transaction is completed. For example, each time requester i gets a service from worker
j, it may rate the transaction as satisfaction tr(i,j) = 1 or dissatisfaction tr(i,j) = 0. In the
Truth Calculation Layer, we will collect feedback information to calculate the credibility of
requester i, and the service quality of worker j.

In the actual crowdsourcing process, with the aim to get rewards easily, spam workers
will improve their reputations by adopting strategies S2–S3 through participating in shadow
HITs constantly. The answer of shadow HIT is preset and shown to spam workers in
advance. In shadow HITs, malicious participants can be separately classified into spam
requester, camouflage requester, and camouflage worker. Typically based on different
participants, threat patterns can be divided into three categories:

Threat Pattern A (Spam Workers Collude with Spam Requesters): Spam workers
ceaselessly trade with spam requesters in shadow HITs to obtain a high trust level. For
example, as shown in Figure 2, a spam worker W1 deploys reputation by obtaining satisfac-
tory feedback from spam requesters R2 − R4 in shadow HITs. In contrast, honest workers
have difficulty participating in shadow HITs published by spam requesters R2 − R4. Once
W1 takes part in a tremendous amount of shadow HITs, W1 will get a “good” reputation
and some worker recommendations or worker selection mechanisms will consider W1 as a
trustworthy worker. If only one-sided worker reputation is considered, honest requesters
R5 may take W1 as an honest worker [28]. When W1 participates in a normal HIT, W1 will
submit erroneous answers to destroy the crowd system.
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Figure 2. Threat Pattern A.

Threat Pattern B (Spam Workers Collude with Spam and Camouflage Requesters): In
Threat Pattern A, it is easy for malicious workers and requesters to form a small group,
which is easily detected by clustering methods. In order to enhance the camouflage ability
of malicious users, camouflage requesters are considered in Threat Pattern B where spam
workers transact with both spam requesters and camouflage requesters in shadow HITs to
improve their reputations. Camouflage requesters publish both normal HITs and shadow
HITs and provide a true evaluation of the honest workers with probability p. For example,
as shown in Figure 3, spam worker W1 boots its reputation by shadow HITs published
by camouflage requesters R3 and R4 and spam requester R2. At the same time, a certain
number of normal tasks will be published for honest workers such as W2 to complete. After
the tasks are completed, honest workers will be truly evaluated with probability p. With
the assistance of camouflage requesters, malicious users can avoid forming a small bloc
that can be detected easily. In addition, the reputation of the honest workers will also be
affected by camouflage requesters.

Figure 3. Threat Pattern B.

Threat Pattern C (Camouflage Workers Collude with Spam and Camouflage Re-
questers): In Threat Pattern B, we only consider the camouflage strategy of the requester,
similarly, malicious workers will also adopt the camouflage strategy in order not to be
detected easily. In Threat Pattern C, camouflage workers collude with both spam requesters
and camouflage requesters, which can conceal the malicious workers deeply. Camouflage
workers may provide some normal services, which makes them similar to normal workers.
Figure 4 shows an instance of Threat Pattern C in which camouflage worker W1 gains a
good reputation from spam requester R2 and camouflage requesters R3 and R4. At the
same time, W1 will complete some normal tasks such as the tasks issued by R1, and get
some good feedback, making it hard to detect. In the meantime, when camouflage workers
are regarded as honest workers, they will submit the same answer or erroneous answers
with the probability 1− p to destroy the system.

The above threat patterns make malicious workers difficult to be detected. In order
to improve the anti-attack capability of the crowdsourcing platform and improve the
service quality of workers, we should analyze the real information in the feedback from
heterogeneous requesters. In the Truth Calculation Layer, the truth about the service quality
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V of workers and the credibility C of requesters can be calculated to select trustworthy
workers and resist threat patterns A–C. Next, we will introduce our calculation model
in detail.

Figure 4. Threat Pattern C.

3.2. Truth Calculation Layer

Considering the above-mentioned attack scenarios, there must be much fake feedback
from malicious requesters. How to filter out real and effective feedback is the main problem
we need to solve. The truth inference algorithm can calculate the closest information to
the real information through the optimization model. Thus, we utilize the CRH algorithm
that is simple and widely used to process feedback [30]. In the Truth Calculation Layer,
in order to distinguish the trust attributes of workers and requesters, we can calculate the
credibility of requesters and the truth of worker’s service quality.

The general principle of truth discovery works as follows: If a source provides trust-
worthy information frequently, it will be assigned a high reliability; meanwhile, if one
piece of information is supported by sources with high reliabilities, it will have more of a
chance to be selected as truth. In our model, the truth value represents the service qualities
of workers analyzed from the feedback information, and the weight value represents the
credibility of the feedback information provided by the requesters. Based on the above
principle, we utilize the following optimization framework to deal with heterogeneous
feedback in this process:

min
ϑ∗ ,W

f (ϑ∗,W) =
K

∑
k=1

ωk

N

∑
i=1

d(v∗i , tr(k,i))

s.t. δ(W) = 1, W ∈ S

(1)

where v∗i denotes the truth of service quality about worker i. The truths of all workers
about the different service qualities are saved in a truth table ϑ∗, where the i-th term is
v∗i . Requester’s credibility is denoted asW = {ω1, ω2, ..., ωk} in which ωk is the reliability
degree of the k-th requester. A higher value of ωk indicates that the k-th requester is more
reliable and the feedback from this requester is more likely to be accurate.

By minimizing the objective function f (ϑ∗,W), we can search about the values of
two groups of unknown variables ϑ∗ andW , which corresponds to the truths set and the
requester weight set, respectively. In this framework, to figure out Equation (1), there are
two types of functions that need to be optimized:

• Loss function. d is a loss function defined based on the satisfaction of service. This
function measures the difference between the feedback tr(k,i) and the identified truth
v∗i . When the feedback approaches the true value, the loss function should output a
low value, and when the feedback deviates from the truth, the loss function should
output a high value.

• Regularization function. δ(ω) represents the constraint of the requester’s credibility.
If each requester’s credibility ωk is unconstrained, then the ωk can be simply taken
as −∞, resulting in the unbounded optimization problem. To constrain the requester
credibility ω into a certain range, we need to specify the regularization function δ(ω)
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and the domain S that is the entire requester set. For simplicity, we set the value of
δ(ω) to be 1.

In order to minimize the objective function in Equation (1), first, we need to get the
initial truth value ϑ∗ by voting or averaging from the results of feedback tables. Then, we
perform the following two steps iteratively:

Step1: Weights Update. First, we estimate the truth ϑ∗ and weigh each requester
according to the difference between the feedback and the truth. At this step, we fix the
values of the truth and compute the weight that jointly minimizes the objective function
subject to the regularization constraints. In order to distinguish the weight of the requesters
more clearly, the following regularization function is used to get more contribution from
the truth obtained by reliable requesters:

δ(ω) =
K

∑
k=1

exp(−ωk) (2)

This function regularizes ωk by limiting the sum of exp(−ωk). To expand the differ-
ence of requesters’ weights, the negative logarithmic function maps the weights in the
range of 0 and 1 to the range of 0 and ∞.

Assuming that the truth values are fixed and with constraint Equations (1) and (2),
the optimization problem is convex. Therefore, the weight calculation can be consistent
with the distance between tr(k,i) and v∗i . The global optimal solution is as follows:

ωk = −log(
∑N

i=1 d(v∗i , tr(k,i))

∑K
k′=1 ∑N

i=1 d(v∗i , tr(k′ ,i))
) (3)

where K is the set of requesters that provide feedback to the same workers with requester
k, and N is the set of workers evaluated by requester k.

Step2: Truths Update. We update the truth of each item in order to minimize the
difference between the feedback and the truth since the weight of each requester ωk is
fixed. The feedback tr(k,i) made in the Interaction Layer is type (0, 1), so we use the (0, 1)
loss function in which an error is occurred, if we use the (0, 1) loss function, an error will
occur if the feedback is not the same as the truth, thus we define the deviation from the
true value v∗i to the observed value tr(k,i) as follows:

d(v∗i , tr(k,i)) =

{
1 i f tr(k,i) 6= v∗i
0 otherwise

(4)

At this step, assuming that the credibility is fixed, in order to minimize the objective
function, on the i-th object, we set the truth as the value that gets the highest credit vote of
all the possible values based on the 0–1 loss function:

v∗i ← argmax
v

K

∑
k=1

ωk · I(v, tr(k,i)) (5)

where I(x, y) = 1 if x = y, and 0 otherwise.
We combine Equation (4) with the objective function in Equation (1) as follows:

v∗i ← argmax
v

K

∑
k=1

ωk · d(v, tr(k,i)) (6)

which is equivalent to Equation (5). The truth inference framework is shown in
Algorithm 1.
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Algorithm 1: Truth Inference Framework
Input: Data from K requesters: {ϑ1, ϑ2, ..ϑk}

1 Initialize the truths ϑ∗ by voting or averaging
2 repeat
3 for i← 1 to N do
4 ComputeW ← argmin

W
f (ϑ∗,W) s.t. δ(W) = 1

5 EndFor

6 for k← 1 to K do
7 Compute v∗i ← argmin

v
∑K

k=1 ωk · d(v, tr(k,i))

8 EndFor

9 until Convergence criterion is satisfied;
Output: Truths ϑ∗ = {v∗1 , ..., v∗n}, requesters weightsW = {w1, ..., wk}

3.2.1. Reverse Mechanism

In the Truth Calculation Layer, we introduce the truth inference framework to resolve
conflicts from different identities of requesters. However, the basic trust inference model
may be weak against attacks in specific attack scenarios, and then malicious participants
may be assigned with a high trust level.

As shown in Figure 5, we exemplify two attack scenarios to illustrate the vulnerability
of truth inference. In the situation A, after a round of transactions, worker x with good
performance receives feedback from malicious requester a, b, and c. The feedback about x is
{a : 0, b : 0, c : 0}, which means that they are all unsatisfied with the service of worker x. If
the CRH algorithm is adopted, the truth value of x will be set to 0. Then, when calculating
the weights according to Equation (3), because requesters a, b, c provide feedback close
to the truth, they will be assigned with high weights, which means they are credible. In
addition, in situation B, worker y with good performance receives feedback from malicious
requester a, b, c, and d where a, b, c are malicious requesters and provide fake feedback as
{a : 0, b : 0, c : 0, d : 1} in which d is honest and provides real feedback. When malicious
feedback constitutes the majority, it will also encounter the same issue in the process of
initiating the truth, and, according to the optimization model a, b and c, will be assigned
with a high weight, ultimately leading to biased results. The aforementioned situation
greatly reduces the performance of calculating the truth. Thus, with the aim to reduce the
impact of above situations, we propose a reverse mechanism to enhance the anti-attack
ability of the system.

Figure 5. Attack situations where the CRH is invalid.

In order to improve the service quality of users, we establish a reverse mechanism
based on the global credibility of requester termed as C, which has been defined in the
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Rating Calculation Layer to correct the truth and redistribute weights of requesters (see in
Section 3.3). First, we define ω as the baseline of all requesters:

ω =
∑K

i Ci

K
(7)

After the conclusion of the truth, we can get a set of requesters Si = {Rn, ...Rm} whose
feedback to the worker i is the same as the truth v∗i . Then, we define the credibility of the
feedback information for worker i as γi:

γi =
∑j∈Si

Cj

h̄
(8)

where h̄ is the number of requesters in the set Si, Cj is the global credibility of the requesters
in the set Si.

We make corrections based on the γi after the completion of truth calculation. The
true value v∗i will be reversed in the event of γi is less than the average value ω:

v+i =

{
v∗i i f γi < ω
v∗i otherwise

(9)

As shown in Figure 6, we will explain the principle of the reverse mechanism in the
situation B seen in Figure 5. First, according to the initialized truth, the truth value of wy is
0. Then, we get the set of requesters S = {Ra, Rb, Rc} with the same feedback. Then, we
calculate the credibility γi, and compare it with the mean value ω. If γi is less than the
mean value ω, the truth value will be reversed to 1.

Figure 6. Reverse mechanism applied in situation B.

After every worker is reversely verified, we will get a new truth table ϑ+. Then, the
weights of all requesters should be updated according to f (ϑ+,W), which is equivalent to
Equation (3), the requesters’ weights are updated as follows:

ωk = −log(
∑N

i=1 d(v+i , tr(k,i))

∑K
k′=1 ∑N

i=1 d(v+i , tr(k′ ,i))
) (10)

where v+i is the truth about the service quality of worker i after reversed in from truth table
ϑ+. According to the reverse mechanism, the assigned weight of malicious requesters can
also be effectively reduced.

3.3. Rating Calculation Layer

In real crowdsourcing scenarios, the process of interacting is circular. However,
previous truth inference algorithms or frameworks did not consider the circular feature,
so, in order to capture the dynamic behavior of workers and requesters, we introduce the
global trust vector of them in the Rating Calculation Layer.

In the Truth Calculation Layer, the truth ϑ+ and the credibility weight W can be
calculated by the optimization framework. According to each optimized result ϑ+ andW ,
we define Vt as the global trust vector of all workers and Ct as the global credibility vector
of all requesters at the time of round t.
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Vt is calculated from the truth ϑ+, and we use a method to calculate the specific
properties of all workers. The method is shown as follows:

Vt = Vt−1 ∗ (1− α) + ϑ+ ∗ α (11)

We use the same method to calculate the credibility vector Ct of all requesters. The
difference is that we need to normalize the credibility of requesters because ω has no
boundaries. Each weight ωi inW will divided by ωmax, which is the maximum value in
W . Then, the calculation of Ct is shown as follows:

Ct = Ct−1 ∗ (1− β) +W ∗ β (12)

where α and β are parameters between 0 and 1, which can be regarded as time factors.
When the value of α and β are close to 1, the global variables Vt and Ct will be more
dependent on the latest results.

By establishing and maintaining global vectors from the Rating Calculation Layer, it
enables requesters to select the right workers to complete their HITs by utilizing the trust
rating V. With the aim to (1) ensure workers with higher trust ratings to complete the
tasks, and (2) prevent the highest worker from completing the tasks all the time and letting
workers with relatively high ratings have the opportunity to participate in the task, we use
a probabilistic algorithm to allocate tasks. Specifically, the recommendation probability of
worker i can be computed by:

Pi = Vi/ ∑
r∈Q

Vr (13)

where Vi represents the global trust of worker i, and Q represents the set of workers that
meet the task requirements. The main algorithm of TruthTrust is shown in Algorithm 2
and the validity of TruthTrust will be demonstrated in the following experiments.

Algorithm 2: TruthTrust Algorithm

Input: Credibility of Requester Ct , tn round truthϑ∗ and weight w.

1 Compute ω = ∑K
i Ci
K ;

2 repeat
3 for i← 1 to N do
4 ComputeW ← argmin

W
f (ϑ∗,W) s.t. δ(W) = 1

5 for k← 1 to K do
6 Compute v∗i ← argmin

v
∑K

k=1 ωk · d(v, tr(k,i))

7 until Convergence criterion is satisfied;
8 for all truth v∗ in ϑ∗ do
9 Get Set S who feedback about v∗i

10 Compute γi =
∑j∈Si

Cj
h̄

11 if γi < ω then
12 reverse truth as Equation (9)

13 ComputeW ← argmin
W

f (ϑ+,W) s.t. δ(W) = 1

14 Compute service quality vector Vt and credibility vector Ct according to
Equations (11) and (12)

Output: Vt and Ct

4. Experiments and Analysis

In this section, we have implemented simulations to illustrate the performance of the
TruthTrust system. Since there is no real data about collision attacks [34], we simulated
the HIT processes and different attack scenarios by establishing a simulation crowdsourc-
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ing platform. We first describe the settings of our experiment in Section 4.1, and in
Sections 4.2–4.4, we have conducted three experiments to examine the performance of our
proposed method.

4.1. Experimental Setup

As shown in Table 1, we initiate 1000 workers, 30 types of tasks, and 80 requesters.
First, requesters publish different types of tasks that obey the standard normal distribution.
Then, the truth value is calculated according to the feedback information. At the start of
our experiments, each worker has the same opportunity to participate in HITs.

Table 1. Platform settings.

Items Entries Descriptions

Platform

Workers
Kind of Tasks
# of skills of each worker
# of requesters
# of HITs for training
# of HITs for each round
# of simulation cycles in one experiment
# of experiments results are averaged
HIT’s distribution

1000
30
5

80
5000
3000

20
5

Normal distribution

According to strategies S1–S3, we simulate different attack scenarios and compare the
performance of defending attacks with baseline models. The specific strategic behaviors of
different identities are shown in Table 2.

Table 2. Different identities of workers and requesters.

Identities Descriptions

Spam Worker (SW)
Camouflage Worker (CAW)
Honest Worker (HW)

Always provide malicious service
Provide a effective service with the probability p
Always provide effective services

Spam Requester (SR)
Camouflage Requester (CAR)
Honester Requester (HR)

Always provide fake feedback
Provide real feedback with the probability p
Provide real feedback with 95% probability

Based on baseline methods in our experiments, we evaluate the performance of
TruthTrust and compare it with three state-of-the-art approaches CRH [31], Trust-Based
Service Recommendation(TSR) [35], and AMT [36], respectively.

• CRH: The unimproved truth discovery and source reliability framework, which
directly calculates the truth from the feedback data to the select appropriate workers.

• TSR: A trust-aware and resemblance based collaborative filtering recommendation
model. In the TSR model, we select workers according to the similarity between
workers and between requesters.

• AMT: An answer overall approval rate based trust model that is applied in the Amazon
Mechanical Turk where requesters choose workers with a higher approval rate as the
service provider.

4.2. Experiment 1: Effectiveness Analysis

This experiment aims to investigate the effectiveness of TruthTrust under different
proportions of malicious requesters. We set the fraction of effective HITs as the experimental
indicator which represents the percentage of normal HITs completed by effective services.
By adjusting the proportion (10–50%) of malicious requester SR and CAR, and we fix the
proportion of spam workers in our experiment to 25%. Along with interaction progresses,
we observe TruthTrust’s performance.
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From Figure 7a,b, we can observe: (1) In the case of different ratios of SR and CAR
(10–40%) with the increase of iterations, the effective rate of HITs achieved by TruthTrust
tends to converge to 99.5% and 99.8%, respectively; (2) In the extreme case SR = 50%,
because most of feedback in the system is fake, the truth inference framework cannot
initiate the truth correctly, resulting in a significant reduction in the effectiveness of the
model; (3) In the case of CAR = 50% and p = 0.5, most of the feedback in the system are
still authentic, so the truth inference framework maintains a good performance.
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Figure 7. (a) shows the effectiveness of TruthTrust model under different ratios of SR (10–50%); (b)
shows the effectiveness of TruthTrust model under different ratios of CAR (10–50%) and camouflage
probability p = 0.5.

4.3. Experiment 2: Comparative Experiment

In this experiment, we analyze the effectiveness of TruthTrust by comparing with
CRH, TSR, and AMT models to investigate whether TruthTrust can effectively select honest
workers when workers and requesters take strategies S1, S2, and S3. According to the
different proportions of malicious members, we divide malicious attacks into three threat
patterns (A–C) which are shown in Table 3. In Threat Pattern A, we only set SW & SR and
adjust the proportion of SW & SR from 10% to 50%. In Threat Pattern B, we subjoin CAR
to requesters and divide the proportions of SR and CAR, which is arranged from 5% to
25%. In Threat Pattern C, we subjoin CAW to workers and divide the proportions of SW
and CAW. In the above threat patterns, we set the camouflage probability p of CAW and
CAR as 0.5.

Table 3. Threat patterns and the proportion of malicious users.

Threat Pattern (SW%, CAW%) (SR%, CAR%)

Threat Pattern A (10,0), (20,0), ..., (50,0) (10,0), (20,0), ..., (50,0)
Threat Pattern B (10,0), (20,0), ..., (50,0) (5,5), (10,10), (15,15), (20,20), (25,25)
Threat Pattern C ((5,5), (10,10), (15,15), (20,20), (25,25) (5,5), (10,10), (15,15), (20,20), (25,25)

From Figure 8a–e, we can observe that, under the Threat Pattern A: (1) In the case of
different proportions of SW (10–50%) and with the proportion of SR being below 30%, the
averaged effective rate of TruthTrust tends to converge to 99.4%; (2) When the malicious
requester tends to 50%, the effective rate of TruthTrust will be reduced because the malicious
evaluation is in the majority, which makes the CRH algorithm unable to initialize the truth
normally; (3) The average effective rate of the TSR model which is based on the similarity
of requesters and workers tends to 99.2% when malicious participants are less than 50%.
The reason is that the malicious collective and normal users have very little similarity
without camouflage. However, when the proportion of malicious users exceeds 50%, the
effectiveness of the TSR model is also significantly reduced. It is worth mentioning that the
number of malicious requesters in the actual crowdsourcing platform would not exceed
50%; otherwise, it will cause crowdsourcing to a failure [9].
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(g) SR, CAR = 20%
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(h) SR, CAR = 30%
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(i) SR, CAR = 40%

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�

� �

� �

	 �


 �

� � �

��

�

���
��

�
��

�
��

��
��

�
�	

��
��

� �   � � � � � � � � � � � � � � � � � 
 	 � � � � � 	 � � �

� � 
  � 	 � 
  � � � � � � � � � � � � � �

(j) SR, CAR = 50%
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(k) SW, CAW = 10%
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(l) SW, CAW = 20%
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Figure 8. Subfigure (a–e) shows the effectiveness of different models under Threat Pattern A. Subfigure (f–j) shows the effectiveness
of different models under Threat Pattern B. Subfigure (k–o) shows the effectiveness of different models under Threat Pattern C.

of requesters and workers tends to 99.2% when malicious participants are less than 50%.
The reason is that the malicious collective and normal users have very little similarity
without camouflage. However, when the proportion of malicious users exceeds 50%, the
effectiveness of the TSR model is also significantly reduced. It is worth mentioning that the
number of malicious requesters in the actual crowdsourcing platform would not exceed
50%, otherwise, it will cause crowdsourcing to a failure [9].

Figure 8(g-j) shows that under the Threat Pattern B: (1) When CAR are considered,
TruthTrust always achieves the best performance in terms of selecting trustworthy workers
in all the cases. On average, the proportion of effective HITs is the highest, which is 99.1%,
7.18% higher than CRH, 38.17% higher than TSR and 68.72% higher than AMT, respectively.
Since most of feedbacks in the system are real, so the truth inference framework can obtain
the correct results according to the optimization model. (2) The effectiveness of the TSR
model is significantly reduced, and the average effective rate is 57.6%. Because malicious
requesters use a camouflage strategy, TSR unable to effectively distinguish malicious users
based on the similarity. (3) The efficiency of the AMT model which selects workers based
on satisfaction is also reduced, because malicious requesters not only publish shadow HITs
but also give normal workers malicious feedbacks.

Figure 8(k-o) shows the ratio of effective HITs under the Threat Pattern C, we can find:
(1) Compared with other models, TruthTrust still has the best performance. On average, its
effectiveness is 6.35% higher than the CRH method, 42.56% higher than the TSR method,
and 61.14% higher than the AMT method. Since the reversed truth inference framework can
effectively calculate the real information in heterogeneous feedbacks. (2) The effectiveness
of the TSR model is further reduced by 16.8% on average compared to Threat Pattern B.
Because the worker’s camouflage strategy affects the similarity-based clustering, which
reduces the effectiveness of TSR. (3) The performance of AMT has a little improvement
because even if malicious workers participate in normal tasks they will provide some good
services because of the camouflage strategy.

Figure 8. (a–e) show the effectiveness of different models under Threat Pattern A; (f–j) show the effectiveness of different
models under Threat Pattern B; (k–o) show the effectiveness of different models under Threat Pattern C.

Figure 8g–j shows that under the Threat Pattern B: (1) When CAR are considered,
TruthTrust always achieves the best performance in terms of selecting trustworthy workers
in all the cases. On average, the proportion of effective HITs is the highest, which is 99.1%,
7.18% higher than CRH, 38.17% higher than TSR and 68.72% higher than AMT, respectively.
Since most of feedback in the system is real, the truth inference framework can obtain
the correct results according to the optimization model. (2) The effectiveness of the TSR
model is significantly reduced, and the average effective rate is 57.6%. Because malicious
requesters use a camouflage strategy, TSR is unable to effectively distinguish malicious
users based on the similarity. (3) The efficiency of the AMT model which selects workers
based on satisfaction is also reduced because malicious requesters not only publish shadow
HITs but also give normal workers malicious feedback.

Figure 8k–o shows the ratio of effective HITs under the Threat Pattern C, and we
can find: (1) Compared with other models, TruthTrust still has the best performance. On
average, its effectiveness is 6.35% higher than the CRH method, 42.56% higher than the
TSR method, and 61.14% higher than the AMT method. Since the reversed truth inference
framework can effectively calculate the real information in heterogeneous feedback, (2)
the effectiveness of the TSR model is further reduced by 16.8% on average compared to
Threat Pattern B. Because the worker’s camouflage strategy affects the similarity-based
clustering, which reduces the effectiveness of TSR, (3) the performance of AMT has a little
improvement because, even if malicious workers participate in normal tasks, they will
provide some good services because of the camouflage strategy.

In summary, TruthTrust has a relatively stable performance in Threat Patterns A-C.
However, when the proportion of malicious feedback in the system is more than 50%, the
effectiveness of TruthTrust will be significantly reduced. In our future research, we will try
to use machine learning clustering methods [37,38] to reduce the weight of magnanimous
malicious requesters. Secondly, the effectiveness of the CRH model is inferior to TruthTrust
because some special attack scenarios mentioned in Section 3.2.1 reduce the effectiveness
of the model. Thirdly, the effectiveness of the cluster-based model TSR is greatly reduced
in attack patterns with camouflage strategies. Finally, the effectiveness of the AMT method
based on satisfaction evaluation is relatively low due to the existence of fake feedback.
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4.4. Experiment 3: Validity of the Reverse Mechanism

In this experiment, we verify the effectiveness of the reverse mechanism for identifying
workers. By adjusting the camouflage probability p of CAR and CAW in two cases, where
20% and 40% are camouflaged users, we set the effective identification rate, which is the
proportion of truth values and actual values, as the performance metric. Then, we analyze
the effectiveness of the TruthTrust and Non-Reverse model in identifying malicious users.

From Figure 9a,b, we can observe that, when the probability of camouflage p is less
than 0.5, the averaged effective identifications of the TruthTrust are 98.67% and 96.46%,
higher than 84.2% and 63.4% achieved by Non-Reverse. However, when the probability is
greater than 0.5, the effectiveness of TruthTrust is lower than Non-Reverse. In the case of
low camouflage, the introduction of the reverse mechanism makes the feedback close to the
real situation with high probability, however, when the probability of camouflage is high,
although the feedback of shadow HITs are corrected, at the same time, the evaluations of
normal workers will be incorrect. In general, the reverse mechanism of the TruthTrust has
a good performance when the probability of camouflage is less than 0.5. However, when
the probability is high, the reverse mechanism will make errors in the evaluation of good
performers. However, the probability of camouflage in actual crowdsourcing generally
does not exceed 0.5, so the reverse mechanism is suitable for most attack scenarios.
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Figure 9. (a) shows that, with the change of the camouflage probability p, the effective identification
of TruthTrust and Non-Reverse models under the proportion of CAR & CAW is 20%; (b) shows
that, with the change of the camouflage probability p, the effective identification of TruthTrust and
Non-Reverse models under the proportion of CAR & CAW is 40%.

5. Conclusions

In this paper, we have presented a threat defense model based on the truth inference
framework on a crowdsourcing platform. In the TruthTrust, we have analyzed three
threat patterns and devised a new mechanism to evaluate the trustworthiness of workers
and requesters. We established a trust-based recommendation mechanism according to
interactive experience, distinguishing the recommended credibility and service quality
evaluation. We proposed a reverse method to optimize the truth inference framework. The
results of our experiments have demonstrated that the TruthTrust significantly outperforms
CRH, TSR, and AMT, three traditional approaches, in both selecting honest workers and
filtering out spam workers. In addition, we also proved the effectiveness of the reverse
mechanism we proposed. However, when the proportion of malicious user exceeds 50%,
the validity will be reduced because of the characteristics of the CRH framework. At the
same time, when the probability of camouflage users is high, the effectiveness of the reverse
mechanism will also be affected, so, in our future work, we will try to use machine learning
clustering methods to reduce the weight of magnanimous malicious requesters, and we
plan to extend the TruthTrust to defend more complex threat patterns in crowdsourcing.



Sensors 2021, 21, 2578 16 of 17

Author Contributions: Conceptualization, L.Y. and Y.R.; Formal analysis, X.J.; Funding acquisition,
L.Y.; Investigation, X.J.; Software, J.Z. and L.X.; Supervision, Y.R.; Writing—original draft, J.Z. and
L.X.; Writing—review & editing, X.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant Nos. 62002092 and 61872120 and Zhejiang Provincial Natural Science Foundation of China
under Grant No. LQY19G030001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated during the current study are available from the
corresponding authors on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, Q.; Gao, J.; Lin, W.; Li, X. NWPU-crowd: A large-scale benchmark for crowd counting and localization. arXiv 2020,

arXiv:2001.03360.
2. Duan, Y.; Fu, G.; Zhou, N.; Sun, X.; Narendra, N.C.; Hu, B. Everything as a service (XaaS) on the cloud: Origins, current and

future trends. In Proceedings of the 2015 IEEE 8th International Conference on Cloud Computing, New York, NY, USA, 27 June–2
July 2015; pp. 621–628.

3. Wang, Q.; Gao, J.; Lin, W.; Yuan, Y. Learning from synthetic data for crowd counting in the wild. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 8198–8207.

4. Ye, B.; Wang, Y. Crowdrec: Trust-aware worker recommendation in crowdsourcing environments. In Proceedings of the 2016
IEEE International Conference on Web Services (ICWS), San Francisco, CA, USA, 27 June–2 July 2015; IEEE: New York, NY, USA,
2016; pp. 1–8.

5. Mao, K.; Capra, L.; Harman, M.; Jia, Y. A survey of the use of crowdsourcing in software engineering. J. Syst. Softw. 2017,
126, 57–84. [CrossRef]

6. Yuen, M.C.; King, I.; Leung, K.S. A survey of crowdsourcing systems. In Proceedings of the 2011 IEEE Third International
Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing, Boston, MA,
USA, 9–11 October 2011; IEEE: New York, NY, USA, 2011; pp. 766–773.

7. Xu, J.; Li, H. Adarank: A boosting algorithm for information retrieval. In Proceedings of the 30th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, The Netherlands, 23–27 July 2007;
pp. 391–398.

8. Miao, C.; Li, Q.; Xiao, H.; Jiang, W.; Huai, M.; Su, L. Towards data poisoning attacks in crowd sensing systems. In Proceedings of
the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing, Los Angeles, CA, USA, 25–28
June 2018; pp. 111–120.

9. Hirth, M.; Hoßfeld, T.; Tran-Gia, P. Cheat-Detection Mechanisms for Crowdsourcing; Tech. Rep; University of Würzburg: Würzburg,
Germany, 2010; Volume 4.

10. Wang, G.; Wang, B.; Wang, T.; Nika, A.; Zheng, H.; Zhao, B.Y. Defending against sybil devices in crowdsourced mapping services.
In Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services, Singapore, 25–30
June 2016; pp. 179–191.

11. Sanchez, L.; Rosas, E.; Hidalgo, N. Crowdsourcing under attack: Detecting malicious behaviors in Waze. In Proceedings of
the IFIP International Conference on Trust Management, Toronto, ON, Canada, 9–13 July 2018; Springer: Toronto, ON, Canada,
2018; pp. 91–106.

12. Wang, G.; Wang, B.; Wang, T.; Nika, A.; Zheng, H.; Zhao, B.Y. Ghost riders: Sybil attacks on crowdsourced mobile mapping
services. IEEE/ACM Trans. Netw. 2018, 26, 1123–1136. [CrossRef]

13. Raykar, V.C.; Yu, S. Eliminating spammers and ranking annotators for crowdsourced labeling tasks. J. Mach. Learn. Res. 2012,
13, 491–518.

14. Wang, J.; Ni, S.; Shen, S.; Li, S. Empirical study of crowd dynamic in public gathering places during a terrorist attack event.
Phys. A Stat. Mech. Its Appl. 2019, 523, 1–9. [CrossRef]

15. Kittur, A.; Chi, E.H.; Suh, B. Crowdsourcing user studies with Mechanical Turk. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, Florence, Italy, 5–10 April 2008; pp. 453–456.

16. Chen, K.T.; Chang, C.J.; Wu, C.C.; Chang, Y.C.; Lei, C.L. Quadrant of euphoria: A crowdsourcing platform for QoE assessment.
IEEE Netw. 2010, 24, 28–35. [CrossRef]

17. Hirth, M.; Hoßfeld, T.; Tran-Gia, P. Cost-optimal validation mechanisms and cheat-detection for crowdsourcing platforms. In
Proceedings of the 2011 Fifth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing,
Seoul, Korea, 30 June–2 July 2011; IEEE: New York, NY, USA, 2011; pp. 316–321.

http://doi.org/10.1016/j.jss.2016.09.015
http://dx.doi.org/10.1109/TNET.2018.2818073
http://dx.doi.org/10.1016/j.physa.2019.01.120
http://dx.doi.org/10.1109/MNET.2010.5430141


Sensors 2021, 21, 2578 17 of 17

18. Du, Y.; Sun, Y.E.; Huang, H.; Huang, L.; Xu, H.; Bao, Y.; Guo, H. Bayesian co-clustering truth discovery for mobile crowd sensing
systems. IEEE Trans. Ind. Inform. 2019, 16, 1045–1057. [CrossRef]

19. Liu, X.; Baras, J.S. Crowdsourcing with multi-dimensional trust and active learning. In Proceedings of the 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), Melbourne, Australia, 12–15 December 2017; pp. 3224–3231.

20. Lin, J.; Yang, D.; Wu, K.; Tang, J.; Xue, G. A sybil-resistant truth discovery framework for mobile crowdsensing. In Proceedings
of the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Richardson, TX, USA, 7–9 July
2019; pp. 871–880.

21. Huang, Z.; Pan, M.; Gong, Y. Robust truth discovery against data poisoning in mobile crowdsensing. In Proceedings of the 2019
IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6.

22. Ye, B.; Wang, Y.; Liu, L. Crowd trust: A context-aware trust model for worker selection in crowdsourcing environments. In
Proceedings of the 2015 IEEE International Conference on Web Services, New York, NY, USA, 27 June–2 July 2015; pp. 121–128.

23. Yuen, M.C.; King, I.; Leung, K.S. Task matching in crowdsourcing. In Proceedings of the 2011 International Conference on
Internet of Things and 4th International Conference on Cyber, Physical and Social Computing, Dalian, China, 19–22 October 2011;
IEEE: New York, NY, USA, 2011; pp. 409–412.

24. Jiang, J.; An, B.; Jiang, Y.; Lin, D. Context-aware reliable crowdsourcing in social networks. IEEE Trans. Syst. Man Cybern. Syst.
2017, 50, 617–632. [CrossRef]

25. Karger, D.; Oh, S.; Shah, D. Iterative learning for reliable crowdsourcing systems. Adv. Neural Inf. Process. Syst. 2011,
24, 1953–1961.

26. Yu, H.; Shen, Z.; Miao, C.; An, B. Challenges and opportunities for trust management in crowdsourcing. In Proceedings of
the 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, Macau, China, 4–7
December 2012; IEEE: New York, NY, USA, 2012; Volume 2, pp. 486–493.

27. Kantarci, B.; Glasser, P.M.; Foschini, L. Crowdsensing with social network-aided collaborative trust scores. In Proceedings of the
2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015; IEEE: New York, NY,
USA, 2015; pp. 1–6.

28. Ye, B.; Wang, Y.; Liu, L. CrowdDefense: A trust vector-based threat defense model in crowdsourcing environments. In
Proceedings of the 2017 IEEE International Conference on Web Services (ICWS), Honolulu, HI, USA, 25–30 June 2017; IEEE:
New York, NY, USA, 2017; pp. 245–252.

29. Zheng, Y.; Li, G.; Li, Y.; Shan, C.; Cheng, R. Truth inference in crowdsourcing: Is the problem solved? Proc. VLDB Endow. 2017,
10, 541–552. [CrossRef]

30. Li, Y.; Gao, J.; Meng, C.; Li, Q.; Su, L.; Zhao, B.; Fan, W.; Han, J. A survey on truth discovery. ACM Sigkdd Explor. Newsl. 2016,
17, 1–16. [CrossRef]

31. Li, Y.; Li, Q.; Gao, J.; Su, L.; Zhao, B.; Fan, W.; Han, J. On the discovery of evolving truth. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, 10–13 August 2015; pp. 675–684.

32. Kucherbaev, P.; Daniel, F.; Tranquillini, S.; Marchese, M. Crowdsourcing processes: A survey of approaches and opportunities.
IEEE Internet Comput. 2015, 20, 50–56. [CrossRef]

33. Ghezzi, A.; Gabelloni, D.; Martini, A.; Natalicchio, A. Crowdsourcing: A review and suggestions for future research. Int. J.
Manag. Rev. 2018, 20, 343–363. [CrossRef]

34. Bruneau, N.; Carlet, C.; Guilley, S.; Heuser, A.; Prouff, E.; Rioul, O. Stochastic collision attack. IEEE Trans. Inf. Forensics Secur.
2017, 12, 2090–2104. [CrossRef]

35. Deng, S.G.; Huang, L.T.; Wu, J.; Wu, Z.H. Trust-based personalized service recommendation: A network perspective. J. Comput.
Sci. Technol. 2014, 29, 69–80. [CrossRef]

36. Vakharia, D.; Lease, M. Beyond AMT: An analysis of crowd work platforms. arXiv 2013, arXiv:1310.1672.
37. Fahad, A.; Alshatri, N.; Tari, Z.; Alamri, A.; Khalil, I.; Zomaya, A.Y.; Foufou, S.; Bouras, A. A survey of clustering algorithms for

big data: Taxonomy and empirical analysis. IEEE Trans. Emerg. Top. Comput. 2014, 2, 267–279. [CrossRef]
38. Aljalbout, E.; Golkov, V.; Siddiqui, Y.; Strobel, M.; Cremers, D. Clustering with deep learning: Taxonomy and new methods. arXiv

2018, arXiv:1801.07648.

http://dx.doi.org/10.1109/TII.2019.2896287
http://dx.doi.org/10.1109/TSMC.2017.2777447
http://dx.doi.org/10.14778/3055540.3055547
http://dx.doi.org/10.1145/2897350.2897352
http://dx.doi.org/10.1109/MIC.2015.96
http://dx.doi.org/10.1111/ijmr.12135
http://dx.doi.org/10.1109/TIFS.2017.2697401
http://dx.doi.org/10.1007/s11390-014-1412-2
http://dx.doi.org/10.1109/TETC.2014.2330519

	Introduction
	Related Work
	Verification-Based Defense Model 
	Data Analysis Solution
	Workers' Properties Matching Mechanism
	Trust-Based Model

	TruthTrust Model
	Interaction Layer
	Truth Calculation Layer
	Reverse Mechanism

	Rating Calculation Layer

	Experiments and Analysis
	Experimental Setup
	Experiment 1: Effectiveness Analysis
	Experiment 2: Comparative Experiment
	Experiment 3: Validity of the Reverse Mechanism 

	Conclusions
	References

