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Single-cell RNA sequencing of murine islets shows
high cellular complexity at all stages of autoimmune
diabetes
Pavel N. Zakharov, Hao Hu, Xiaoxiao Wan, and Emil R. Unanue

Tissue-specific autoimmune diseases are driven by activation of diverse immune cells in the target organs. However, the
molecular signatures of immune cell populations over time in an autoimmune process remain poorly defined. Using single-cell
RNA sequencing, we performed an unbiased examination of diverse islet-infiltrating cells during autoimmune diabetes in the
nonobese diabetic mouse. The data revealed a landscape of transcriptional heterogeneity across the lymphoid and myeloid
compartments. Memory CD4 and cytotoxic CD8 T cells appeared early in islets, accompanied by regulatory cells with distinct
phenotypes. Surprisingly, we observed a dramatic remodeling in the islet microenvironment, in which the resident
macrophages underwent a stepwise activation program. This process resulted in polarization of the macrophage
subpopulations into a terminal proinflammatory state. This study provides a single-cell atlas defining the staging of
autoimmune diabetes and reveals that diabetic autoimmunity is driven by transcriptionally distinct cell populations
specialized in divergent biological functions.

Introduction
Type 1 diabetes (T1D) is a chronic progressive autoimmune
disease that results in β-cell demise caused by autoreactive
CD4 and CD8 T cells. Irremediable control of the disease leads
to permanent insulin dependence. Therefore, it is crucial to
understand the immunological events during initiation and pro-
gression of T1D. The information from such studies may
facilitate the development of targeted therapies for restricting
the autoimmune process. Examination of patients with T1D has
led to the identification of clinical stages in disease progression.
Early stages can be identified by the presence of autoantibodies to
β-cell proteins (Pihoker et al., 2005; Pietropaolo et al., 2012;
Ziegler et al., 2013), particularly to those reactive with native in-
sulin. Insulin is likely the primary autoantigen (Nakayama et al.,
2005; Zhang et al., 2008). Autoantibodies to other β-cell proteins
follow, showing an expansion of the autoreactivity that eventually
progresses to overt clinical disease (Ziegler et al., 2013). Limited
studies have been performed on human islets during the devel-
opment of T1D. Histopathologic changes showed heterogeneity in
the degree of islet inflammation, but a strict correlation between
immune cell composition and activation status with stages of
disease progression is difficult to establish using human speci-
mens, in which the time of initiation cannot be estimated.

Recent studies applied advanced imaging mass cytometry
techniques to compare the human pancreas in T1D patients and
in control individuals. Changes were found in islet structure and
size, vascularization, and levels of various immune cells, as well
as progressive cell loss preceded by infiltration of cytotoxic and
helper T cells in the pancreatic islets (Damond et al., 2019; Wang
et al., 2019). However, the analysis of stages during T1D pro-
gression is complicated formultiple reasons, particularly the late
manifestation of the disease and limited availability of samples.
Most human studies include recent-onset donors, in whom the
majority of β cells are already affected: the key information
regarding the autoimmune attack preceding β-cell death is
lacking.

The nonobese diabetic (NOD) autoimmune mouse model al-
lows us to obtain islets and examine at greater depth their cel-
lular contents during all stages of the autoimmune reactivity.
The disease process in the NOD mouse is chronic, a feature
similar to human T1D, but more compact in time, as would be
expected, such that the different stages can be precisely iden-
tified. Because it is an inbred strain with a predictable outcome
(>80% penetrance of diabetes in our colony), the staging is less
variable among the mice. Overall, such informationmay provide
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insight for interpreting human disease. By conventional flow
cytometry analysis and immunoimaging, we and others have
identified the cellular landscape of the islets in NOD mice and
found that its progression can be parsed into several discrete
phases (Jansen et al., 1994; Anderson and Bluestone, 2005;
Carrero et al., 2013). We detected the first T cells in the islets
at ∼3 wk, as soon as mice were weaned. (Our mouse colony is
representative; diabetes develops by 18–20 wkwith an incidence
of >80%.) T cells are found always in contact with the resident
macrophages, much before the development of dysglycemia
(Carrero et al., 2013; Mohan et al., 2017). Macrophages are the
normal resident myeloid cells of islets, but dendritic cells (DCs)
enter at the start of the diabetic process (Anderson and
Bluestone, 2005; Jansen et al., 1994; Ferris et al., 2014;
Klementowicz et al., 2017). Both present peptides derived from
insulin (Ferris et al., 2014). Insulin is the main autoantigen
driving this process (Wegmann et al., 1994; Nakayama et al.,
2005). A recent study delineated important features of
insulin-specific CD4 T cells based on selected gene expression
profiles using single-cell quantitative PCR (qPCR), showing
plasticity of T cells in islets at the single-cell level for the first
time (Gioia et al., 2019). Given that T cells specific to β-cell
products make islets receptive for nonspecific T cells to enter
(Calderon et al., 2011a), and given the complex interactions be-
tween innate and adaptive immune cells that occur in islets, a
comprehensive study to analyze islets at both cellular and mo-
lecular levels during disease progression from the very early
stage is needed.

Our laboratory performed a chronologic examination of
transcriptional signatures of NOD islets during diabetes devel-
opment, showing progressive changes in the expression of genes
linked to inflammatory responses (Carrero et al., 2013). Several
reports from other laboratories in which examination of islets
was performed at selected time points agree in general with our
conclusions (Miyazaki et al., 1985; Jansen et al., 1994; Magnuson
et al., 2015). Whole-islet transcriptional analysis of highly di-
verse infiltrating cells, however, is difficult to relate to particular
sets of lymphocytes and innate cells. Single-cell RNA sequencing
(sc-RNASeq) is a powerful technology enabling unbiased iden-
tification of new cell subsets and their activation programs.
Here, we used this tool to understand the diversity of immune
cell subpopulations and their transcriptional heterogeneity at
three critical time periods. T cells show a complex cellular
composition from the very early stage, including subsets with
memory and cytotoxic activity harboring finely tuned regula-
tory mechanisms. Considering the importance of the innate
myeloid cells in the initiation of autoimmunity, we placed a
major emphasis on the analysis of DCs and islet-resident
macrophages.

Results
Single-cell analysis reveals complex immune cell
heterogeneity in islets during diabetes development
We performed sc-RNASeq on immune cells, endothelial cells,
and mesenchymal cells isolated from pancreatic islets (Fig. 1 A).
The leukocytes (CD45+) and vascular (CD45−CD31+) and islet

mesenchymal cells (CD45−CD90+; Chase et al., 2007; Carlotti
et al., 2010) were subjected to 10X Genomics pipeline barcod-
ing, library preparation, and sequencing (Zheng et al., 2017;
Fig. 1 A and Fig. S1 A). We chose three time points, reflecting the
major steps in autoimmune development: 4, 8, and 15 wk of age.
These three stages corresponded to a progressive increase of
intra-islet leukocyte infiltration (Fig. 1 B). 4 wk is about the first
time that the first infiltrating T cells can be identified; 8 wk
represents a time when leukocyte infiltration is prominent in
most islets, still with no evidence of dysglycemia; and 15 wk is
just before the time when clinical diabetes becomes evident.
Thus we cover the early stage, the apparent “control” stage, and
the advanced prediabetic period (Jansen et al., 1994; Carrero
et al., 2013).

We identified the major immune and nonimmune cell pop-
ulations (Fig. 1 C and Fig. S1 B) using a graph-based clustering
approach and t-distributed stochastic neighbor embedding
(t-SNE) dimensionality reduction implemented in Seurat pack-
age (Butler et al., 2018; Stuart et al., 2019). Cell identity was
assigned based on the expression of hallmark genes (Fig. 1 D and
Fig. S1 C), confirmed in the ImmGen database to be the appro-
priate markers (Fig. S1 D). In total, we obtained 16,702 leuko-
cytes and 28,414 nonimmune cells at the three combined time
points. In this report, we focus on leukocytes.

The major populations of CD45+ cells included T cells, B cells,
macrophages, conventional DCs (cDCs), and plasmacytoid DCs
(pDCs; Fig. 1 C). Among these, macrophages are the only cells
resident in islets since birth (Calderon et al., 2015). At all ages,
most of the intra-islet infiltrate was represented by T cells,
B cells, and cDCs (Fig. 1, E and F). These were present as early as
4 wk of age and exhibited strong expansion as diabetes pro-
gressed. Importantly, examination of islets from 2-wk-old mice
showed only the resident macrophages. The presence of the
major intra-islet populations was validated by flow cytometry
(Fig. 1 G). The pattern of infiltration identified by sc-RNASeq
recapitulated the flow cytometry data (Fig. 1 H).

Lymphoid immune cell populations in the pancreatic islets
The intra-islet lymphoid population in addition to B cells and
CD4/CD8 α/β T cells included a number of minor populations:
γ/δ T cells, natural killer (NK), and NKT cells and innate lym-
phoid cells (ILCs), characterized by expression of cell-associated
markers (Fig. 2, A and B). The γ/δ T cells were identified based
on the coexpression of genes encoding T cell receptor γ constant
region 1, 2, and Cd3e (Fig. 2 C). Additionally, NK cells (positive for
Eomes, Ncr1, encoding NKP46, Klra8, encoding Ly-49h, and Klra1)
and NKT cells (positive for Cd3e, Klra1; negative for Cd4, Cd8a,
Klra8, Eomes) were found (Fig. 2 C). While the CD4 and CD8
T cells showed strong expansion, the minor lymphoid cells ex-
panded to a veryminor degree, more noticeable at the late 15-wk
stage (Fig. 2 D). The presence of some of these minor pop-
ulations, such as ILC2, ILC3, γ/δ T cells, and NK cells, was con-
firmed by flow cytometry (Fig. 2, E and F) and was also reported
in other studies (Falcone et al., 2004; Markle et al., 2013; Dalmas
et al., 2017).

As shown in Fig. 1 E, a small number of B cells were found in
islets at 4 and 8 wk, increasing by week 15. We also identified a
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low number of plasma cells (highly positive for genes encoding
immunoglobulin constant regions of heavy chains and J chain;
see Fig. S1, C and D) along with cycling B cells (Fig. 2 G),
having up-regulated cell cycle–related transcriptional pro-
grams (Fig. 2, H and I). B cells are important in the diabetic
autoimmune process (Serreze et al., 1996), most likely by

presenting islet antigens (Noorchashm et al., 1999; Silveira
et al., 2002; Wan et al., 2020) and recognizing insulin, the
major protein of the β cells (Kendall et al., 2007; Henry-
Bonami et al., 2013; Felton et al., 2018). In sum, from the
very start of the diabetogenic process, islets harbor a range of
various infiltrating leukocytes.

Figure 1. Single-cell analysis revealed complex immune cell heterogeneity in the islets during diabetes development. (A) Schematics of the experi-
mental pipeline. (B) Islet leukocyte infiltration levels at different stages. Shown are representative flow cytometry data from three independent experiments.
(C) t-SNE projection and graph-based clustering of pancreatic islet immune cells pooled together from 4-, 8-, and 15-wk-old NOD mice. (D) Expression of
canonical immune cell markers in clusters of cells. (E) t-SNE plot from C split by the three ages. (F) Fraction of immune cell populations relative to all islet cells
as a function of disease progression. (G) Flow cytometry identification of major myeloid and lymphoid populations in the islets of 8-wk-old NOD mice. Shown
are representative data from four independent experiments. (H) Cellular composition of islet infiltrate evaluated by flow cytometry as in G. Data are mean ± SD
(error bars) based on three or four independent biological replicates; cDCs and pDCs were combined.

Zakharov et al. Journal of Experimental Medicine 3 of 20

Single-cell RNASeq analysis of islets in autoimmune diabetes https://doi.org/10.1084/jem.20192362

https://doi.org/10.1084/jem.20192362


CD4 T cells contain a mixture of effector and regulatory
phenotypes starting from the initial stage of the
autoimmune response
We analyzed 2,649 CD4 T cells pooled from the three time
points. Leveraging annotated immunologic gene pathways (see

Materials and methods) allowed us to dissect them into seven
distinct populations: CD4-0, CD4-1,4,5, CD4-2, CD4-3, CD4-6,
CD4-7, and CD4-8 (Fig. 3 A and Fig. S2 A). (Populations were
referred to by a number with one or two marker genes in pa-
rentheses.) These sets differed by expression of a number of

Figure 2. Lymphoid immune cell populations in the pancreatic islets. (A) t-SNE projection plot of T cells and ILC populations merged from the three time
points. T cells and other minor lymphoid cells from Fig. 1 C (left) were separated from other immune cells and reclustered to increase resolution (right). (B) Heatmap
showing differentially expressed genes driving cell heterogeneity (LFC > 0.3, adjusted P < 0.05, nonparametric Wilcoxon rank sum test). Populations were randomly
subset to have 200 cells per group maximum. (C) Violin plots showing expression profile of genes in the lymphoid populations. (D) Cell abundance frequencies
relative to the total number of islet cells as a function of autoimmune development. (E and F) Flow cytometry validation of the α/β and γ/δ T cells (E) and ILC2, ILC3,
and NK cells (F) in the islets of 15-wk-old NOD mice. Data are representative of three independent experiments. (G) t-SNE projection and graph-based clustering of
B cells pooled from 4-, 8-, and 15-wk-old NOD mice samples. (H) Hypergeometric pathway analysis of Bcell-1 gene signature using hallmark MSigDB database.
Benjamini–Hochberg correction for multiple hypothesis testing was applied. (I) Expression of markers of proliferation in clusters of B cells.
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markers corresponding to various T cell activation states (Lef1,
Ccr7, Ikzf2, Foxp3, Pdcd1, etc.; Fig. 3 B and Fig. S2 B) and were
identified based on their unique transcriptional signatures (Table
S1), as naive, effector, memory, regulatory, and anergic sets (Fig. 3
C; see also Materials and methods and Fig. S2 C). These various
sets were clearly distinguished over the time course (Fig. 3 D).

Although in small numbers, the CD4 T cells at 4 wk were
already heterogeneous. Their level increased from the week 8 to
week 15, but varied among the various populations (Fig. 3 E, left
panel). The salient issue to emphasize is that during the three
time points, the islets contained regulatory/anergic cells to-
gether with effector/memory ones.

The CD4-0(Lef1) (expressed Lef1) was considered a “naive”
set, which may well include nonspecific T cells that enter in-
flamed, “receptive” islets (Calderon et al., 2011a). The effector
cycling set CD4-1,4,5(Ptma) was consistently found at all times
(Fig. S2 D and Fig. 3 E).

The regulatory population consisted of two distinct sets: CD4-
3(Foxp3) and CD4-6(Lag3, IL10). Both expressed Tnfrsf18 (glu-
cocorticoid-induced tumor necrosis factor receptor [GITR]),
Ikzf2, Arl5a (Fig. S2 E). The CD4-3(Foxp3) represented classic
Foxp3 positive regulatory T cells (Fig. 3 F), while CD4-6(Lag3,
IL10) was negative/low for Foxp3 and coexpressed genes en-
coding IL-10 and IFN-γ (Fig. 3 B). This latter set corresponds to
the type 1 regulatory cells (Tr1; Roncarolo et al., 2006). Tr1 cells
produce high levels of an anti-inflammatory cytokine IL-10, as well
as IFN-γ, while undergoing activation in an antigen-specific man-
ner (Chihara et al., 2016; Clemente-Casares et al., 2016). To sum-
marize, the two populations potentially controlling the autoimmune
process were present in the islets at all stages, even at 4 wk of age.

We also identified an anergic set of CD4 T cells, group CD4-
2(Tnfsf8). This set was identified by the expression of genes
encoding negative regulators of immune response (Ctla4, Pdcd1,
Lag3, Lgals1, Cd200) and also FR4 (Folr4/Izumo1r; Fig. 3 G),
markers associated with CD4 T cell anergy (Crespo et al., 2013;
Kalekar et al., 2016). This anergic set expanded by the 15-wk
time point, highlighting another control established in the is-
lets during progression (Fig. 3 E).

The pathogenic CD4 T cells were represented by the effector/
memory population, meaning cells that experienced previous
antigenic stimulation. These sets increased at week 15, when
β-cell mass starts decreasing (Fig. 3 E, left). This effector/
memory population consisted of two transcriptionally distinct
groups: CD4-7(Itgb1,Ccr7) and CD4-8(Itgb1, Cxcr6). Both were
positive for memory-associated genes Il7r and Klf2 (Fig. 3 B and
Fig. S2 E; Kondrack et al., 2003; Weinreich et al., 2009). Both
also expressed Itgb1, the gene encoding integrin β1 (CD29), part
of the VLA-4 complex (α4β1) that binds VCAM1 molecule on
inflamed islet endothelium (Calderon et al., 2011b). However, on
the basis of expression of Ccr7 gene and other activation mark-
ers, these two subsets were separated into the T effector mem-
ory phenotype (Cxcr6+, Ly6c1+, and Id2+) and T central memory
phenotype (Ccr7+; Sallusto et al., 1999; Fig. 3 H). Separation of the
two memory populations and the presence of naive, regulatory,
and effector subsets were validated at the protein level based on
markers found in the current study (Fig. S2, F and G). In sum,
CD4 T cells in islets show marked transcriptional heterogeneity,

with mixtures of effector, regulatory, anergic, and naive T cells
all at various stages, most likely influencing each other.

CD8 T cells exhibit extensive function-related heterogeneity
starting from the initial stage at 4 wk
Analysis of the 1,873 CD8 T cells pooled from three time points
revealed eight populations (CD8-0, CD8-1, CD8-2, CD8-3, CD8-4,
CD-5,7, CD8-6, and CD8-8; see Fig. 4 A). These sets were char-
acterized by expression of genes corresponding to different ac-
tivation states (Fig. 4 B and Table S2). The various patterns were
based on the population-specific gene signatures (Fig. S3 A and
Table S2). CD8-3(Junb) was the only cluster defined by <15 genes
(13) andwas not further characterized. The various sets included
early effector CD8-5,7(Hmgb2) and CD8-1(Xcl1); and late effector
(cytotoxic) CD8-2(Gzma); one naive state, CD8-6(Lef1); and two
exhausted states, CD8-8(Tcf7, Tox) and CD8-0(Lag3, Pdcd1)
(Fig. 4 C; see also Fig. S3, B and C).

As with the CD4 T cells, the CD8 T cells at 4 wk of age were
heterogeneous and, to our surprise, already contained the CD8-
2(Gzma) population (Fig. 4, D and E). This set represented the
CTL group positive for cytotoxic molecules, such as Gzma, Gzmb,
Gzmk, Klrc1, Klrc2, Klre1, and Klrk1 (Fig. 4 F). Similarly to CD4
T cells, the presence of the CTLs at the early time point indicates
that the cells already contained a stigma of activation, perhaps
acquired via priming in the peripheral lymphoid tissue, most
likely in the draining pancreatic node (Gagnerault et al., 2002).
Cycling effector CD8-5,7(Hmgb2) and naive CD8-6(Lef1) were
present at this stage as well (Fig. 4, D and E).

At the 8- and 15-wk time points, the CD8T cells expanded 7- and
22-fold, respectively, along with dramatic changes in composition
(Fig. 4 E). These changes were characterized by the emergence of
the early effector CD8-1(Xcl1) and memory CD8-4 (positive for Il7r,
Cd28, Ifng, and Cd40lg; Fig. 4 G and Table S2) and, at the same time,
the exhausted cells. The CD8-1(Xcl1) was similar to the effector
cycling group CD8-5,7(Hmgb2) in expressing genes linked to the
Myc and MTORC1 pathways but lacking the gene expression as-
sociated with the cell-cycle phenotype (Fig. S3, D and E).

The exhausted group consisted of two populations: CD8-
0(Lag3, Pdcd1) and CD8-8(Tcf7, Tox). Both were positive for
markers associated with the exhausted phenotype: Pdcd1 (PD-1),
Lag3, and Tox (Fig. 4, B and H; Yao et al., 2019), but were
differentiated by the Tcf7 transcript, which was strongly up-
regulated in CD8-8(Tcf7, Tox) (Fig. S3 F) and showed correla-
tion with this phenotype (Fig. S3 G). The Tcf7 gene encodes
transcription factor TCF1, previously shown to mark exhausted
CD8 T cells that potentially give rise to cells with effector
functions in response to checkpoint blockade (Im et al., 2016;
Utzschneider et al., 2016; Wu et al., 2016; Siddiqui et al., 2019).

Strikingly, the only set that did not increase at 15wkwas the CTL
group, CD8-2(Gzma) (Fig. 4 E, left).Moreover, its abundance relative
to the total CD8 cohort dramatically dropped (Fig. 4 E, right), indi-
cating that expansion of this population was under strict regulation.

In sum, heterogeneity was also found for CD8 T cells. Sur-
prisingly, CD8 CTLs were already in islets at the 4-wk period but
did not increase. At the time of effector reactions (15 wk), they
represented a minor population. Note that we found the ex-
hausted population that expresses Tcf7.
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cDCs include cDC1 and cDC2 groups, both responding
to inflammation
We analyzed 2,031 cDCs pooled from 4-, 8-, and 15-wk-old NOD
mice and identified two major populations: cDC1 and cDC2

(Fig. 5 A). Both were present at 4 wk and expanded during
progression (Fig. 5 B, left). cDC2 was the predominant set at all
stages (Fig. 5 B, right). cDC1 expressed genes corresponding to
the Batf3-dependent CD103+ cDC1: Xcr1, Cd24a, Irf8, and Batf3

Figure 3. CD4 T cells contained mixture of the effector and regulatory phenotypes starting from the initial stages. (A) t-SNE plot of CD4 T cells, all
time-course samples merged. (B) Feature plots depicting single-cell expression of several markers driving CD4 T cell heterogeneity. (C) GSEA summary of each
population’s gene signatures interrogated against published transcriptional datasets (see Materials and methods and Fig. S2). Columns correspond to the CD4
T cell signatures, and rows correspond to the reference datasets, color-coded to indicate normalized enrichment score. (D) t-SNE plot of CD4 T cells (as in A)
split by the three ages of NOD mice. (E) Proportion of CD4 T cell populations relative to all islet cells (left) and relative frequencies of populations (right) as a
function of T1D development. (F–H) Volcano plots showing differential gene expression between clusters of cells, based on nonparametric Wilcoxon rank sum
test with Benjamini–Hochberg correction for multiple testing. Log N fold cutoff of 0.25 used. Genes of interest are labeled.
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(Fig. 5 C; Murphy, 2013; Grajales-Reyes et al., 2015). This set was
shown to be indispensable for diabetes initiation in NOD mice
(Ferris et al., 2014).

The cDC2 group expressed the Sirpa gene (Fig. 5 C) but was
heterogeneous, comprising three populations: cDC2(Ccr7),
cDC2(Mgl2), and cDC2(Ltb). High expression of Ccr7 in

cDC2(Ccr7) (Fig. 5, D and E) marked the CCR7+ cDC2 group with
potential migratory activity from the sites of inflammation to
the draining lymph node (Dieu et al., 1998; Allavena et al., 2000).
The cDC2(Mgl2) set uniquely expressed Ccl17 andMgl2 (encoding
CD301b protein), pointing to the CD301b+ cDC2 (Kumamoto
et al., 2013), which shares some features with monocytes and

Figure 4. CD8 T cells exhibited extensive function-related heterogeneity starting from the initial stage of inflammation. (A) t-SNE plots of CD8 T cells
pooled together from all time-course samples. (B)Marker gene expression in CD8 T cell clusters. (C) GSEA of signatures of CD8 T cell populations interrogated
against published transcriptome of CD8 T cell phenotypes (see Materials and methods). The color code depicts normalized enrichment score. (D) t-SNE plot
from A split by age. (E) Fraction of cells in each population relative to the total number of islet cells (left) and relative frequencies of populations (right) as a
function of time. (F–H) Volcano plots depict differential gene expression between clusters of cells, based on nonparametric Wilcoxon rank sum test. Log N fold
cutoff of 0.25 used. Genes of interest are labeled.
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macrophages, such as expression of genes encoding Fc receptors
(Fig. 5 D). This group did not belong to the macrophage popu-
lation, as it was negative for Emr1(F4/80), expressed by islet
macrophages, and did not express the transcription factor Mafb
(Fig. 5 F). The last group, cDC2(Ltb) represented the largest
population over the time course. These cells had elevated levels
of Havcr2 gene encoding Tim-3, potential negative regulator of
cDC activation (Chiba et al., 2012).

In addition to the cell type heterogeneity, we identified a
superimposed inflammatory signature (see Materials and
methods), manifested by a number of IFN-γ–inducible genes,
such as Cxcl9, Ly6a, and Gbp2 (Fig. 5 G). Such a signature was
identified in a fraction of both the cDC1 and cDC2 subsets, re-
flecting the ability of all cDCs to equally respond to the auto-
immune milieu of the islets (Fig. 5 H). The proportion of these
activated cDCs was similar between cDC1 and cDC2 and in-
creased as diabetes progressed over time (Fig. 5 I). The presence
of both cDC1 and cDC2 populations was confirmed by flow cy-
tometry (Fig. 5 J). To summarize, the analysis of DCs indicated
the presence of cDC1 and newly characterized cDC2 subsets,
both responding to inflammatory cues.

Inflammation-induced program of activation in islet
macrophages is revealed by the whole population (bulk)
RNASeq analysis
Macrophages are the only resident myeloid cells found under
normal conditions in islets of all mouse strains. In steady state,
macrophages support the function of endocrine cells (Banaei-
Bouchareb et al., 2004; Geutskens et al., 2005; Calderon et al.,
2015). In NOD mice, they have an indispensable role in the in-
itiation of the autoimmune process, likely by controlling the
initial entrance of T cells: their ablation results in strong pro-
tective effects (Carrero et al., 2017). In our previous study, we
identified the first inflammation-induced changes in macro-
phages (Ferris et al., 2017) by 3 wk of age.

Here we expanded our transcriptional analysis, performing
whole-population RNASeq on FACS-purified macrophages from
2-, 4-, 8-, and 12-wk-old NODmice. The rationale was to get deep
transcriptional information, often not available from sc-RNASeq.
To distinguish the immune response from age-related changes,
we complemented our analysis with samples from nondiabetic
age-matched control C57BL/6J (B6) mice (Fig. 6 A).

Principal component analysis (PCA) revealed progressive
changes in the transcriptomes, matching disease progression
(Fig. 6 B). We found 1,216 differentially expressed genes up-
regulated in the 12-wk sample compared with the 4-wk sample
(Fig. 6 C). Many of the elevated responses were downstream of
IFN-γ signaling, IL-2/STAT5, and IL-6/STAT3 axis (Fig. 6 D). The
transcripts with elevated expression corresponded to genes in-
volved in antigen presentation and interaction with T cells, such
as genes encoding MHC-II complex (H2-Ab1, H2-Aa, H2-Eb1),
MHC-I (H2-Q4, H2-Q6, H2-K1, B2m), costimulatory molecules
(Cd40, Cd86), inflammatory cytokines (Ccl2, Ccl5, Ccl7, Ccl8, Cxcl9,
Cxcl13), negative regulators of immune response (Cd274/PD-L1,
Lag3), and transcription factors (Ciita, encodes MHC-II trans-
activator, Stat1, Stat3, Hif1a, Klf4, Fos, Fosb). Fig. S4 A shows that
differentially expressed genes progressed in time from 4 wk of

age. The B6 control group exhibited no autoimmune-related
changes (Fig. 6 E).

Subsets of islet macrophages include both pro- and
anti-inflammatory populations
The sc-RNASeq analysis of 5,975 macrophages revealed tran-
scriptionally distinct clusters at the three time points; five main
sets were identified (Fig. 7 A). Each had a unique transcriptional
signature and functional markers (Fig. 7 B and Table S3), in-
cluding markers associated with inflammatory activation (Ccl3,
Atf3, Cxcl9, Stat1, Cd40), regulatory and scavenging functions
(Il1rn, Lgals1, Lgals3, Cd36, Anxa5), and cell-cycle genes (Stmn1,
Mki67).

Mac-1(Apoe) showed limited changes in time (Fig. 7, C and
D). It was characterized by elevated levels of Apoe and Trem2 but
lacked an inflammatory gene signature (Fig. 7 B). This group
consisted of three subsets (Fig. S4 B): its complex composition
probably reflected stages of macrophage maturation, based on
differences in expression of genes encodingMHC-I, MHC-II, and
a number of transcription factors (Fig. S4, C–F).

Mac-5(Stmn1) expressed genes linked to the cell-cycle path-
way (Fig. 7 E), indicating the self-replicating capacity of islet
macrophages. This finding is consistent with our previous re-
port (Calderon et al., 2015), but now shows that such a replica-
tive capacity is present throughout diabetes progression. We
consider the Mac-1(Apoe) and Mac-5(Stmn1) sets to represent
macrophages involved in islet functions uninfluenced by an
autoimmune response.

We identified two groups of inflammatory activated macro-
phages, Mac-2(Atf3) and Mac-3(Cxcl9) (Fig. 7, A and B). The
Mac-2(Atf3) set did not show major changes over the time
course (Fig. 7, C and D). It was characterized by strong NF-κB
signaling activation, with elevated levels of NF-κB–inducible
transcripts, including genes encoding inflammatory cytokines
Ccl3, Ccl4, Cxcl2 (macrophage inflammatory proteins 1-α, 1-β, and
2-α), Atf3, Ccrl2, and Dusp1 (Fig. 7, F and G).

The hallmark feature of Mac-3(Cxcl9), aside from an NF-κB
signature (Fig. 7 H), was the elevated expression of genes en-
coding several cytokines, costimulatory molecules, and mole-
cules involved in antigen presentation. Of note was a high
expression of the genes encoding IL12/IL23 subunit p40 (Il12b),
CD40, MHC-I (H2-Q6,H2-Q4,H2-K1), andMHC-II molecules (H2-
Aa,H2-DMa,H2-DMb1,H2-DMb2; see Fig. 7 I and Fig. S4 F). It also
had up-regulated expression of transcripts related to proteaso-
mal peptide processing (Psmb8, Psme2b, Psme2, Psme1, Psmb9) and
class I antigen presentation (Tap1, Tap2, Tapbp; Fig. S4 F and
Table S3). Importantly, this population was the only one that
showed continuous strong expansion during T1D progression:
approximately four-fold relative increase from 4- to 15-wk
sample (Fig. 7, C and D). Its signature matched the inflamma-
tory transcriptional response found throughout diabetes using
whole-population RNASeq (Fig. 6, D and E). Based on the ki-
netics of this population and its strong inflammatory signature,
we identified this group as a highly pathogenic cluster pro-
moting autoimmunity.

This Mac-3(Cxcl9) population comprised two distinct sub-
sets, both having strong up-regulation of IFN-γ–inducible genes
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Figure 5. cDCs included cDC1 and cDC2 groups, both responding to inflammation. (A) t-SNE visualization of the cDCs merged from all samples.
(B) Abundances of each cDC population as a fraction of total islet cells in a time course of T1D development. (C) Heatmap showing top differentially expressed
genes between two main subsets (LFC > 0.3, adjusted P < 0.05). (D) Differential gene expression among cDC2 subsets. (E) Expression of markers driving
heterogeneity between cDC subtypes. (F) Violin plots indicating the expression of macrophage/DC markers between whole macrophage population (Mac) and
cDC2Mgl2-positive subset. (G) Heatmap showing the inflammation-related differences across populations of DCs (LFC > 0.3, adjusted P < 0.05; see Materials
and methods). (H) t-SNE plot of DCs (as in A) colored by inflammatory activation status. (I) Inflamed and quiescent subsets of islet cDCs along the time course.
(J) Flow cytometry validation of cDC1 and cDC2 subsets in the islets of 8-wk-old NOD mouse (data were merged from three biological replicates obtained in
two independent experiments). Differential expression for C, D, and G was performed using nonparametric Wilcoxon rank sum test and corrected for multiple
testing with Benjamini–Hochberg method.
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(Fig. S4, B and F). The two were distinguished because the
Mac3(Cxcl9)-2 expressed a number of genes found in mono-
cytes: Ccr2, Ly6c1, and Plac8; it also had decreased levels of C1qa,
C1qb, C1qc, Apoe, and Ms4a7 (Fig. S4 G). The other subset, Mac-
3(Cxcl9)-3, lacked the monocytic markers. From these differ-
ences, we surmised that Mac3(Cxcl9)-2 was monocyte derived,
while in contrast, Mac-3(Cxcl9)-3 developed from the resident
macrophages. This observation suggests that during disease
progression, monocytes enter islets and may contribute to the
inflammatory status.

In contrast to the general inflammatory groups, Mac-
4(Prdx1) had a gene signature associated with alternative acti-
vation of macrophages: lysosomal activity, extracellular matrix
protein expression, and iron processing (Fig. 7 E). This set ex-
pressed genes encoding annexins (Anxa1, Anxa2, Anxa4, Anxa5;

Fig. 7 B), the scavenging receptor Cd36, and galectin3 (Lgals3).
This gene signature strongly points to this set as specialized in
efferocytosis, apoptotic cell clearance, an activity that may im-
pose negative responses against inflammation (Arandjelovic and
Ravichandran, 2015). Indeed, we also found elevated expression
of genes with protective and strong anti-inflammatory function such
as Prdx1 encoding peroxiredoxin 1, an antioxidant enzyme (Park et al.,
2017); the IL1 receptor antagonist (Il1rn), and galectin 1 (Lgals1) and
galectin 3 (Lgals3), which have potent anti-inflammatory activity
(MacKinnon et al., 2008; Perone et al., 2009; Volarevic et al., 2010).
Low in numbers from the beginning of inflammation, Mac-4(Prdx1)
was the only set that further decreased in proportion as autoimmu-
nity moved forward (Fig. 7, C and D).

Macrophages and DCs responded to inflammation in the
islets, and the transcriptional programs imprinted by the

Figure 6. Inflammation-induced program of activation in islet macrophages revealed by the whole population (bulk) RNASeq analysis. (A) Exper-
imental design. (B) PCA of islet macrophages at different stages of T1D (NODmice) and age-matched nondiabetic control C57BL/6J (B6) mice. Each replicate is
an independent biological sample. (C) Expression scatter plot showing differential gene expression between islet macrophages from 4- and 12-wk-old NOD
mice, log2 scale. Genes with fold change >2 and adjusted P < 0.05 are highlighted in color. (D) Hypergeometric pathway analysis showing pathways up-
regulated in 12- versus 4-wk-old NOD sample based on differentially expressed genes from C and hallmark MSigDB database. (E) Heatmap depicting top 300
genes (by adjusted P) differentially up-regulated in 12-wk-old NOD versus 4-wk-old NOD sample (fold change >2, all adjusted P < 0.05). Differential expression
for C and E was tested using negative binomial generalized linear model and Wald test in DESeq2. Results in C–E were corrected for multiple testing with
Benjamini–Hochberg method.
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Figure 7. Subsets of islet macrophages included both proinflammatory and anti-inflammatory populations. (A) t-SNE plot showing clusters of islet
macrophages merged from 4-, 8-, and 15-wk-old NODmice samples. Dashed lines encompass the general populations containing one, two, or three subclusters
(see Fig. S4 B). (B) Heatmap of top (limited to 70) differentially expressed genes driving heterogeneity among populations of macrophages (LFC > 0.3, adjusted
P < 0.05). Labels on the left indicate the main features of each group. (C) Abundance of each population relative to the total number of islet cells at each stage.
(D) Relative proportion fold change (relative to 4-wk-old) for each population as a function of progression. (E, F, and H) The hypergeometric pathway analysis
between two indicated conditions based on MSigDB pathways: canonical c2 (E) and hallmark (F and H). (G and I) Volcano plots showing differentially ex-
pressed genes in pairwise comparisons between groups of macrophages. (J) Scatter plot illustrating differential gene expression (absolute log2 fold change
value > 0.3, adjusted P < 0.05) in activated macrophages and DCs (red, genes with mutually elevated expression in both macrophages and cDCs; green and
blue, only in one condition). Differential expression for B, G, I, and J was performed using nonparametric Wilcoxon rank sum test and corrected for multiple
testing with Benjamini–Hochberg method.
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autoimmune responses were similar between them (Fig. 7 J).
Both cells strongly up-regulated IFN-γ–inducible inflammatory
transcripts (Stat1, Cxcl9, Cxcl10, Cd40, Cd274/PD-L1), but also had
a number of genes specifically elevated in each of them (Fig. 7 J).
In particular, macrophages up-regulated expression of several
genes encoding inflammatory cytokines and MHC-I and MHC-II
complexes, suggesting their nonredundant function in T1D.

sc-RNASeq of control strains delineates steady-state versus
inflammation-induced macrophage subsets
We examined islets from two variant NOD mice: NOD.Rag1−/−

mice lack mature lymphocytes and consequently are free of di-
abetes; NOD.Ifngr1−/− mice lack the gene encoding the type II
interferon receptor. IFN-γ is a major macrophage-activating
cytokine. In our colony, NOD female mice lacking the type II
interferon receptor signaling have reduced disease incidence,
along with a diminished frequency of the islet-infiltrating T cells
(Carrero et al., 2018). To examine these additional samples, we
supplemented the NOD time-course data with the samples from
these knockout mice and reclustered the merged sample (Fig. S5
A). The identification of previously described subpopulations
was confirmed by the gene markers (Fig. S5 B).

Examining the macrophages from the islets of the NOD.Rag1−/−

micewas instructive. The twomain sets were represented byMac-
2(Atf3) and Mac-1(Apoe) (Fig. 8 B). The finding of Mac-2(Atf3) in
NOD.Rag1−/− mice confirms that the basal activation program is
independent of an autoimmune process (Ferris et al., 2017). Two
other sets at lower levels included the anti-inflammatory group
Mac-4(Prdx1) and a very low level of the cell-cycling group Mac-
5(Stmn1).

Mac-3(Cxcl9), the second proinflammatory set, resulted
from autoimmunity, because it was completely absent in the
NOD.Rag1−/− sample. Furthermore, this population was not
found in NOD.Ifngr1−/− mice (Fig. 8 B), demonstrating its de-
pendence on IFN-γ signaling.

Single-cell pseudotime analysis reveals a two-step program of
macrophage activation
To obtain a deeper insight into the transcriptional path, corre-
sponding to the changes in macrophages, we performed pseu-
dotime analysis using Monocle3 software (Trapnell et al., 2014;
Fig. 8 C). This approach allowed us to deduce the transcriptional
trajectory of macrophages at the single-cell level as they pro-
gressively changed their gene expression profile during the
autoimmune process. The 2D uniform manifold approximation
and projection (UMAP) plot revealed transitions among the
various sets during diabetes development (Fig. 8 C).

Progression along pseudotime started with the cell cycling
group Mac-5(Stmn1) (see Materials and methods), and then
through the other sets found in nondiabetic mice, ending with
the most distant from the entry point group, represented by the
autoimmune-specific Mac-3(Cxcl9) (Fig. 8 C). This pattern was
also seen by the expression of marker genes (Fig. 8 D).

Furthermore, the pseudotime analysis revealed a stepwise
pattern of macrophage inflammatory activation, consisting at
the cellular level of two consecutive stages represented by two
proinflammatory populations (Fig. 8 C): stage 1 was represented

by Mac-2(Atf3) and stage 2 by Mac-3(Cxcl9). Based on pseudo-
time analysis, Mac-3(Cxcl9) belongs to the terminal stage of
activation.

The result of pseudotime alignment was highly consistent
with the real-time changes as mice progressed to the terminal
stage of inflammation (Fig. 8 E). The macrophages from 4-wk-
old NOD mice were mostly represented by Mac-1(Apoe) and
Mac-2(Atf3) (corresponding to stage 1 activation) populations,
which were also present in NOD.Rag1−/− (Fig. 8 E). In striking
contrast, macrophages from the 15-wk-old NOD mice were
mostly concentrated in stage 2 activation. The 8-wk-old sample
reflected the intermediate state between the two extremes.
Macrophages from NOD.Rag1−/− and NOD.Ifngr1−/− contained
virtually no cells belonging to the stage 2 activation group
(Fig. 8 E).

The pseudotime analysis of macrophage activation revealed
distinct groups of genes driving sequential inflammatory states
(Fig. 8 F). Cell-cycle genes were expressed at the start and IFN-
γ–inducible genes at the end of the trajectory. Moreover, a
comparison between populations of macrophages representing
the two stages of activation (Fig. 8 G) revealed detailed charac-
teristics of each. Stage 1 activation, represented by Mac-2(Atf3),
had an NF-κB activation signature that was not triggered by
autoimmune response. The autoimmune-driven stage 2 (rep-
resented by Mac-3(Cxcl9)) was characterized by the additional
up-regulation of IFN-γ–inducible genes (Cxcl9, Ly6a, Cd40,
Ccl5, etc.).

To summarize, the devised trajectory revealed the stage-wise
progression pattern of macrophages during autoimmune de-
velopment and was confirmed by the real-time biological time
course. We defined a program of macrophage activation and
progression based on a computational pseudotime approach,
biological time-course data, and evaluation of two gene knock-
outs. This analysis defined distinct functional groups of mac-
rophages in pancreatic islets, and also established stages of their
activation and subpopulation remodeling as a function of auto-
immune diabetes development.

Discussion
Single-cell analysis of diabetic autoimmunity identified cellular
diversity and transcriptional heterogeneity during the various
stages of this chronic and persistent autoimmune process. To
our surprise, islets at the initial stage of the autoimmune process
contained various effector and regulatory CD4 and CD8 T cells,
albeit at a low level. This was followed by an apparent control
phase, with the expansion of nonpathogenic and regulatory
populations, ending with a prediabetic stage. The single-cell
analysis adds considerable evidence to support each stage and
shows that each is characterized by a complex mixture of cells
withmarked transcriptional heterogeneity. A single reactive cell
is likely to go through various transcriptional changes as it is
influenced by the complex metabolic changes in islets
throughout diabetes. Some have distinctly different functions in
an apparent competition among them.

This study provides insights that complement and expand
information previously derived from the examination of human
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islets. Importantly, as in NOD, myeloid and lymphoid pop-
ulations were present in islets of recent T1D patients (Damond
et al., 2019; Wang et al., 2019), indicating that the immune cell
complexity is equally represented. A hallmark in T1D patients

and in NOD mice is the simultaneous recruitment of both CD4
and CD8 T cells into the islets, supporting that islet autor-
eactivity is not driven by a dominant cell type but originates
from cooperative activities among different immune cells. But

Figure 8. Single-cell pseudotime analysis revealed a two-step program of macrophage activation. (A) Experimental design. (B) Proportion of mac-
rophage populations relative to all islet cells (based on clustering on Fig. S5 A). (C) UMAP visualization of the cells arranged along trajectories, colored by
identified populations (left) or inferred pseudotime (right). (D) UMAP feature plots with cells colored by expression of selected markers. (E) Visualization of
islet macrophage trajectories split by samples. Arrows illustrate shift along the pseudotime. (F) The top genes differentially expressed in a trajectory-
dependent manner (by Moran’s I value, all FDR < 0.01) depicts expression kinetics along the pseudotime. Four groups of genes include two sets responsi-
ble for stage 1 and stage 2 activation. (G) Scatter plot illustrating genes differentially expressed between conditions corresponding to stage 1 (Mac-2(Atf3)) or
stage 2 (Mac-3(Cxcl9)) islet macrophage activation. The genes with absolute log2 fold change value >0.3 and adjusted P < 0.05 are shown based on the
nonparametric Wilcoxon rank sum test with Benjamini–Hochberg correction.
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the additional and highly unique information that the NOD
model provides are the findings at the very early stage, long
before any overt clinical signs. Here the NOD model shows the
active autoimmune process very early in development. This 4-
wk stage defines the start of a diabetes susceptibility period
characterized by a low level of β-cell apoptosis and more de-
mands for insulin secretion, likely resulting from a growth spurt
in the mouse (Bonner-Weir, 2000).

Several conclusions were derived from the transcriptional
signatures of the T cells. First is that CD4 T cells with effector/
memory phenotype were found at the initial 4-wk stage. Some of
the entering CD4 T cells already exhibited a stigma of activation,
likely caused by their circulation in the peripheral lymphoid
organs, as was just shown for T cells to insulin (Wan et al., 2018).
The peripheral sensitization depends on the exocytosis of dia-
betogenic antigens released from islets (Wan et al., 2018). The
crucial role of peripheral priming has been shown in various
reports (Höglund et al., 1999; Calderon et al., 2014), including
those depicting the profound effects of ablation of lymph nodes
(Gagnerault et al., 2002; Levisetti et al., 2004). Alternatively,
and not exclusively, one can posit that T cells entered islets as
naive but rapidly changed their biology upon reaction with the
islet microenvironment, one highly rich in bioactive molecules.

A second finding to note is that the mechanisms controlling
the autoimmune process were already evident at the very initial
stage accompanying the first effector response. The regulatory
T cells were represented by two different subsets: Foxp3+ regu-
latory T cells and Il10+Ifng+ Tr1 cells, which likely restricted the
pathogenic T cells. Such a complex control later manifested itself
in the accumulation of anergic CD4 and exhausted CD8 T cells.
The control of islet-specific CD8 T cells was previously proposed
(Green et al., 2003). Indeed, the cytotoxic cells detected at the
initial stage were the only CD8 T cell population that did not
undergo expansion over the time course. These findings show
the presence of the regulatory self-protectingmechanisms in the
islet microenvironment starting from the very initial stage of
inflammation, and are supported by the observation that abla-
tion of regulatory molecules greatly accelerates disease pro-
gression (Lühder et al., 1998; Keir et al., 2006). We note that the
exhausted CD8 T cells contained a Tox+Tcf7+ subpopulation
previously described as a stem-like cell sustaining long-term
immune response with an ability to undergo rapid prolifera-
tion upon checkpoint blockade (Alfei et al., 2019; Im et al., 2016;
Siddiqui et al., 2019; Utzschneider et al., 2016; Wu et al., 2016).
Thesemay be the CD8 T cells inducing diabetes in PD-1–deficient
NOD mice (Keir et al., 2006).

One limitation of this study is that we have no information on
T cell specificity. However, two recent reports indicate that the
early T cell response in the islets of NOD mice is dominated by
T cells recognizing autoreactive insulin B chain 12–20 epitope.
One, from Teyton’s group (Gioia et al., 2019), was based on
single-cell qPCR of insulin-specific tetramer-positive CD4
T cells. A second, from our group (Wan et al., 2020), identified
the peptides in islets bound to MHC-II and the corresponding
CD4 T cells. Interestingly, the dominance of insulin-reactive CD4
T cells in the islets was more pronounced in the early to middle
stages (6 wk), in contrast with the later prediabetic stage (12

wk). This indicates that at the beginning of the autoimmune
process, insulin autoreactive CD4 T cells prevail over T cells with
other specificities, making islets more receptive to the nonspecific
ones (Calderon et al., 2011a). At later stages, T cells with more di-
verse specificity were recruited, similar to the broad T cell speci-
ficity in islets of T1D individuals (Babon et al., 2016). Also, novel
antigensmight be released at the later stages, whenmore andmore
β-cells experience stress and undergo apoptosis. As for the CD8
T cells, various reports identified T cells directed to peptides from
the B chain of insulin (Wong et al., 1999, 2002) as well as to the
islet-specific glucose-6-phosphatase catalytic subunit-related pro-
tein (Lieberman et al., 2003; Han et al., 2005). Both are likely to be
a component of the CD8 T cells found here in islets.

We have paid much attention to the islet macrophages, the
only resident myeloid cell found in all islets, including those
from nondiabetic mice, and here tested in NOD.Rag.1−/− mice.
Combining the whole-population RNASeq approach with sc-
RNASeq enabled us to identify pathogenic transcriptional pro-
grams and subsets of macrophages within a two-step program of
proinflammatory activation. The activated macrophages con-
tained multiple populations, including the cycling cells and a
novel subset, Mac-4(Prdx1). The macrophages of the stage 1 ac-
tivation were present in the steady-state (in NOD.Rag1−/−) and
comprised the Mac-2(Atf3). The Mac-2(Atf3) was characterized
by activation of the NF-κB pathway. Previously, we showed that
islet macrophages produced inflammatory cytokines at gene and
protein level; in particular, TNF (Ferris et al., 2017). Because TNF
receptor signaling is one of the major inducers of NF-κB activa-
tion, our data suggest that the stage 1 activation might be driven
via autocrine/paracrine TNF signaling. Importantly, NOD mice
deficient of TNF receptor 1 (NOD.Tnfr1−/−) were completely pro-
tected from T1D (Chee et al., 2011), suggesting the indispensable
role of the initial stage 1 activation for diabetes initiation.

A novel population also present at steady state,Mac-4(Prdx1),
was most likely involved in efferocytosis based on the gene
expression pattern. A small number of apoptotic β-cells are
present in the islets, especially during the neonatal period
(Scaglia et al., 1997; Trudeau et al., 2000). This set most likely
has an important homeostatic role in the endocrine tissue under
noninflammatory conditions. Efferocytosis has been associated
with an anti-inflammatory program (Poon et al., 2014).

Stage 2 of macrophage activation was autoimmune induced
and up-regulated both IFN-γ and NF-κB signaling pathways. Our
analysis also revealed IFN-γ as an important signal, driving
terminal pathogenic (stage 2) macrophage activation. Interest-
ingly, knockout of the IFN-γ receptor delays diabetes in female
mice and reduces islet leukocyte infiltration levels but does not
completely prevent T1D (Carrero et al., 2018). The explanation
might be that the lack of type II interferon signaling was par-
tially compensated by type I interferon activation, since double
knockout of the genes encoding receptors to both type I and type
II interferons has a synergistic effect (Carrero et al., 2018).

The myeloid compartment also included DCs, represented by
both cDC1 and cDC2. The cDC1 subset was minor but was im-
portant for the initiation of T1D (Ferris et al., 2014). The cDC2
group shared inflammatory responses with cDC1 (Fig. 5 G) but
had about a 10× higher frequency (Fig. 5 B), raising an important
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question about its role. The cDC2 group was heterogeneous and
included a CCR7+ cDC subset, known to be migratory from sites
of inflammation to the draining lymph node (Jang et al., 2006).

The autoimmune activation program was similar between
cDCs andmacrophages (Fig. 7 J), indicating that they adapt to the
same autoimmune microenvironment. However, macrophages
exhibited a number of inflammation-associated genes not acti-
vated in DCs, indicating a nonredundant activation program and
probably specialized functions of macrophages.

Finally, during the late advanced stage, the control mecha-
nisms are superseded, and dysglycemia as a measure of reduced
β-cell mass becomes evident. The cellular analysis is giving us
some clues on the process that favors progression. It shows three
major changes: (1) a relative reduction in the sets of regulatory
cells; (2) a striking increase in the number of activated macro-
phages, the Mac-3(Cxcl9) set; and (3) an increase in the number
of cDC2 in the islets. It was clear that while the two CD4 regu-
latory T sets were relatively high in comparison to the other sets
at 4 and 8 wk, by the advanced 15 wk, they had been superseded
by diverse populations with potential pathogenicity. At the same
time, an exhausted CD8 T cell set became prominent. But not to be
ignored is the progressive increase of B cells in the islets of NOD
mice. Higher levels of CD20high B cell infiltration have been shown
in islets of patients having accelerated disease (Leete et al., 2016).
What determines this profound change from 8 to 15 wk is im-
portant to determine: perhaps a broadening of T cell specificities
resulting from epitope spreading; a change in the islet bioactive
molecules; a slow but progressive increase in the plethora of
proinflammatory molecules; or an increase in the antigen pre-
sentation capacity as more DCs and macrophages are present.
Overall, an intricate balance between the pathogenic and the reg-
ulatory elements is a hallmark of the diabetic autoimmune process,
which is reflected by the vast degree of cellular and molecular
heterogeneity in the target organ from initiation to progression.

Materials and methods
Data availability
Transcriptional data generated in this study was deposited in
National Center for Biotechnology Information Gene Expression
Omnibus database under accession no. GSE141786.

Mice
C57BL/6J mice (B6), NOD/ShiLtJ (NOD), and NOD.129S7(B6)-
Rag1tm1Mom/J (NOD.Rag1−/−) were originally obtained from the
Jackson Laboratory. NOD.Ifngr1−/− mice were generated as de-
scribed before (Carrero et al., 2018). All mice were bred and
maintained in our pathogen-free animal facility. All mouse ex-
periments were performed in accordance with the Division of
Comparative Medicine of Washington University School of Med-
icine (Association for Assessment and Accreditation of Laboratory
Animal Care accreditation no. A3381-01). Only female mice were
used in the current study.

FACS and flow cytometry
Pancreatic islets were isolated as previously described (Calderon
et al., 2015) and dispersed into single-cell suspension using

nonenzymatic Cell Dissociation Solution (Sigma-Aldrich) for 3 min
at 37°C. To block the engagement of Fc-receptors, the cell suspen-
sions were incubated at 4°C for 15 min in PBS (pH 7.4) supple-
mented with 1% BSA and 50% of FC-block (made in-house). For
surface staining, cells were incubated with fluorescently labeled
antibodies (1:200 vol/vol; Table S6) supplemented with Fixable
Viability Dye eFluor 780 (1:1,000 vol/vol) at 4°C for 20 min. Cells
were then washed and analyzed by flow cytometry or subjected to
FACS. For intracellular transcription factors, islet cells were stained
with surface antibodies for 20 min, fixed, and permeabilized using
Foxp3/transcription factor staining buffer set (Thermo Fisher Sci-
entific) following the manufacturer’s instructions. After that, cells
were stained with FoxP3 (or RoRγt, GATA3) antibodies at 4°C for
30 min. All flow cytometry was done on a BD FACSAria II (BD Bi-
osciences) and analyzed using FlowJo software (TreeStar).

Bulk RNASeq analysis
Islet macrophages were FACS purified from islets of 6–14 NOD
or C57BL/6J mice per one replicate, three to four biological
replicates per condition. Approximately 100–150 islets were
collected per mouse. Macrophages were sorted as Live+CD45+

B220−CD90−CD11c+F4/80+, and approximately 800–1,500 mac-
rophages were collected per biological replicate. Then, mRNA
was isolated with RNAqueous-MicroKit (Thermo Fisher Scien-
tific), and a SeqPlex RNA Amplification kit (Sigma-Aldrich) was
used for cDNA preparation following the manufacturer’s in-
structions. Illumina NovaSeq-2500 was used for sequencing. Li-
braries were prepared and sequenced at the Genome Technology
Access Center (Washington University in St. Louis, MO). Raw
reads were alignedwith the STAR aligner (Dobin et al., 2013; Table
S6), counts were generated with htseq-count utility from the
HTSeq Python library (Anders et al., 2015), and differential gene
expression was performed using DESeq2 R package (Love et al.,
2014) with Benjamini–Hochberg adjusted P = 0.05 as a threshold.
Heatmaps were generated with GENE-E software. PCA was based
on the top 5% genes ranked by variance.

sc-RNASeq, library preparation, and alignment
For sc-RNASeq analysis, live CD45+, CD31(Pecam1)+, and
CD45−CD90(Thy1)+ cells were sorted using islet cells from 4–12
mice per one sample. After sorting, cells were pelleted and re-
suspended in 10% FBS (HyClone) in PBS (pH 7.4) at 103 cells/µl
and loaded onto the Chromium Controller (10X Genomics;
Zheng et al., 2017). Samples were processed using the Chromium
Single Cell 39 Library & Gel Bead Kit (10X Genomics, v2 and v3)
following the manufacturer’s protocol. For NOD 4-, 8-, and 15-
wk-old samples and NOD.ifngr1−/−, the v2 Reagent Kit was used.
For NOD.Rag1−/−, the v3 Reagent Kit was used. The libraries were
sequenced on Illumina NovaSeq6000. Raw sequencing data
were processed using Cell Ranger (10X Genomics; v2.1.1 and
v3.0.2). The CellRanger function “count” was used to align raw
reads with the STAR aligner (Dobin et al., 2013) against GRCm38
reference, and after counting nonredundant unique molecular
identifiers (UMIs), the single-cell digital-expression matrices
were obtained. Library preparation and sequencing was done at
the Genome Technology Access Center core facility (Washington
University in St. Louis). To ensure reproducibility of the results,
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islet isolation, FACS, library preparation, and sequencing for two
of the time-course samples (4- and 8-wk-old NOD) were done
twice in two independent experiments.

Single-cell clustering using Seurat
The output “cellranger” matrices were loaded into the Seurat
package (v2.3.4) environment (Satija et al., 2015; Butler et al.,
2018; Stuart et al., 2019) using R (v3.5.1). The UMI barcodes were
tagged with the sample ID and merged using the “MergeSeurat”
function. The UMI count matrix was normalized with a global-
scaling normalization method, “LogNormalize.” The unwanted
sources of variation (the UMI coverage, number of ribosomal
genes per cell) were regressed out using the “ScaleData” function
implemented in the Seurat package by passing variables for
regression with the “vars.to.regress” argument. A canonical
correlation analysis was run to align datasets using the
“RunCCA” function, and calculation of the t-SNE projections and
clustering (function “FindClusters”) were performed in the
aligned subspace. General cell types were annotated based on
the expression of canonical markers, driving separation of
clusters (Emr1, C1qa, macrophages; Cd79a, Cd79b, B cells; Cd3e,
Cd3g, T cells; Kdr, Pecam1, endothelial cells; and Pdgfrb, Pdgfa,
mesenchymal cells; see Fig. S1, C and D). Cellular events iden-
tified with overlapping markers between different populations
(i.e., Cd3e and Emr1, Cd79a and C1qa, etc.) were considered as
artifactual aggregates and removed from the analysis.

cDC clustering
The cDCs were first clustered using Seurat as described above. As a
result, we found that the inflammatory signal was confoundedwith
the signal driving separation of cDC by subtype. To address this
issue, we examined the principal components (PrintPCA function)
and identified the top genes contributing to the inflammatory-
driven separation: Ifitm3, Cd40, Cxcl9, Ifitm2, Gbp4, Zbp1, Stat1, and
Isg15. Then, we reanalyzed the cDC sample, reducing this
inflammatory-driven signal, and repeated clustering. To extract the
inflammatory signal, we did the opposite, repeating clustering after
reducing the signals contributing to the subtype separation.

PAGODA2 analysis of CD4 and CD8 T cells
Unsupervised clustering analysis using Pathway Gene Set
Overdispersion Analysis (PAGODA2; Fan et al., 2016) allowed de
novo identification of the intra-islet CD4 and CD8 T cell subsets
based on coordinated differences of gene expression from an-
notated pathways across cells in our single-cell sample (Fig. S2
A). For this analysis, we leveraged a publicly available database
of immunological gene pathways from the Broad Institute
(MSigDB, c7; https://software.broadinstitute.org/gsea/msigdb/
index.jsp; Subramanian et al., 2005). We performed PCA di-
mensionality reduction using the top 15 principal components
based on the top 3,000 variable genes from the variance-
adjusted expression matrix. The k-nearest neighbor was com-
puted with cosine distance (k = 20), and clusters were identified
with a “multilevel community” detection algorithm. The t-SNE
projections were calculated with perplexity = 30. For CD4 T cells,
clusters 1, 4, and 5 were combined into one based on the coor-
dinated enrichment in effector pathways (Fig. 3 A and Fig. S2 A).

Differential gene expression analysis and
subpopulation-specific signature generation
We used Seurat software to carry out differential gene expres-
sion analyses, construct violin plots, and plot heatmaps (unless
indicated otherwise). Differential expression analysis was con-
ducted using a nonparametric Wilcoxon rank sum test. The gene
signatures defining subpopulations inside analyzed cells were
generated by differential expression analysis with adjusted P <
0.05 and log2 fold-change >0.3. The resulting gene signatures
for CD4 T cells, CD8 T cells, cDCs, and macrophages are listed in
Table S1, Table S2, Table S3, and Table S4, correspondingly.
Heatmaps were plotted using top (limited to 70 per group) dif-
ferentially expressed genes using Seurat’s “DoHeatmap” func-
tion with following RGB color-scheme: col.low = #0038e6,
col.mid = #000000, col.high = #FFFF00. The genes that were
present in more than one gene signature were plotted only once
on the heatmaps. Differential expression scatter plots were
generated using GraphPad Prism software. Hypergeometric
pathway analysis (Fig. 2 H, Fig. S2 D, Fig. S3, D and E; and Fig. 7,
E, F, and H) was done based on differentially expressed genes
with adjusted P < 0.05 and logarithm fold change (LFC) >0.3.

Single-cell trajectory reconstruction and pseudotemporal
ordering of islet macrophages
Monocle3 R package (Trapnell et al., 2014; Qiu et al., 2017;
McInnes et al., 2018 Preprint; Cao et al., 2019) was used for
pseudotime inference analysis. The sc-RNASeq dataset was
normalized, dimensionality reduction was done with the top 20
principal components based on the genes driving macrophage
heterogeneity (Table S4) with “preprocess_cds” function, and
the sample-based batch effect was subtracted from the data. The
number of principal components used for downstream analysis
was determined based on visual examination of the percentage of
variance explained by each component plotted with “plot_pc_var-
iance_explained.” Dimensionality of the data was further reduced
with UMAP algorithmwith the “cosine”metric. The trajectory graph
was learned with the “learn_graph” function using “gamma = 1e-3”
and “sigma = 1e-3,” minimum distance 0.18; and the number of
neighbors to use during k-nearest neighbor graph construction was
set to 20. Once the trajectory graphwas learned, cellswere ordered in
pseudotime with “order_cells” function. The pseudotime algorithm
does not have a preference for which position along a trajectory
would be a start point. For macrophage trajectory reconstruction, we
hypothesized that the most naive state of macrophage, the group of
self-renewing macrophages Mac-5(Stmn1), would feature the entry
point (root) that feeds cells into the general path (Fig. 8 C). The
heatmap showing expression pattern in a trajectory-dependent
manner was plotted with the top genes differentially expressed by
Moran’s I value, all false discovery rate (FDR) <0.01.

Cellular identification based on the external
transcriptional datasets
For identification of CD4 and CD8 T cell phenotypes, we cross-
referenced the gene signatures of found subpopulations against
the corresponding reference bulk transcriptional datasets. The
reference datasets, which reflect various T cell phenotypes,
were retrieved from the National Center for Biotechnology
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Information genomics data repository with the following Gene
Expression Omnibus accession nos.: GSE89555 (Ibitokou et al.,
2018), GSE7852 (Feuerer et al., 2009), and GSE113624 (Alonso
et al., 2018) for CD4 T cells; GSE41867 (Doering et al., 2012) and
GSE83978 (Utzschneider et al., 2016) for CD8 T cells. First, we
ran differential expression analysis on these datasets using
Limma R package (Ritchie et al., 2015). The specific samples used
for each comparison are listed in Table S5. Then, we generated
ranked lists of genes reflecting differences between each pair of
conditions in the reference datasets. To do so, we used signal-to-
noise statistics as a metric and considered only the top 10,000
genes ordered by mean expression. Finally, gene set enrichment
analysis (GSEA; Subramanian et al., 2005) revealed a correlation
of the sc-RNASeq subpopulations with previously identified cell
phenotypes (Fig. S2 C) based on their unique gene signatures
(Table S1 and Table S2).

Online supplemental material
Fig. S1 shows the main populations of non-endocrine islet cells
and their gene markers. Fig. S2 and Fig. S3 show the procedure
of identifying CD4 and CD8 T cell subsets, respectively. Fig. S4
details transcriptional characteristics of macrophages at bulk
and single-cell levels. Fig. S5 depicts clustering analysis of
macrophages pooled from NOD wild-type samples, NOD.Rag1−/−

and NOD.Ifngr1−/−. Table S1, Table S2, Table S3, and Table S4 list
the differentially expressed genes among CD4 T cell, CD8 T cell,
cDC, and macrophage subsets, respectively. Table S5 shows the
design of differential gene expression analysis based on publicly
available datasets, which were used as references for CD4 and
CD8 T cell annotation. Table S6 lists the software, reagents, and
transcriptional datasets used in the study.
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Figure S1. Major populations of non-endocrine cells in the pancreatic islets. (A) Representative FACS gating strategy illustrates populations in 8-wk-old
NOD mouse islet sample. Three groups, CD45+, CD45−CD31(Pecam)+, and CD45−CD90(Thy1)+, were FACS-purified for the sc-RNASeq. (B) t-SNE projection of
islet leukocyte and nonimmune cells pooled from 4-, 8-, and 15-wk-old NOD samples. (C)Heatmap showing markers of the main populations from B (LFC > 0.3,
adjusted P < 0.05, Wilcoxon rank sum test with Benjamini–Hochberg correction). Each population was randomly subset to have 200 cells per group (except for
plasma cells, which were <200). (D) Expression of marker genes in ImmGen dataset. Relative expression level is color-coded from low (blue) to high (red).
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Figure S2. Islet CD4 T cell heterogeneity. (A) Aspects of heterogeneity across the populations of single cells identified using PAGODA2. Each aspect is a
composition of gene sets that exhibit statistically significant overdispersion (coordinated variability) across the sample. Two aspects shown as an example have
in common features of activated effector cells (left) or regulatory cells (right) based on top pathways contributing to each of them (below). (B) Heatmap
showing expression of differentially expressed genes driving heterogeneity in CD4 T cells (LFC > 0.3, adjusted P < 0.05, Wilcoxon rank sum test with
Benjamini–Hochberg correction). (C) GSEA with identified CD4 T cell signatures based on publicly available datasets. GSEA plots on the left show enrichment
of three signatures (CD4-0, CD4-1,4,5, and CD4-3) into the effector condition (horizontal heatmap below, see Materials and methods). Heatmap on the right
(from Fig. 3 C) shows normalized enrichment scores (NES) for three GSEA comparisons on the left. The CD4 T cell signatures are in columns; reference datasets
with featured conditions are in rows (Table S5). (D) Hypergeometric pathway analysis of CD4-1,4,5(Ptma) based on the hallmark MSigDB database
(Benjamini–Hochberg correction). (E) Violin plots showing expression levels of genes defining populations of islet CD4 T cells. (F and G) Flow cytometry
verification of protein expression of several markers, separating among CD4 T cells populations in islets of NOD 12–16-wk-old female mice. CD4 T cells
negative for CD29 (Itgb1 gene), CD62L(L-selectin) were separated by GITR and FoxP3 levels into regulatory T cells (Foxp3+) and Tr1 (Foxp3−GITRhigh). Naive and
effector cells were separated by CD44 and CD62L (F). Cells positive for CD45, CD4, and CD29 and negative for GITR, CD62L, and anergy marker Fr4 (Folr4/
Izumo1r gene) were identified as memory-like and were further separated by CXCR6 levels (G). Shown are representative flow cytometry data from three
independent experiments.
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Figure S3. Islet CD8 T cell heterogeneity. (A) Heatmap of differentially expressed genes driving islet CD8 T cell heterogeneity (LFC > 0.3, adjusted P < 0.05,
Wilcoxon rank sum test with Benjamini–Hochberg correction). Cells were pooled from 4-, 8-, and 15-wk-old samples. (B and C) CD8 T cell transcriptional
profile (GSE41867) was used as a reference dataset for CD8 T cell annotation (see Materials and methods; Table S5). GSEA plots showing population signatures
correlated with different CD8 T cells phenotypes (all FDR < 0.01). (D and E) Hypergeometric pathway analysis (hallmark MSigDB database, Benjamini–
Hochberg correction applied) on two early effector populations: CD8-1(Xcl1) (D) and CD8-5,7(Hmgb2) (E). Shared pathways are in bold; specific to CD8-
5,7(Hmgb2) are in red. (F) Scatter plot shows differential gene expression between two exhausted T cell populations, CD8-8(Tcf7, Tox) and CD8-0(Lag3,
Pdcd1), based on Wilcoxon rank sum test with Benjamini–Hochberg correction. Log N fold cutoff of 0.25 used. Genes of interest are labeled. (G) GSEA plot
showing CD8-8(Tcf7, Lag3) signature enrichment into the dataset, comparing CD8+TCF1+ (Tcf7 encoded) and naive CD8 cells (GSE83978). FDR < 0.01.
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Figure S4. Islet macrophage subpopulations. (A) Expression scatter plots depicting differentially expressed genes (adjusted P < 0.05 and absolute fold
change >2) between NOD macrophages at different stages. (B) t-SNE projections of islet macrophage sc-RNASeq from NOD 4-, 8-, and 15-wk-old samples,
illustrating subpopulations inside the major groups of cells. (C, D, and G) Volcano plots depicting differentially expressed genes between subpopulations of
macrophages. (E) t-SNE plots with color-coded expression of the selected marker genes. (F) Heatmap illustrating differentially expressed genes between two
macrophage populations, Mac-3(Cxcl9) and Mac-1(Apoe) (LFC > 0.25, adjusted P < 0.05). Differential expression for A was tested using negative binomial
generalized linear model and Wald test in DESeq2. Differential expression for C, D, and G was conducted with Wilcoxon rank sum test. Genes of interest are
labeled. All results were corrected for multiple testing with Benjamini–Hochberg method.
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Tables S1–S6 are provided online as Excel files. Table S1 shows differential gene expression analysis among CD4 T cell subsets,
related to Fig. 3. Table S2 shows differential expression analysis among CD8 T cell subsets, related to Fig. 4. Table S3 shows
differential expression analysis among cDC subsets, related to Fig. 5. Table S4 shows differential expression analysis among
macrophage subsets, related to Fig. 7. Table S5 shows design of the differential gene expression between reference samples, related
to Fig. 3 C, Fig. 4 C, and Fig. S2 C. Table S6 lists reagents and software used in the current study.

Figure S5. Characterization of NOD.Ifngr1−/− and NOD.Rag1−/− samples. (A) t-SNE sc-RNaseq plot from the NOD macrophage time-course samples
merged with two knockout samples: NOD.Ifngr1−/− (8 wk) and NOD.Rag1−/− (8–16 wk). (B) Expression of the marker genes in the populations of the merged
macrophage dataset.
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