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Abstract
The duration, type and structure of connections between individuals in real-world
populations play a crucial role in how diseases invade and spread. Here, we incor-
porate the aforementioned heterogeneities into a model by considering a dual-layer
static–dynamic multiplex network. The static network layer affords tunable clustering
and describes an individual’s permanent community structure. The dynamic network
layer describes the transient connections an individual makes with members of the
wider population by imposing constant edge rewiring. We follow the edge-based
compartmental modelling approach to derive equations describing the evolution of a
susceptible–infected–recovered epidemic spreading through this multiplex network of
individuals.We derive the basic reproduction number, measuring the expected number
of new infectious cases caused by a single infectious individual in an otherwise suscep-
tible population.We validate model equations by showing convergence to pre-existing
edge-based compartmental model equations in limiting cases and by comparison with
stochastically simulated epidemics. We explore the effects of altering model param-
eters and multiplex network attributes on resultant epidemic dynamics. We validate
the basic reproduction number by plotting its value against associated final epidemic
sizes measured from simulation and predicted by model equations for a number of
set-ups. Further, we explore the effect of varying individual model parameters on the
basic reproduction number. We conclude with a discussion of the significance and
interpretation of the model and its relation to existing research literature. We highlight
intrinsic limitations and potential extensions of the present model and outline future
research considerations, both experimental and theoretical.
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1 Introduction

The continual design and development of mathematical models describing epidemic
processes on large, complex populations improves our understanding of how diseases
and individuals behave during an epidemic, and how preventative measures can be
implemented for the greater good. With ever-increasing computational power, models
can incorporate increasingly complex features, and model predictions may become
more valuable. Nonetheless, any model must tread a careful balance between captur-
ing observed real-world complexity and enabling calculations and conclusions to be
drawn with ease. The ultimate epidemiological model must therefore incorporate the
behavioural and structural features which significantly influence disease dynamics,
whilst being analytically tractable.

Social heterogeneity describes the propensity for a social group to be diverse in
character or content and is an important determinant when studying the dynamics and
control of infectious diseases (Arthur et al. 2017). In a social group, heterogeneity
encompasses many descriptive elements, such as variations in individuals’ behaviour
or in susceptibility across group members. In network theory, social heterogeneity
can also describe variations in the types of connections an individual makes. For
example, an individual can be connected to other individuals in distinct groups, such
as workplace or community groups.

Structured populations with multiple connection types are well described by multi-
plex networks, where a population of individuals partakes in multiple network layers.
Each network layer describes a specific type of interaction between members of the
population, and network structure in one layer is allowed overlap with network struc-
ture in another layer. A pair of individuals in a multiplex network can share more
than one connection. In a multiplex network, an individual is present in every network
layer, but may or may not partake in connections in individual network layers.

Existing multiplex modelling studies have shown that single-layer approximations
or aggregations ofmultiplex networks are not accurate enough to describe the epidemic
process (Diakonova et al. 2016; Zhuang et al. 2017; Gomez et al. 2013; Cozzo et al.
2013), and further that an epidemic can spread on a multiplex network even if the
individual layers are well below their respective epidemic thresholds (Zhao et al.
2014). A global cascades model generalised for multiplex networks was used to show
that multiplexes are more vulnerable to global cascades than single-layer networks
(Brummitt et al. 2012). These studies highlight the importance of accounting for
heterogeneity in connection type by considering multiplex network models.

Another determinant of infectious disease dynamics is heterogeneity in the struc-
tural connections between individuals, within a single type of connection. Real-world
networks often exhibit community structure, with a high density of connections within
communities and a low density of connections between communities. They are also
considered to exhibit other structural characteristics such as network transitivity or
clustering, described in social network theory as the propensity for an individual to be
connected to a friend of a friend (Newman 2003).

Community structure has been shown to affect disease dynamics on single-layered
(uniplex) networks, where on average, epidemics occurring on networks with commu-
nity structure exhibit greater variance in final epidemic size, a greater number of small,
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local outbreaks that do not develop into epidemics and higher variance in the duration
of the epidemic (Salathé and Jones 2010). Network quality functions able to detect
community structure in multiplex networks have been developed (Mucha et al. 2010).
Further, results such as the large graph limit of a susceptible–infected–recovered (SIR)
epidemic process on a dynamic multilayer network, where one network layer repre-
sents community links and another represents connections in healthcare settings, have
been derived (Jacobsen et al. 2016).

In networkmodels, increased clustering is generally considered to slow an epidemic
by increasing the epidemic threshold (Miller 2009). However, this relationship is not
always monotonic. Higher clustering in a multiplex study of information propagation
led to an increase in the epidemic threshold and a decrease in final epidemic size
(Zhuang and Yagan 2016). Increased clustering in a study of Watt’s threshold model
generalised for a multiplex network comprised of clustered network layers led to a
decrease in the probability of a global cascade and its size (Zhuang et al. 2017). How-
ever, the authors also discovered a critical threshold for the average degree, above
which clustering was shown to facilitate global cascades (Zhuang et al. 2017). A
uniplex network study found that simultaneously increasing clustering and the vari-
ance of the degree distribution led to an increase in final epidemic size (Volz et al.
2011). Moreover, clustering can lead to correlations where high-degree individuals
are more likely to connect with other high-degree individuals. It is clear that the effect
of clustering is complex and should be considered in the design of network mod-
els.

In epidemiology it is also important to consider heterogeneity across contact
duration. In human populations, links between individuals may be long-lasting (per-
sistent), e.g. between an infant child and their caregiver; temporary (transient),
e.g. between workplace colleagues; or more short-lived (fleeting), e.g. between
strangers coming into close proximity on public transport. In a study using a year’s
mobile phone data as a proxy for the structure and dynamics of a large social net-
work, researchers found that persistent links tend to be reciprocal and are more
common for individuals with low degree and high clustering (Hidalgo and Rodriguez-
Sickert 2008). Many network-based studies in the past have considered fully static
network structures and hence solely investigate the effects of persistent connec-
tions between individuals, see Keeling and Eames (2005) for a review of differing
approaches.

Later studies of epidemic processes on networks have incorporated persistent and
transient connections into their models by imposing rewiring rules on static networks.
Rewiring rules considered include spatially constrained rewiring (Rattana et al. 2014),
random link activation and deletion (Taylor et al. 2012; Sélley et al. 2015; Kiss et al.
2012) and temporary link deactivation (Tunc et al. 2013; Shkarayev et al. 2014).
On the other hand, epidemic processes with fleeting contact duration can be well
described via the mass action model, which assumes all pairs of individuals contact
one another at the same rate, the mean-field social heterogeneity model (also known
as the degree-based mean-field model), which generalises the mass action model by
allowing for variations in contact rate across the population, and the dynamic fixed-
and dynamic variable-degree models, where edges are swapped at a given rate, or

123



Edge-Based Compartmental Modelling of an SIR Epidemic on. . . 2701

edges are broken and created at given rates, respectively (Miller and Volz 2013; Miller
et al. 2012).

Here, we suppose that static and dynamic connections coexist in any complex
population. We aim to derive a network model describing an SIR epidemic process
spreading through a population where each individual has two types of connections:
persistent links to individuals in their household, constituting a static network layer
with community structure, and transient connections to strangers in the wider popu-
lation, where all such edges rewire at a constant rate, constituting a dynamic network
layer with conserved degrees.

In what follows, we utilise the edge-based compartmental modelling (EBCM)
approach (Volz 2008;Miller 2011, 2014;Miller et al. 2012), deriving equations which
describe the time evolution of classical quantities of interest, where the underlying
dual-layered static–dynamic network has heterogeneity in contact type, contact dura-
tion, and contact structure. We derive the associated basic reproduction number R0,
following the next-generation matrix approach (Diekmann et al. 2009). We describe
the implementation of the EBCM model and of statistically correct Gillespie simu-
lations of the epidemic process (Gillespie 1976). The new model is validated, firstly
by showing that collapsing either the static or dynamic network layers leads model
equations to converge to existing equivalent model equations, and secondly by com-
paring the dynamics predicted bymodel equations to those from exact simulations.We
explore how various combinations of model parameters and network layers influence
global dynamics, uncover behavioural regimes that the model can achieve for specific
combinations of infection and rewiring rates, and show that our derived R0 behaves
as expected. The paper concludes with a discussion of potential implications of the
work as well as possible extensions.

2 Methods

Our solutions are based on the class of undirected random graphs (networks). Each
node is a member of a random number of static lines (2-vertex cliques), static triangles
(3-vertex cliques) and dynamic lines (2-vertex cliques). The probability that a node
has s static line stubs, t static triangle corners and d dynamic line stubs is described
by the probability mass function ps,t,d . The model captures network structure using
the probability generating function (PGF)

g(x, y, z) =
∑

s,t,d

ps,t,d x
s yt zd . (1)

When differentiating PGF (1), we use superscripts such that g(x) denotes the first
(partial) derivative of g with respect to x and g(y,y) denotes the second (partial) deriva-
tive of g with respect to y. Equation (1) can be used to calculate useful properties of
the multiplex network. For example, Ms, the expected number of static line stubs that
belong to a randomly selected individual, Mt , the expected number of static triangle
corners that belong to a randomly selected individual, and Md, the expected number
of dynamic line stubs that belong to a randomly selected individual, are calculated as
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follows:

Ms =
∑

s,t,d

sps,t,d = g(x)(1, 1, 1),

Mt =
∑

s,t,d

tps,t,d = g(y)(1, 1, 1),

Md =
∑

s,t,d

dps,t,d = g(z)(1, 1, 1).

We consider a basic SIR compartmental model. Infections occur across edges on
the static network layer at a constant rate βs, whilst infections occur across edges
on the dynamic network layer at a constant rate βd. Infected individuals recover at
a constant rate γ . Once recovered, a node cannot be reinfected, and can no longer
transmit infection to its neighbours. A comprehensive list of model variables and
parameters is given in Table 1.

2.1 Edge-Based Compartmental Model Derivation

We follow the edge-based compartmental modelling approach by considering the fate
of a randomly selected test node u, which is prevented from transmitting infection.
This assumption is a useful tool that eliminates conditional probability arguments that
would need to be considered otherwise (Miller et al. 2012). It does not introduce any
approximation. At time zero, infection is introduced to a fraction ρ of the population
chosen uniformly at random, comprising the initial condition of the system.We assume
that the test node u is a member of s static line stubs, t static triangle corners and d
dynamic line stubs. Then the probability that u is susceptible is (1−ρ)θ s2θ

t
3θ

d
4 , where

θ2 is the probability that a random line (2-clique) on the static network layer has not
transmitted infection to the test node, θ3 is the probability that neither of the other
nodes in a random triangle on the static network layer has transmitted infection to
the test node, and θ4 is the probability that a random stub connected to u on the
dynamic network layer has never been involved in transmitting infection to the test
node. Assuming we are able to calculate θ2, θ3 and θ4 as functions of time, we are able
to calculate the proportion of susceptible individuals S as a function of time. Given
S(t), we use I (t) = 1 − S(t) − R(t) and Ṙ(t) = γ I (t) to calculate I (t) and R(t),
completing the system.

2.1.1 Considering�2

We divide θ2 into φS, φI and φR, the probabilities that a random neighbour along a
line on the static network layer has not transmitted infection to u, and is susceptible,
infected or recovered, respectively. The probability the neighbour has not transmitted
infection to u is θ2 = φS+φI+φR, and (1−θ2) is the probability that it has transmitted
infection to u. The fluxes between these quantities are shown in Fig. 1. The fluxes from
φI to φR and from φI to (1− θ2) are proportional to one another. Both φR and (1− θ2)

are equal to zero at time zero since we assume that no infection or recovery events
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Table 1 Definitions for model variables and parameters

Variable/parameter Definition

βs Per-edge disease transmission rate on static network
layer

βd Per-edge disease transmission rate on dynamic network
layer

γ Per-individual disease recovery rate

ρ The proportion of initially infectious individuals

η Edge rewiring rate on dynamic network layer

S(t), I (t), R(t) The susceptible, infectious and recovered proportion of
the population at time t ≥ 0

ps,t,d The proportion of individuals in the network that are a
member of s static line stubs, t triangle corners and d
dynamic line stubs

g(x, y, z) Probability generating function for the numbers of static
lines, triangles and dynamic lines of which an
individual is a member

θ2(t) A survivor function for remaining susceptible for some
time t ≥ 0, given that the individual in question is a
member of a single static line

θ3(t) A survivor function for remaining susceptible for some
time t ≥ 0, given that the individual in question is a
member of a single triangle corner

θ4(t) A survivor function for remaining susceptible for some
time t ≥ 0, given that the individual in question is a
member of a single dynamic line

φS(t), φI(t), φR(t) The probabilities that a neighbour of u along a static
line is susceptible, infectious or recovered, and has not
transmitted infection to u by time t ≥ 0

φXY (t) The probability that two neighbours of u in a triangle
are in states X and Y ∈ {S, I , R} and have not
transmitted infection to u by time t ≥ 0

A(t) The rate (at time t ≥ 0) at which a random triangle
neighbour v of u is infected from outside the triangle,
given that v was susceptible

B(t) The rate (at time t ≥ 0) at which a random dynamic line
stub neighbour v of u becomes infected from outside
the dynamic line joining u and v, given that v was
susceptible

ψS(t), ψI(t), ψR(t) The probabilities (at time t ≥ 0) that a random dynamic
stub belonging to u has never been involved in
transmitting infection to u and is currently connected
to a susceptible, infected or recovered individual,
respectively

πS(t), πI(t), πR(t) The probabilities (at time t ≥ 0) that a randomly chosen
dynamic stub belongs to a susceptible, infected or
recovered individual, respectively

Many definitions refer to the test node u, which is selected at random from the population and modified so
that it cannot transmit infection, but can itself become infected
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φS φI φR

γφI

1− θ2

βsφI

Fig. 1 Flow diagram for the flux of a static line partner through different states. The flux between the
probabilities that the test node u is connected by a line (2-clique) on the static network layer to a node v

that has not transmitted infection to u and is susceptible (φS), infectious (φI) or recovered (φR), and the
probability that v has transmitted infection to u, equal to (1 − θ2)

can occur prior to time zero. By integrating the relation dφR
dt = γ

βs

d(1−θ2)
dt , and using

the initial condition φR(0) = (1 − θ2(0)) = 0, we find the relation

φR = γ

βs
(1 − θ2). (2)

Next, we must calculate an expression for φS. Consider the number of static
line stubs attached to an individual that we reach by following a randomly cho-
sen static line. Similarly, consider the number of static triangle corners attached
to an individual reached by following a randomly chosen static triangle edge, and
the number of dynamic line stubs attached to an individual we reach by follow-
ing a randomly chosen dynamic line. Following edges in this way means we are
more likely to arrive at an individual with a higher degree, in direct proportion to
that individual’s degree (Meyers et al. 2006). The random number of such lines
and triangle corners is described by the excess degree distribution, and we calcu-
late the associated probability density functions for each edge type as follows. Denote
qs−1,t,d ∝ sps,t,d as the probability of there being (s − 1) static line stubs, t tri-
angle corners and d dynamic line stubs connected to a susceptible node that we
reach by following a static line, not counting the line by which we arrived. Simi-
larly, denote rs,t−1,d ∝ tps,t,d as the probability that if we follow a triangle edge
to a susceptible node, there are s static line stubs, (t − 1) triangle corners and d
dynamic line stubs connected to that node, not counting the triangle edge by which
we arrived, and ws,t,d−1 ∝ dps,t,d as the probability that if we follow a dynamic
edge to a susceptible node, there are s static line stubs, t triangle corners and (d − 1)
dynamic line stubs connected to that node, not counting the dynamic edge by which
we arrived.

From above, we note that the probability that there are s static line stubs, t triangle
corners andd dynamic line stubs attached to a randomneighbour ofu across a static line
(not counting the line it was reached across) is qs−1,t,d ∝ sps,t,d . A neighbour reached
by following a static line connected tou is susceptiblewith probability (1−ρ)θ s−1

2 θ t3θ
d
4

(recall that u cannot transmit infection), where s, t and d are realisations of the excess
degree distribution. We calculate φS by multiplying the probability that a random
neighbour across a static line has (s, t, d) neighbours, with the probability the random
neighbour is susceptible, summing over all possible values of (s, t, d), and dividing
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by Ms = g(x)(1, 1, 1), the expected number of static lines a randomly selected node
belongs to. We find

φS = (1 − ρ)
∑

s,t,d sps,t,dθ
s−1
2 θ t3θ

d
4

Ms
= (1 − ρ)g(x)(θ2, θ3, θ4)

g(x)(1, 1, 1)
. (3)

From the original definition of θ2 we have

φI = θ2 − φS − φR. (4)

We are now able to calculate an expression for θ2 using Eqs. (2)–(4), and noting from
Fig. 1 that θ̇2 = −βsφI:

θ̇2 = −βsθ2 + βs
(1 − ρ)g(x)(θ2, θ3, θ4)

g(x)(1, 1, 1)
+ γ (1 − θ2). (5)

2.1.2 Considering�3

Since θ3 denotes the probability that neither of the other nodes in a triangle has trans-
mitted infection to the test node, we must divide θ3 into six quantities φSS, φSI, φSR,
φII, φIR and φRR in order to consider all possible disease status combinations for two
individuals. For example, φSI denotes the probability that one triangle neighbour of
u is susceptible, whilst the other is infectious, and neither has transmitted infection
to u. The flux between the various compartments can be seen in Fig. 2. There is no
simple relation between φRR and θ3, so we take a different approach than before. We
start with θ̇3, which satisfies

θ̇3 = −βsφSI − 2βsφII − βsφIR. (6)

To calculate elements in the right-hand side of (6),wemust first obtain an expression
forφSS, the probability that both neighbours in a triangle are still susceptible. Under the
assumption that no transmission events have occurred in the triangle, the probability
that a single triangle neighbour of u is susceptible is

(1 − ρ)
∑

s,t,d

tps,t,dθ
s
2θ

t−1
3 θd4 /Mt = (1 − ρ)g(y)(θ2, θ3, θ4)/g

(y)(1, 1, 1),

where Mt is the expected number of static triangle corners belonging to a randomly
chosen individual. Since we require both triangle neighbours of u to be susceptible,
we have

φSS =
(

(1 − ρ)g(y)(θ2, θ3, θ4)

g(y)(1, 1, 1)

)2

. (7)

We choose A to denote the rate at which a single triangle neighbour of u becomes
infected from outside the triangle. From Fig. 2 we know that dφSS

dt = −2AφSS, which
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φSS φSI

2AφSS

φSR

γφSI

φII

(A + βs)φSI

1− θ3

2βsφII

βsφSI

φIR φRR

AφSR

2γφII

γφIR

βsφIR

Fig. 2 Flow diagram for the flux of two triangle neighbours through different states. The flux between
the probabilities that the test node u is connected in a triangle to two nodes in all possible disease status
configurations, where neither triangle neighbour has transmitted infection to u, as well as the probability
(1 − θ3) that a node v �= u in the triangle has transmitted infection to the test node u

implies A = − dφSS
dt /2φSS. To arrive at an explicit formula for A, we begin by calcu-

lating dφSS
dt via the chain rule:

dφSS

dt
= 2

(
(1 − ρ)g(y)(θ2, θ3, θ4)

g(y)(1, 1, 1)

)
d

dt

(
(1 − ρ)g(y)(θ2, θ3, θ4)

g(y)(1, 1, 1)

)

= 2(1 − ρ)2g(y)(θ2, θ3, θ4)

g(y)(1, 1, 1)

×
(
g(y)(1, 1, 1)

(
g(y)(θ2, θ3, θ4)

)′ − g(y)(θ2, θ3, θ4)
(
g(y)(1, 1, 1)

)′
(
g(y)(1, 1, 1)

)2

)
.

We know that
(
g(y)(1, 1, 1)

)′ = 0, since g(y)(1, 1, 1) = ∑
s,t,d tps,t,d ∈ R. Hence

dφSS

dt
= 2(1 − ρ)2g(y)(θ2, θ3, θ4)

g(y)(1, 1, 1)

(
g(y)(1, 1, 1)

(
g(y)(θ2, θ3, θ4)

)′
(
g(y)(1, 1, 1)

)2

)

= 2(1 − ρ)2g(y)(θ2, θ3, θ4)

g(y)(1, 1, 1)

((
g(y)(θ2, θ3, θ4)

)′

g(y)(1, 1, 1)

)
.

Next, we calculate
(
g(y)(θ2, θ3, θ4)

)′
using dg(x,y,z)

dt = ∂g
∂x

dx
dt + ∂g

∂ y
dy
dt + ∂g

∂z
dz
dt to obtain

(
g(y)(θ2, θ3, θ4)

)′ = g(y,x)(θ2, θ3, θ4)θ̇2 + g(y,y)(θ2, θ3, θ4)θ̇3 + g(y,z)(θ2, θ3, θ4)θ̇4.
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Thus we have

dφSS

dt
= 2(1 − ρ)2g(y)(θ2, θ3, θ4)

g(y)(1, 1, 1)

(
(g(y)(θ2, θ3, θ4))

′

g(y)(1, 1, 1)

)
.

Using A = − dφSS
dt /2φSS and some simplification, we find an explicit formula for A:

A = −
(
g(y,x)(θ2, θ3, θ4)θ̇2 + g(y,y)(θ2, θ3, θ4)θ̇3 + g(y,z)(θ2, θ3, θ4)θ̇4

g(y)(θ2, θ3, θ4)

)
. (8)

Now we are ready to calculate equations for φSI, φII and φIR. We also require φSR,
but do not require a formula for φRR. Using the flow diagram in Fig. 2, we have

φ̇SI = 2AφSS − (A + 2βs + γ )φSI, (9)

˙φSR = γφSI − AφSR, (10)

φ̇II = (A + βs)φSI − 2(βs + γ )φII, (11)

˙φIR = AφSR + 2γφII − (βs + γ )φIR. (12)

2.1.3 Considering�4

To take into account the dynamic rewiring of edges, we introduce θ4 = ψS+ψI +ψR,
whereψI denotes the probability that a randomdynamic stub belonging to the test node
u has never been involved in transmitting infection tou, and is currently connected to an
infectious node. Other important assumptions with respect to dynamic-edge rewiring
are the following: we assume that when one partnership ends, a new partnership forms
immediately, neglecting any between-partner period, and we assume that edges break
at rate η. The flux between the various compartments of interest can be seen in Fig. 3.

Previously, φS (which corresponds to ψS in this subsection) was calculated explic-
itly as the probability that the neighbour is susceptible. With dynamic-edge rewiring,
an edge that previously transmitted infection may later become connected to a suscep-
tible node, so the previous calculation ofφS does not apply here. To findψS, we need to
calculate the probability that a newly formed edge connects to a susceptible, infectious
or recovered individual. We call these probabilities πS, πI and πR and note that they
are equivalent to the probabilities that a randomly chosen dynamic stub belongs to a
node in each disease compartment. The flux between these probabilities can be seen
in Fig. 4.

First, we calculate the values πS, πI and πR, beginning with πS. If we select a
dynamic stub at random, the probability that it belongs to an individual partaking in s
static lines, t triangles and d dynamic stubs is dps,t,d/Md, where Md = g(z)(1, 1, 1)
is the expected number of dynamic edges that a random individual belongs to. At
time zero, infection is introduced at random to a proportion ρ of the population. Thus
the probability of any node being susceptible at time zero is (1 − ρ). The probability
of a node with degree (s, t, d) being susceptible after some time, given that it was
susceptible at time zero, is θ s2θ

t
3θ

d
4 . Hence πS = (1 − ρ)

∑
s,t,d ps,t,ddθ s2θ

t
3θ

d
4 /Md,
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1− θ4

ψIψS ψR

ηθ4

βdψI

γψIBψS

ηψR
ηθ4πRηψS

ηθ4πS

ηψIηθ4πI

Fig. 3 Flow diagram for the flux of a dynamic-edge partner through different states. The flux between the
probabilities θ4 = ψS + ψI + ψR that a random stub currently connected to u on the dynamic network
layer has never been involved in transmitting infection to u. Note that the compartment denoted ηθ4 is not
a compartment in the typical sense. When edges break (at rate η) in the model, moving into ‘compartment’
ηθ4, new edges are formed immediately without delay, moving straight back into compartments ψS, ψI or
ψR. πS, πI and πR denote the probabilities that a randomly chosen dynamic stub belongs to a susceptible,
infected or recovered node, respectively

πS πI πR
γπI

Fig. 4 Flow diagram for the flux of a dynamic line stub through different states. The flux betweenπS,πI and
πR, the probabilities that a randomly chosen dynamic stub belongs to a susceptible, infected or recovered
node, respectively

with the summation taken over all degree possibilities described by the probability
mass function ps,t,d . Stubs belonging to infected nodes become stubs belonging to
recovered nodes at rate γ ; hence, π̇R = γπI, and πI = 1− πS − πR. The equation for
πS can be condensed using PGF (1), so we have

πS = (1 − ρ)
∑

s,t,d ps,t,ddθ s2θ
t
3θ

d
4∑

s,t,d ps,t,dd
= (1 − ρ)θ4g(z)(θ2, θ3, θ4)

g(z)(1, 1, 1)
, (13)

πI = 1 − πS − πR, (14)

π̇R = γπI. (15)

To complete the systemwe need to calculate the flux BψS fromψS toψI by solving
a differential equation for ψS. B describes the rate at which a susceptible dynamic-
edge neighbour v of u becomes infected from outside the dynamic edge joining u
and v. Consider a random test node u and a random dynamic-edge neighbour v of
u, at some time t . Let ζ denote the probability that the two stubs joining u and v
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have not previously been involved in transmitting infection to u or to v, prior to the
u − v edge forming. The probability that v is susceptible and that u’s stub has not
previously transmitted to u is ζ(1− ρ)θ s2θ

t
3θ

d−1
4 , where s is the number of static lines

v partakes in, t is the number of triangles v partakes in, and d is the dynamic line
stub degree of v. Since we do not know the values (s, t, d) for v, we must consider all
possible combinations of degrees. The probability of a randomly chosen dynamic stub
belonging to a node with degree (s, t, d) is dps,t,d/g(z)(1, 1, 1). We conclude that

ψS = ζ(1 − ρ)
∑

s,t,d ps,t,ddθ s2θ
t
3θ

d−1
4

g(z)(1, 1, 1)
= ζ(1 − ρ)g(z)(θ2, θ3, θ4)

g(z)(1, 1, 1)
.

To calculate the derivative of ψS, we first consider the derivative of ζ . This is given
by subtracting the rate at which such edges break, ηζ , from the rate at which such
edges form, ηθ24 (one θ4 for u’s stub and one for v’s stub). We have

ζ̇ = ηθ24 − ηζ.

We have an expression for ζ̇ , so the derivative of ψS can be found via the chain rule:

ψ̇S = ζ̇
(1 − ρ)g(z)(θ2, θ3, θ4)

g(z)(1, 1, 1)
+ ζ(1 − ρ)

g(z)(1, 1, 1)

(
g(z)(θ2, θ3, θ4)

)′

= ηθ24 (1 − ρ)g(z)(θ2, θ3, θ4)

g(z)(1, 1, 1)
− ηζ(1 − ρ)g(z)(θ2, θ3, θ4)

g(z)(1, 1, 1)

+ ζ(1 − ρ)

g(z)(1, 1, 1)

(
g(z)(θ2, θ3, θ4)

)′

= ηθ4πS − ηψS

+ ζ(1 − ρ)

g(z)(1, 1, 1)

(
g(z,x)(θ2, θ3, θ4)θ̇2 + g(z,y)(θ2, θ3, θ4)θ̇3 + g(z,z)(θ2, θ3, θ4)θ̇4

)

= ηθ4πS − ηψS

+ ψS
(
g(z,x)(θ2, θ3, θ4)θ̇2 + g(z,y)(θ2, θ3, θ4)θ̇3 + g(z,z)(θ2, θ3, θ4)θ̇4

)

g(z)(θ2, θ3, θ4)
,

with simplifications achieved by utilising πS = (1−ρ)θ4g(z)(θ2, θ3, θ4)/g(z)(1, 1, 1)
and ψS = ζ(1 − ρ)g(z)(θ2, θ3, θ4)/g(z)(1, 1, 1). From Fig. 3 we have ψ̇S = ηθ4πS −
ηψS − BψS, so we calculate the flux between compartments ψS and ψI using the rate

B = −
(
g(z,x)(θ2, θ3, θ4)θ̇2 + g(z,y)(θ2, θ3, θ4)θ̇3 + g(z,z)(θ2, θ3, θ4)θ̇4

g(z)(θ2, θ3, θ4)

)
. (16)

The ψS to ψI flux is the product of ψS, the probability that a random dynamic
stub has not transmitted infection to the test node u and is currently connected to a
susceptible node, with rate B, the rate that a neighbouring susceptible node v becomes
infected from outside the dynamic edge, given that the stub has not transmitted and
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connects u to a susceptible node. Following the flow diagram in Fig. 3, we have the
differential equations

θ̇4 = −βdψI, (17)

ψ̇S = ηθ4πS − (B + η)ψS, (18)

ψ̇I = BψS + ηθ4πI − (η + γ + βd)ψI, (19)

ψ̇R = γψI + ηθ4πR − ηψR. (20)

2.1.4 Population-Level Equations

We began the EBCM derivation by considering the probability of a randomly selected
test node u (which is prevented from transmitting infection) being susceptible as
θ s2θ

t
3θ

d
4 , given that the node has degree (s, t, d). Since we have calculated formulae

for θ2, θ3 and θ4, we can derive population-level equations describing the proportion
of the population in each disease compartment at each point in time:

S(t) = (1 − ρ)g(θ2(t), θ3(t), θ4(t)) = (1 − ρ)
∑

s,t,d

ps,t,dθ2(t)
sθ3(t)

tθ4(t)
d , (21)

I (t) = 1 − S(t) − R(t), (22)

Ṙ(t) = γ I (t). (23)

Equations (1)–(23) form a complete system describing an SIR epidemic spreading
across a dual-layer multiplex network consisting of a static network layer constructed
from line stubs and triangle corners and a dynamic network layer constructed from
line stubs only, where edges rewire and degrees are conserved.

2.2 Deriving the Basic Reproduction Number R0

The basic reproduction number R0 is defined as the average number of infections
caused by a single infectious individual, early in an epidemic process, in an otherwise
susceptible population. In the model, a multiplex network structure is generated using
three distinct edge distributions (static line stubs, static triangle corners and dynamic
line stubs). To compute R0 we must consider the average number of infections caused
across each type of edge, whilst also considering the type of edge that the infection
was originally received across. With 3 edge types, this constitutes 9 values, grouped
together to form the next-generation matrix

G =
⎛

⎝
Gss Gst Gsd

Gts Gtt Gtd

Gds Gdt Gdd

⎞

⎠ ,

where matrix element Gi j describes the average number of infections caused across
edges of type j , where the infector received infection across an edge of type i .
Following the next-generation matrix approach (Diekmann et al. 2009), the value
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of R0 is found via the leading eigenvalue of the matrix G, or equivalently, the
eigenvalue with greatest magnitude. We note that the matrix G defined here is
the transpose of the next-generation matrix as defined in Diekmann et al. (2009).
However, this discrepancy does not affect the eigenvalues or therefore the value
R0.

To find R0, we begin by deriving expressions for values in the first column of G.
Firstly, consider the non-diagonal matrix entries Gts and Gds . We want to compute
the expected number of infection events occurring across static lines, when individ-
uals contracted infection across a triangle edge or a dynamic line. In both cases, we
require the expected static line stub degree, multiplied by the expected number of
infections caused across a single static line attached to the infectious individual. Say
the expected static line stub degree is denoted 〈ks〉. Nowwe require the expected num-
ber of infections caused across a single static edge attached to an infectious individual,
in an otherwise susceptible population. A single static edge joining a susceptible and
an infectious individual, in an otherwise susceptible population, has two event pos-
sibilities: a single recovery, or a single infection. Denote X as the random variable
describing the number of infection events occurring across a single static line joining a
susceptible to an infectious individual, in an otherwise susceptible population. Using
the expectation formula, and since there can only be zero or one infection events occur-
ring across such an edge, we find the expected number of infections across a static line
joining a susceptible to an infectious individual simply as P(X = 1). The probability
of a single infection occurring across such a static edge, prior to any recovery, is βs

βs+γ
.

Thus we can say that Gts = Gds = 〈ks〉 βs
βs+γ

.
Finally, we calculate an expression for the diagonal matrix element Gss , by multi-

plying the expected excess static line stub degree, denoted 〈s〉, by the expected number
of infections caused across a single static line joining a susceptible individual to an
infectious individual in an otherwise susceptible population. Following the same argu-
ment for Gts and Gds , we compute the expected number of infection events for Gss

as βs
βs+γ

, and we obtain Gss = 〈s〉 βs
βs+γ

.
Next we derive expressions for the valuesGst ,Gtt andGdt in the second column of

thematrixG.Wefirstly consider the non-diagonal elementsGst andGdt . BothGst and
Gdt are calculated bymultiplying the expected triangle corner degree, denoted 〈kt〉, by
the expected number of infection events caused within a single triangle attached to an
infectious node in an otherwise susceptible population. In a single triangle comprised
of two susceptible individuals attached to an infectious individual, there are a finite
number of infection event possibilities: either no further infections occur (the infectious
individual recovers), one infection event occurs, or two infection events occur. Define
Y as the random variable describing the number of infection events within such a
triangle. Using the expectation formula, we find the expected number of infection
events within a triangle comprised of two susceptible individuals and an infective, in
an otherwise susceptible population, asP(Y = 1)+2·P(Y = 2). To continue, wemust
compute the probabilities P(Y = 1) and P(Y = 2) explicitly. P(Y = 1) describes the
probability that the original infective infects one out of two triangle neighbours. In this
case, either one of the two susceptible neighbours can become infectious, and both
infectious triangle members must then recover, so that it is impossible for any more
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than one infection event to occur. In a triangle comprised of a single infective and two
susceptible nodes, there are four distinct nodal orders in which a single infection event
is followed by the recovery of both infectious nodes. We find

P(Y = 1) = 4βs

2βs + γ

(
γ

2βs + 2γ

) (
γ

βs + γ

)

= 2βs

2βs + γ

(
γ

βs + γ

)2

.

Considering P(Y = 2) is more complex, as there are two distinct ways in which
two infection events can occur in a triangle between an infective and two susceptible
individuals. Firstly, the original infective can infect both of its triangle neighbours
consecutively, prior to any recovery events. The probability of both triangle infection

events occurring in succession is given by
(

2βs
2βs+γ

) (
2βs

2βs+2γ

)
=

(
2βs

2βs+γ

) (
βs

βs+γ

)
.

Secondly, the original infective can cause two triangle infections via three consecu-
tive events. In this case, the originally infectious triangle member firstly infects one
susceptible triangle neighbour at rate 2βs

2βs+γ
. The triangle is now comprised of two

infectious individuals attached to a single susceptible individual. The second event to
occur is a recovery of either the original infector or its first infectee, occurring at rate

2γ
2βs+2γ = γ

βs+γ
. The triangle is now comprised of a susceptible, an infective, and a

recovered individual, in an otherwise susceptible population. Following the recovery
event, the final event is an infection of the remaining susceptible triangle member,
occurring at rate βs

βs+γ
. The probability of all three events occurring in succession is

thus 2βs
2βs+γ

(
γ

βs+γ

) (
βs

βs+γ

)
.

In the latter case of an infection, followed by a recovery, followed by another
infection within a triangle originally composed of an infective and two susceptible
individuals in an otherwise susceptible population, the original infector may not be
directly involved in every single infection event. However, for the purposes of deriving
R0, we say that the original infector caused these infections, regardless of the order
in which triangle members recover and infect one another.

Since there are two distinct ways in which two infections can take place within a
triangle comprised of an infective and two susceptible individuals, we take the sum of
both individual probabilities to obtain P(Y = 2):

P(Y = 2) = 2βs

2βs + γ

(
βs

βs + γ

)
+ 2βs

2βs + γ

(
γ

βs + γ

) (
βs

βs + γ

)

= 2βs

2βs + γ

(
βs

βs + γ

) [
1 + γ

βs + γ

]
.

We find the expected number of infection events within a triangle comprised of two
susceptible individuals and an infective, in an otherwise susceptible population, as
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P(Y = 1) + 2 · P(Y = 2) = 2βs

2βs + γ

(
γ

βs + γ

)2

+ 4βs

2βs + γ

(
βs

βs + γ

) [
1 + γ

βs + γ

]

= 2βs

2βs + γ

[
2 −

(
γ

βs + γ

)2
]

.

Then we have Gst = 〈kt〉 2βs
2βs+γ

[
2 −

(
γ

βs+γ

)2] = Gdt , where 〈kt〉 denotes the
expected static triangle corner degree. Finally, we have Gtt = 〈t〉
2βs

2βs+γ

[
2 −

(
γ

βs+γ

)2]
, where 〈t〉 denotes the expected excess static triangle corner

degree.
We conclude by deriving elements from the third column of G, starting with non-

diagonal matrix elements Gsd and Gtd . In both cases, we multiply the expected
dynamic line stub degree, denoted 〈kd〉, by the expected number of infection events
occurring across a single dynamic line stub attached to an infectious individual, in an
otherwise susceptible population.

Theprobability of a dynamic stub attached to an infective in anotherwise susceptible
population transmitting infection at least once is βd

βd+γ
. If such an infection occurs, the

I–S pairing becomes an I–I pairing with a dynamic edge joining the two individuals.
The probability of a dynamic I–I edge rewiring, prior to any recovery event, is η

η+γ
.

We can assume that any I–I edge rewires to become an I–S edge in the limit of large
population size, since we are early on in an epidemic process, and we began with
an otherwise susceptible population. The probability that an infectious dynamic stub
infects its new susceptible neighbour is βd

βd+γ
. This rewiring and infecting process can

occur an arbitrary number of times in the model. The expected number of infections
of this type can be calculated by taking the sum

∞∑

n=0

βd

βd + γ
rn = βd

βd + γ

(
1

1 − r

)
,

by the geometric series, and where r is defined as ηβd
(η+γ )(βd+γ )

, the probability of an
infectious individual’s dynamic-edge rewiring, followed immediately by its dynamic
stub infecting the new (susceptible) neighbour across the rewired edge. We obtain the

matrix values Gsd = 〈kd〉 βd
βd+γ

(
1

1−r

)
= Gtd .

Finally, we compute Gdd , defined as the expected number of infections caused
across dynamic edges, where the infector received infection across a dynamic edge
itself. Firstly, consider the single dynamic I–I edge which originally infected our
individual. The probability of the edge rewiring, leaving our infective in an I–S
dynamic-edge pairing, is η

η+γ
. The probability of the infectious dynamic stub infect-

ing the new susceptible neighbour is βd
βd+γ

. Thus the probability that the dynamic
stub which originally contracted infection infects ≥ n individuals is rn , where
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r = ηβd
(η+γ )(βd+γ )

. We compute the expected number of infections of this type by
taking the sum of rn for n = 1:∞

∞∑

n=1

rn = r

1 − r
,

by the geometric series. Now consider the remaining dynamic edges associated with
our infectious individual. We require the expected number of infections caused by a
single edge of this type. Using the same argument as for Gsd and Gtd , we find the
expected number of infections caused by one dynamic edge attached to our infectious

individual as βd
βd+γ

(
1

1−r

)
. Thus we find Gdd = r

1−r + 〈d〉 βd
βd+γ

(
1

1−r

)
, where 〈d〉 is

the expected excess dynamic line stub degree.
In detail, the next-generation matrix G takes the form

⎛

⎜⎜⎜⎜⎜⎜⎝

〈s〉 βs
βs+γ

〈kt〉 2βs
2βs+γ

(
2 −

(
γ

βs+γ

)2) 〈kd〉 βd
βd+γ

(
1

1−r

)

〈ks〉 βs
βs+γ

〈t〉 2βs
2βs+γ

(
2 −

(
γ

βs+γ

)2) 〈kd〉 βd
βd+γ

(
1

1−r

)

〈ks〉 βs
βs+γ

〈kt〉 2βs
2βs+γ

(
2 −

(
γ

βs+γ

)2)
r

1−r + 〈d〉 βd
βd+γ

(
1

1−r

)

⎞

⎟⎟⎟⎟⎟⎟⎠
, (24)

where 〈ks〉, 〈kt〉 and 〈kd〉 denote the expected static line stub, static triangle corner
and dynamic line stub degrees, 〈s〉, 〈t〉 and 〈d〉 denote the expected excess static line
stub, static triangle corner and dynamic line stub degrees, and r = ηβd

(η+γ )(βd+γ )
. The

basic reproduction number R0 is the eigenvalue of next-generation matrix (24) with
greatest magnitude.

2.3 Model Implementation

A variable-order stiff differential equation solver (ode15s in the MATLAB environ-
ment) was used to solve all relevant systems of equations. Initial conditions were
specified, consisting of appropriate degree distributions and parameters for each edge-
based compartmentalmodel type, and of a user-specified end time for the computation.

Solutions to Eqs. (1)–(23) were found using both interdependent and independent
distributions for the three edge types. For interdependent distributions, a single prob-
ability distribution governed the distribution of pairs of edge stubs, and additional
model parameters (ps + pt + pd) ≡ 1 were used to distribute each pair of stubs
into: two static line stubs (with probability ps), a single static triangle corner (with
probability pt ) or two dynamic line stubs (with probability pd ). In such cases we
used a negative binomial distribution for pairs of edge stubs with parameters p and r
describing the probability of success in a single trial and the number of trial successes,
respectively, where the distribution itself is generated by gnb(x; r , p) = (

p
1−(1−p)x )r

and models the number of failures before a specified number of successes is reached
in a series of identical, independent Bernoulli trials. We also utilised a discrete homo-
geneous distribution for pairs of edge stubs where all individuals had identical degree.
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For independent distributions, we used three separate binomial distributions for the
number of static line stubs, static triangle corners and dynamic line stubs.

2.4 Simulation Implementation

To test the validity of solutions to Eqs. (1)–(23), found in the MATLAB environment,
Gillespie simulations (Gillespie 1976) were implemented to produce statistically cor-
rect trajectories of SIR epidemic processes occurring on equivalent static–dynamic
multiplex networks. Prior to each simulation, static and ‘dynamic’ adjacency matrices
were generated according to a configuration model approach, described as follows: for
a population of N individuals, three vectors of length N were generated to record the
number of static line stubs, static triangle corners and dynamic line stubs associated
with each individual, according to user-specified degree distributions provided to the
script. The script ensured that the total number of static line stubs was even, the total
number of dynamic line stubs was even, and that the total number of static triangle
corners was a multiple of three.

Firstly, the static network layer was generated using vectors containing the number
of static line stubs and triangle corners each individual partook in. Pairs of static line
stubs and triples of static triangle corners were selected at random. Provided potential
static lines and triangles did not generate self-loops (where an individual is joined to
itself with an edge) or double edges (where an edge exists more than once within the
static network layer), they were added to the static adjacency matrix. The unmatched
static line stubs and static triangle corners listswere updated, and the process continued
until all static line stubs and triangle corners were successfully matched.

Secondly, the initial structure of the dynamic network layer was generated using
the vector storing the number of dynamic line stubs each individual partook in. Pairs
of dynamic line stubs were selected at random. Provided a potential dynamic edge
did not generate a self-loop or a double edge within the dynamic network layer, it
was added to the dynamic adjacency matrix. Successfully paired dynamic stubs were
removed from the unmatched stubs list, and the process continued until all dynamic
line stubs were successfully matched.

The nature of this configuration model approach meant that the wiring processes
for the static and dynamic network layers may have had to be restarted multiple times
in order to achieve final network structures. Once all static line stubs, static triangle
corners and dynamic line stubs had been wired up, the configuration process was
complete. Although the script prevented double edges from occurring within each
network layer, it was possible for double edges to occur across the network layers, i.e.
for two individuals to share both a static and a dynamic connection simultaneously.

Given static and dynamic adjacency matrices describing the multiplex network
structure, simulated epidemic processes were implemented. In each Gillespie simula-
tion, ρN initially infectious individuals were selected at random from the population.
At each time step, a vector of length (N + 1) described the state transition rate (infec-
tion or recovery) for all N individuals, followed by a single edge swapping rate, ηM

2 ,
where M := total number of edges in the dynamic network layer. Inter-event times
followed an exponential distribution with scale parameter 1

R , where R := the sum of
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the rates vector at the current time step. Each event occurring was either an infection,
a recovery or an edge swap. Uniformly distributed random numbers were generated at
each time step to determine the next event to occur.When an edge swap event occurred,
the script selected two dynamic edges at random, ensuring that all four nodes involved
in these edges were unique. The script also ensured that the proposed new dynamic
edges did not already exist within the dynamic network layer. Given these conditions,
an edge swap occurred and the Gillespie process continued. The process terminated
once the user-specified end time was reached.

3 Results

In what follows, we assess the validity of Eqs. (1)–(23) and of the basic reproduction
number R0, obtained via next-generation matrix (24). We firstly consider two extreme
cases of the multiplex model: when either the static or the dynamic network layers
are negligible (close to zero). In such cases, we show that predictions made by Eqs.
(1)–(23) resolve to predictions made by existing uniplex EBCM equations. When the
full multiplex model is considered, with static and dynamic network elements present,
there exists no basis for comparison other than generating exact simulations of the
epidemic process. To this end, we utilise Gillespie simulations to demonstrate the
validity of Eqs. (1)–(23) in predicting the epidemic process for a number of multiplex
network configurations. By solely considering the predictions of Eqs. (1)–(23), we
explore the consequences of varying individual model parameters and of considering
various combinations of model parameters (ps + pt + pd) ≡ 1, governing the con-
tributions of each edge type. Further, we explore the contributions of each edge type
and how the resulting final epidemic size is altered within a systematic consideration
of combinations of model parameters βs, βd and η. Finally, we test the performance of
the derived basic reproduction number R0 in predicting the outcome of an epidemic
and we explore variations in the value of R0 and the associated final epidemic size
predicted by Eqs. (1)–(23) when altering the rate of rewiring, the extent of clustering
and the average degree in the multiplex model.

3.1 Model Convergence to Existing Uniplex Model Equations

3.1.1 Model Without Dynamic Layer

When the dynamic component of the dual-layer static–dynamic multiplex is removed,
the model reduces to describe an SIR epidemic on a static uniplex network generated
by lines and triangles. Biologically speaking, this reducedmodel tracks the epidemic as
it spreads across persistent connections in a population with community structure. The
EBCM approach has been followed to derive equations describing an SIR epidemic
on such a network (Volz et al. 2011).

By comparing predictions made by uniplex model equations in Volz et al. (2011)
with those of multiplexmodel equations (1)–(23) when dynamic network elements are
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Fig. 5 Multiplex model convergence—no dynamic layer, with simulation. The time evolution of infection
prevalence for the original EBCM of an SIR epidemic on a static uniplex network (solid black line), for the
proposed EBCM of an SIR epidemic on a dual-layer multiplex with the dynamic network layer being close
to zero (thick dashed red line) and for 10 Gillespie simulations of the SIR epidemic on a single network
of size N = 5000 (solid blue lines). In all panels γ = 1, ρ = 0.05 and p = 0.5 and r = 10 generate a
negative binomial distribution for pairs of edge stubs. For the original static derivation (solid black line)
ps = 0.5 = pt , describing the proportion of edge pairs that are split into two single lines or remain as
a triangle corner, respectively. For the multiplex derivation (thick dashed red line) βs = βd, η = 0.01,
and ps = 0.4999999, pt = 0.5 and hence pd = 10−7 describe the proportion of edge pairs that become
two static lines, a static triangle corner or two dynamic edges, respectively. a β ′s = 1, C = 0.02677, b
β ′s = 0.5, C = 0.02670, c β ′s = 0.25, C = 0.02658, d β ′s = 0.125, C = 0.02685, where C denotes the
global clustering coefficient of each static network layer generated for simulation (Color figure online)

close to zero,wewere able to test themultiplexmodel’s convergence (Fig. 5). Excellent
agreement was observed between multiplex model equations where dynamic network
elements are negligible, uniplex model equations (Volz et al. 2011) and Gillespie
simulated epidemics on equivalent multiplex networks, for a number of scenarios
with varying forces of infection.
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3.1.2 Model Without Static Layer

When the static component of the dual-layer static–dynamic multiplex is removed,
the model describes an SIR epidemic on a dynamic uniplex network generated by
lines, where edges rewire at constant rate η and degrees are conserved. Biologically,
the reduced model describes an epidemic spreading through a population where con-
nections between pairs of individuals are temporary, but the number of connections
an individual partakes in remains fixed. The EBCM approach was followed to derive
equations describing an SIR epidemic spreading on such a network in Miller et al.
(2012).

Excellent agreement was observed between predictions made by Eqs. (1)–(23)
when static network elements are close to zero, output from the dynamic fixed-degree
derivation inMiller et al. (2012) andGillespie simulations describing the SIR epidemic
and edge rewire processes occurring simultaneously on equivalentmultiplex networks,
for a number of set-ups with varying forces of infection (Fig. 6).

3.2 Model Validation by Comparison with Simulation

We have observed excellent agreement between multiplex model predictions, uniplex
model predictions and Gillespie simulated epidemics in extreme cases where either
static or dynamic network elements are negligible (Figs. 5, 6).Whenmultiplex network
elements are non-negligible, static and dynamic network layers coexist in the model.
In such cases, Gillespie simulated epidemics become the sole basis for assessing the
validity of multiplex model equations (1)–(23).

A number of comparisons have been made between multiplex model predictions
and Gillespie simulations when static and dynamic network elements coexist (Figs.
7, 8). Excellent agreement was observed for a number of comparisons with various
average degrees (imposed via negative binomial parameters p and r , describing the
distribution governing pairs of edge stubs) and various levels of clustering (imposed
by varying parameter pt with the constraint (ps + pt + pd) ≡ 1) (Fig. 7). Excellent
agreement was also observed for a number of comparisons with various combinations
of the multiplex model’s infection parameters βs and βd (Fig. 8).

3.3 A Brief Exploration of Parameter Spaces

Having observed excellent agreement between simulated epidemic processes and
equivalent predictions made by multiplex model equations, we investigated the effects
of varying single parameters on the dynamics of epidemics predicted by Eqs. (1)–(23).
In total, 9 individual model parameters were varied systematically, whilst all (or the
majority of) other parameters were held constant (Fig. 9). Across all parameters being
varied, an identical baseline parameter set was utilised, with the resulting prediction
made by Eqs. (1)–(23) plotted in black to enable ease of comparison between different
parameter scenarios.

This brief exploration highlights the effect that increasing or decreasing a single
parameter has on the global dynamics of an SIR epidemic spreading across a dual-
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Fig. 6 Multiplex model convergence—no static layer, with simulation. The time evolution of infection
prevalence for the original EBCM of an SIR epidemic on a dynamic uniplex network with conserved
degrees and edge rewiring (solid black line), for the proposed multiplex EBCM of an SIR epidemic with
the static network layer being close to zero (thick dashed red line) and for 10 Gillespie simulations of
the process on a single network of size N = 5000 (solid blue lines). In all panels γ = 1, ρ = 0.05 and
p = 0.5 and r = 10 generate a negative binomial distribution for pairs of edge stubs. For the original
conserved-degree derivation (solid black line) pd = 1, indicating that all edge pairs become two disjoint
dynamic edges. For the multiplex derivation (thick dashed red line), η = 0.01 and ps = pt = 10−7 and
pd = 0.9999998 describe the proportion of edge pairs that become two static lines, single triangle corners
or two dynamic edges, respectively. a β ′s = 1, C = 0.004944, b β ′s = 0.5, C = 0.005285, c β ′s = 0.25,
C = 0.005344, d β ′s = 0.125, C = 0.005127, where C denotes the global clustering coefficient of each
dynamic network layer generated for simulation, at time zero (Color figure online)

layer static–dynamic multiplex. Larger values of p, where p describes the probability
of success in a single Bernoulli trial, generate a negative binomial distribution with
smaller average degree and a reduction in variance, slowing the epidemic’s spread.
Larger values of r , where r denotes the number of successful Bernoulli trials that must
be reached before the experiment is stopped, led the epidemic to spread more rapidly
due to an increase in average degree and variance of the negative binomial distribution
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Fig. 7 Multiplex model prediction versus simulation—varying clustering and average degree. Plotting the
dynamics of the proportion of infected individuals over time. Each panel contains 25 Gillespie simulations
on a single multiplex network comprised of N = 1000 individuals (blue lines) and the associated EBCM
prediction (black line). All networks are generated using a negative binomial distribution for pairs of edge
stubs with parameters p = 0.5 and various values for r . Networks in column 1 (counting from left to right)
have average degree 10 (achieved via r = 5), networks in column 2 have average degree 20 (achieved
via r = 10) and networks in column 3 have average degree 30 (achieved via r = 15). Networks in row
1 (counting from top to bottom) have minimised clustering via values ps = 0.99999998 and pt = 10−8.
Networks in row 2 have the values ps = 0.49999999 = pt . Networks in row 3 have maximised clustering
via the values ps = 10−8 and pt = 0.99999998. Counting panels from left to right and top to bottom,
starting with the upper-left panel, static networks have the following clustering coefficients: C = 0.0161,
C = 0.0267,C = 0.0370,C = 0.0535,C = 0.0473,C = 0.0493,C = 0.0898,C = 0.0662,C = 0.0629.
In all panels, tmax = 10, ρ = 0.05, βs = βd = 0.25, γ = 1, η = 0.01 (Color figure online)

for pairs of edge stubs. Varying the rewiring rate η led to less pronounced differences,
where larger values of η led to a slight increase in the speed at which the epidemic
spread through the population. Increasing a single infection parameter βs or βd leads to
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Fig. 8 Multiplex model prediction versus simulation—varying infection parameters βs and βd. Plotting the
dynamics of the proportion of infected individuals over time. Each panel contains 100 Gillespie simula-
tions (10 simulations on 10 multiplex networks comprised of N = 5000 individuals) (blue lines) and the
associated EBCM prediction (black line). All multiplex networks follow a negative binomial distribution
for pairs of edge stubs with parameters p = 0.5 and r = 10, which were split into three edge types via
ps = 0.3 = pt and thus pd = 0.4. In all panels tmax = 10, ρ = 0.05, γ = 1, η = 0.01. Across the
panels, different values for βs and βd have been used in the range [0.125, 0.25, 0.5], indicated by individual
column and row headings (Color figure online)

an increase in the rate of epidemic spread.Altering the parameterρ means changing the
number of individualswho are infectious at the start of an epidemic process. Increasing
the value of ρ leads to changes in the shape of the curve I (t), describing the prevalence
of infection at time t , and to the epidemic process finishing sooner. Altering the values
ps , pt and pd , with the constraint (ps + pt + pd) ≡ 1, demonstrates the range of
dynamics that can be achieved using a fixed distribution for pairs of edge stubs with
additional parameters to distribute edge pairs into three edge types. Baseline infection
parameters are used across all three panels, thus βs = 0.05 < 0.2 = βd, meaning that
an increase in the proportion of dynamic edges leads to an increase in the speed of the

123



2722 R. C. Barnard et al.

0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
I(t

)
p=0.5
p=0.1
p=0.2
p=0.3
p=0.4
p=0.6
p=0.7

0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
r=10
r=2
r=4
r=6
r=8
r=12
r=14
r=16
r=18

0 5 10
0

0.05

0.1

0.15

0.2
eta=0.01
eta=0.1
eta=1
eta=10
eta=100
eta=1000
eta=10000

0 5 10
0

0.1

0.2

0.3

0.4

0.5

I(t
)

betas=0.05

betas=0.1

betas=0.15

betas=0.2

betas=0.25

betas=0.3

betas=0.35

0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
betad=0.2

betad=0.05

betad=0.1

betad=0.15

betad=0.25

betad=0.3

betad=0.35

0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3
rho=0.01
rho=0.05
rho=0.1
rho=0.15
rho=0.2

0 5 10
t

0

0.05

0.1

0.15

0.2

0.25

I(t
)

ps=0.3

ps=0.1

ps=0.2

ps=0.4

ps=0.5

ps=0.6

ps=0.7

ps=0.8

ps=0.9

0 5 10
t

0

0.05

0.1

0.15

0.2

0.25
pt=0.3

pt=0.1

pt=0.2

pt=0.4

pt=0.5

pt=0.6

pt=0.7

pt=0.8

pt=0.9

0 5 10
t

0

0.1

0.2

0.3

0.4
pd=0.4

pd=0.1

pd=0.2

pd=0.3

pd=0.5

pd=0.6

pd=0.7

pd=0.8

pd=0.9

Fig. 9 Multiplex model predictions. Plotting the dynamics of the proportion of infected individuals over
time, for a number of different parameter sets. In all panels, a baseline parameter set (p = 0.5, r = 10,
ps = 0.3 = pt , pd = 0.4, βs = 0.05, βd = 0.2, γ = 1, η = 0.01 = ρ, tmax = 10 ⇒ R0 = 1.076) is used
to plot dynamics predicted by multiplex model equations (1)–(23) (thick black line). In each panel, a single
parameter is varied and the resultant predictions are plotted in various colours, indicated by individual panel
legends. In the bottom row of panels, parameters ps , pt and pd are being varied. Since the model has the
constraint (ps + pt + pd ) ≡ 1, we alter the triplet values in each panel in the following way. Assume we
are varying the parameter ps . If the new ps is larger than the baseline ps , we subtract 12 the difference from

the remaining baseline parameters pt and pd . Conversely, if the new ps is smaller than the baseline ps , 12
the difference is added to each of the values pt and pd (Color figure online)
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epidemic, whilst any increase in the proportion of static edges leads to a decrease in
the rate of epidemic spread.

3.4 Contribution of Network Layers via (ps + pt + pd) ≡ 1

Whendegree distributions are interdependent, the parameters (ps+pt+pd) ≡ 1 afford
the ability to investigate the effects on epidemic dynamics of altering the proportion of
edges of each type. Previously, we observed changes in the dynamics of I (t), caused
by altering the contributions of each edge type (Fig. 9), where βd > βs, rewiring was
slow, and pairs of edge stubs were governed by a negative binomial distribution.

In this multiplex setting, increasing the force of infection on one network layer
effectively reduces the force of infection on remaining network layers. Thus the value
of parametersβs,βd andη, and the ratios between them, bias the effect of varyingmodel
parameters ps , pt and pd . To take this into account, we allowed parameters βs, βd and
η to take three distinct values (specifically βs ∈ [0.55, 0.6, 0.65], βd ∈ [βs

2 , βs, 2βs]
and η ∈ [0.01, 1, 100]), and we considered all 27 combinations of their values, before
varying the contributions of each edge type and recording the final epidemic size
predicted by Eqs. (1)–(23) in each case (Fig. 10). This approach enabled isolation
of the effects of changing single infection or rewiring parameters and exploration of
the contributions made by various combinations of edge proportions ps , pt and pd in
distinct parameter settings.

Increasing the proportion of triangle corners via pt consistently led to decreases in
final epidemic size, suggesting that clustering slows the epidemic process regardless
of the choice of parameters βs, βd and η (Fig. 10). Generally, increasing the value
of η resulted in an increase in final epidemic size when comparing identical edge
contributions. Likewise, increasing the value of infection parameters βs or βd led to
an increase in final epidemic size. Dependant on the combination of parameters βs, βd
and η, different behavioural regimes emerge, indicated by the orientation of colours
and the direction in which they change in individual panels. We observe that a single
edge proportion can have a more or less dominant effect on the outcome, dependent
on the particular parameter set. For example, when η = 0.01 and βs = 0.55 = βd,
changing the proportion of dynamic edges pd has little effect on the final epidemic
size. However, when η = 100, βs = 0.65 and βd = 1.3, altering the parameter pd
leads to more extreme changes in final epidemic size, a result of βd dominating βs and
an increased rate of dynamic-edge rewiring.

3.5 Validation of Basic Reproduction Number R0

Next-generationmatrix G (24) and the value R0 can be validated by testing to see if the
final epidemic size is disturbed as R0 exceeds the epidemic threshold (R0 = 1). When
the basic reproduction number is subthreshold (R0 < 1), the associated epidemic
process is expected to ‘die-out’. However, when R0 > 1 the epidemic is expected to
take hold and spread within a population.

For a number of set-ups, we recorded the final epidemic size predicted by Eqs. (1)–
(23), the final epidemic size of a singleGillespie simulation of the same process and the
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Fig. 10 Multiplex model layer contributions. Heat map plots depicting the final epidemic size (equal to
the fraction of the population who are either infectious or recovered at the end of the epidemic process)
predicted by Eqs. (1)–(23) for a multiplex network of various proportions ps , pt (y-axes) and pd (x-axes),
with the model constraint (ps + pt + pd ) ≡ 1. For all set-ups γ = 1, ρ = 0.01, tmax = 25 and pairs of
edge stubs followed a discrete homogeneous distribution where all individuals had 2 edge pairs (and hence
total degree 4). The values of remaining model parameters η, βs and βd are indicated above each panel,
with η ∈ [0.01, 1, 100], βs ∈ [0.55, 0.6, 0.65] and βd ∈ [βs/2, βs, 2βs]. All 27 possible combinations
of the parameters η, βs and βd are considered. Prior to implementation, a number of set-ups across the
(ps , pt , pd ) parameter spaces in each panel were tested by hand to ensure that the epidemic process had
concluded by time tmax = 25 (Color figure online)
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Fig. 11 Validation of the basic reproduction number R0. Plotting values of the basic reproduction number R0
(x-axis), found via the leading eigenvalue of matrix (24), against the associated final epidemic sizes (y-axis)
predicted by multiplex equations (1)–(23) (red line) and recorded by single statistically correct Gillespie
simulations (blue circles). Static and dynamic line stubs follow binomial distributions with parameters
n = 20 and p = 0.5. The distribution of triangle corners follows a binomial distribution with parameters
n = 1 and p = 0.001 to minimise clustering. Fixed parameters were γ = 1, ρ = 0.001, η = 0.01,
tmax = 10, N = 1000. In each set-up βs = βd. One hundred transmission rates were tested, from
βs = βd = 0.01 up to βs = βd = 0.3, in equal-sized increments. In Gillespie simulations where R0 > 1,
if the number of infected individuals did not reach 10 times the initial number of infectives, all data were
discarded and the Gillespie script restarted from initial conditions at time zero (Color figure online)

associated R0 value (Fig. 11). To obtain a suitable range of R0 valueswe systematically
increased βs = βd from subthreshold values, whilst all other parameters were held
constant. Independent binomial distributions were used for static line stubs, static
triangle corners and dynamic line stubs. In Gillespie simulations where R0 > 1, we
imposed an additional constraint requiring the number of infectives to reach at least ten
times the initial number of infected individuals; otherwise, a new Gillespie simulation
was implemented. As R0 exceeded the epidemic threshold, the final epidemic size
predicted by model equations (1)–(23) and from individual simulations increased
rapidly, suggesting the derivation of the next-generation matrix G and associated R0
is rigorous.

We plotted R0 and the associated final epidemic size predicted by Eqs. (1)–(23)
for a number of scenarios to investigate the impact on their values of varying specific
multiplex network attributes (rewiring, clustering and average degree) and to explore
the relationship between R0 and final epidemic size (Fig. 12). Varying the rewiring
rate η demonstrates that R0 and the associated final epidemic size increase with the
value of η. Varying η can also move the system below or above the epidemic threshold
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Fig. 12 Effects of rewiring, average degrees and clustering. Plotting the value of R0 and the associated
final epidemic size found using EBCM equations (1)–(23), for a number of different set-ups. Upper-left
panels: testing 100 evenly spaced values for η in the range [0.01, 50]. Remaining model parameters were
ps = 0.3 = pt , βs = 0.1 = βd, γ = 1, ρ = 0.01 and tmax = 25. Pairs of edge stubs followed a negative
binomial distribution with parameters p = 0.5 and r = 5. Upper-right panels: testing 15 evenly spaced
values for 〈k〉 ∈ [2, 30], generated using a negative binomial distribution for pairs of edge stubs with fixed
p = 0.5 and r ∈ [1, 15]. Remaining model parameters were ps = 0.3 = pt , βs = 0.0625 = βd, γ = 1,
η = 0.1, ρ = 0.01, tmax = 25. Lower-left panels: testing 100 evenly spaced values for pt in the range
[0.01, 0.99]. The proportion (1 − pt ) was split equally between parameters ps and pd . Remaining model
parameters were βs = 0.5 = βd, γ = 1, ρ = 0.01, η = 0.1 and tmax = 25. Pairs of edge stubs followed
a discrete homogeneous distribution where all individuals had 2 edge pairs. Lower-right panels: testing 15
evenly spaced values for 〈k〉 ∈ [2, 30], generated using a discrete homogeneous distribution for pairs of
edge stubs where all individuals have identical degree. Remaining model parameters were ps = 0.3 = pt ,
βs = 0.0625 = βd, γ = 1, ρ = 0.01, η = 0.1, tmax = 25 (Color figure online)

R0 = 1. However, there is a limit to this relationship; as η increases above 20, the
changes in R0 and final epidemic size are negligible. We have seen previously that
larger values of pt result in smaller final epidemic sizes, suggesting that increased
clustering slows epidemic processes on multiplex networks (Fig. 10). Here, we find
that increasing pt leads to decreases in both R0 and the associated final epidemic size
(Fig. 12). The relationship between pt and final epidemic size appears to be linear. For
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smaller pt the curve with R0 appears to be linear, but as pt tends towards its maximal
value, the reduction in R0 increases.

An increase in average degree 〈k〉, where pairs of edge stubs follow a negative
binomial distribution, led to increases in R0 and final epidemic size (Fig. 12). The
relationship between 〈k〉 (negative binomial) and R0 appears to be linear. However,
the relationship between 〈k〉 and final epidemic size differs. The final epidemic size
increases at a faster rate above some critical average degree, say 〈k〉 = 12. A similar
pattern emerges in the relationship between the average degree, R0 and final epidemic
size when pairs of edge stubs follow a discrete homogeneous distribution. This is not
surprising, as we saw previously that the relationship between R0 and final epidemic
size is nonlinear (Fig. 11). However, these results show that small average degrees
make it hard for the epidemic to take hold in the population. Potentially, this is a result
of the multiplex network becoming divided into more than one connected component,
meaning the disease can get trapped within smaller subpopulations of individuals,
limiting its effect.

4 Discussion

Wehave proposed amodel describing the time evolution of an SIR epidemic spreading
through a population of individuals in a multiplex network consisting of two lay-
ers: a static network layer representing persistent human connections and a dynamic
network layer representing temporary human interactions made outside of a typical
household. The model incorporates heterogeneity in the structure, type and duration
of connections between individuals, and the number of model equations remains fixed
regardless of population size. We designed the multiplex model to afford control of
network transitivity (clustering), on the static layer only, by generating the associated
network structure using a combination of 2-vertex and 3-vertex cliques, referred to
here as static lines and triangles. The dynamic network layer was generated via a
single distribution for 2-vertex cliques. Following the EBCM approach (Miller 2014),
we obtained expressions for time-evolving quantities of interest, such as the infectious
proportion of the population I (t). We have also applied the next-generation matrix
method (Diekmann et al. 2009) to compute the basic reproduction number R0, a mea-
sure of the expected number of infections a typical infectious individual will cause
during an epidemic.

Multiplex model equations (1)–(23) were validated, first by testing convergence of
epidemic dynamics to predictionsmade by existing uniplex edge-based compartmental
model equations, when either network layer (static or dynamic) was eliminated, and
second by comparing full model (with static and dynamic elements) predictions to
the dynamics of corresponding statistically correct Gillespie simulations (Gillespie
1976).

The multiplex model’s parameter space was explored by varying individual param-
eters and plotting the resulting epidemic dynamics, and by mapping the outcome on
final epidemic size of having various proportions of each edge type when consider-
ing different combinations of model parameters βs, βd and η. The basic reproduction
number R0, found via the leading eigenvalue of next-generation matrix G (24), was
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validated by demonstrating that continually incrementing infection parameters βs and
βd, with all else held constant, led to a rapid increase in final epidemic size as R0
exceeded its epidemic threshold. Finally, we explored the effect on R0 and the asso-
ciated final epidemic size predicted by Eqs. (1)–(23) of altering specific multiplex
network attributes governing the rate of rewiring, the extent of clustering and the
average degree.

Our unique contribution towards the literature is a model with a combination of
static and dynamic network elements, derived by combining the EBCM approach to
modelling an SIR epidemic on a static network with tunable clustering (Volz et al.
2011) with the EBCM approach to modelling an SIR epidemic on a dynamic fixed-
degree network (Miller et al. 2012), under the framework of a dual-layer multiplex
network.

The EBCM approach allows us to model variations in contact structure, contact
type and contact duration simultaneously. Modelling such heterogeneities via EBCM
provides an opportunity to investigate the effects of heterogeneities observed in real-
world networks (Perry-Smith and Shalley 2003; Komurov and White 2007; Vernon
and Keeling 2009), alongside consideration of common network attributes such as
clustering and degree distributions. EBCMalso affords a huge reduction in the number
of equations required to track the epidemic, compared with full simulation.

This work progresses the drive to derive population models that capture reasonable
levels of complexity and heterogeneity whilst exhibiting a tractable number of equa-
tions. By providing a clear and concise ‘walkthrough’ to deriving and validating our
desired model, we hope that future researchers are inspired to build on these results by
designing and implementing novel models, modelling approaches and computational
algorithms.

The work here extends previous research following the edge-based compartmental
modelling approach. Prior EBCM approaches derived model equations describing
the SIR epidemic process on wholly static or wholly dynamic uniplex networks. For
example, EBCM has been utilised to describe the SIR epidemic on static actual-
degree configuration model (CM) networks (Miller et al. 2012), static CM networks
with tunable clustering (Volz et al. 2011) and static expected degree mixed Poisson
(MP) networks (Miller et al. 2012).

Dynamic uniplex networks have also been considered via the EBCM approach.
Namely, CM networks with mean-field social heterogeneity (edges are broken and
rewired at a very fast rate, meaning all pairs of individuals contact each other at the
same rate, and edge durations are fleeting), dynamic fixed-degree CMnetworks (edges
are rewired, but edge durations are finite), dormant contact CM networks (existing
edges are broken and remain dormant for some time, before being re-established), MP
networks with mean-field social heterogeneity (fleeting edge duration) and dynamic
variable-degree MP networks (finite edge duration) (Miller et al. 2012).

Existing modelling approaches incorporating heterogeneity include the considera-
tion of an epidemic with two ‘levels’ of mixing between individuals (but no network
structure) (Ball et al. 1997), and the later considerations of epidemic processes occur-
ring on structured populations with two levels of mixing (Zhang et al. 2015), and with
two routes of transmission (Zhao et al. 2014). Recently, the EBCM approach was used
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to derive equations describing an SIR epidemic process with non-sexual and sexual
transmission routes, a characteristic of diseases such as Ebola and Zika (Miller 2017).

Other modelling approaches have incorporated dynamicity of connections between
individuals (and hence heterogeneity in contact duration) by, e.g. considering an SIR
epidemic on a network with intermittent social distancing, where susceptible individu-
als break links with infectious individuals for some time tb, after which the connection
is re-established (Valdez et al. 2013). Another approach considered the effects of con-
strained rewiring during an SIS epidemic, whereby susceptible individuals cut links
to infectious individuals regardless of distance, and rewire to a susceptible individual
within a given radius, where the nodes of the network were embedded in Euclidean
space (Rattana et al. 2014).

Research considering the large graph limit of an SIR epidemic on a dynamic multi-
layer network affords heterogeneity in contact type and in contact duration by allowing
individual network layers to contain either activating or de-activating edges and by
allowing edges in different layers to correspond to different types of contacts (Jacob-
sen et al. 2016). Although Jacobsen et al. (2016) consider the SIR epidemic spreading
on a multiplex network, including providing a dual-layer multiplex example where
edge types correspond to community and healthcare contacts, they do not consider
any fully static network components.

There are a number of adaptations that can be made to the proposed model. The
model considers a heterogeneous contact structure between N individuals. However,
the locations of N individuals are not taken into account. Real-world networks occur
in space (Barthélemy 2011), and thus, it is important to investigate the effects of
considering node locations. In this study, we have chosen to disregard the spatial
locations of individuals. A more realistic model of an SIR epidemic spreading on
a multiplex network of individuals would be achieved by embedding the locations
of each individual into Euclidean space. Even more complex models could consider
dynamic node locations or a combination of static and dynamic node locations.

Another potential adaptation is considering weighted network connections. In the
proposed model, all connections are considered to be unweighted or equivalently to
share equal weight (homogeneity). The model could be adapted by, e.g. making the
weight of each connection proportional to theEuclidean distance between the two node
locations (given spatial embedding), by imposing a distribution of connection weights
or by assigning weights at random. Then, the probability of contracting disease across
a connection can be made proportional to the weight of that connection.

In the present model, the population of N individuals is fixed. We do not consider
the effect of flux in or out of the population, e.g. by births, deaths or migration events.
An important next step is to adapt the model presented here to consider in- and outflow
of members of the population or at least to consider whether such in- and outflows
significantly influence disease dynamics.

Another model limitation concerns the assumptions made surrounding edge rewire
events on the dynamic network layer. Here, we assume that when one partnership
ends, a new partnership forms immediately. Thus, given a nonzero degree on the
dynamic network layer, individuals remain connected to strangers from the wider
population (via dynamic network connections) at all times. In reality, the fleeting
connections an individual makes with strangers are temporary, and individuals can
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remain disconnected from these connections for some time. An improvement to the
model could thus be achieved by allowing for gaps to occur between partnerships
by implementing the dormant contact approach on the dynamic network layer [e.g.
see section 3.3 of Miller et al. (2012), Valdez et al. (2013), Shkarayev et al. (2014)
and Tunc et al. (2013)]. The immediate implication of such an approach is a more
accurate model in relation to observed human behaviours. However, the dynamics of
the epidemic process will be slowed, especially if the duration of the gap (in time)
betweenpartnerships is comparable to or longer than the typical time it takes to transmit
infection to a partner. Alternative rules for edge dynamicity can also be considered,
such as constrained rewiring (Rattana et al. 2014) and edge activation and deletion
(Jacobsen et al. 2016; Sélley et al. 2015; Taylor et al. 2012). Other model adaptations
include allowing for tunable clustering on all network layers (and thus imposing two
edge distributions on each network layer), implementing more complex distributions
governing the degrees of each node and biasing initially infectious individuals instead
of selecting them at random.

The multiplex model affords tunable clustering on the static network layer by gen-
erating its contact structure using a distribution of line stubs and a distribution of
triangle corners. However, the configuration model wiring process requires that any
two individuals share at most one connection within a single network layer. Double
edges can occur across network layers (i.e. when the same edge is present in both
network layers), but not within them. This constraint greatly reduces the possibilities
for placing triangles suitably into the network, meaning the configuration process is
slowed down and the extent of clustering that can be achieved is reduced. Greater
control over clustering could be achieved by adapting the model to allow for over-
lapping triangles (and either allowing double edges to occur in single network layers,
or amalgamating any double edges that occur into single edges, or doubly weighted
edges).

Other thanmaking adaptations to the proposedmodel, there are a number of tests and
analyseswhich are beyond the scope of this work. Firstly, a comprehensive exploration
of the entire parameter space would elucidate the behavioural ‘envelope’ of the model
and uncover any parameter regions where the model poorly predicts the SIR epidemic
process, compared with simulation. A more thorough understanding of the impact of
degree and degree heterogeneity on the relationship between parameters and system
behaviourwill require considerationof additional edgedistributionswith various levels
of heterogeneity and average degrees. Secondly, the model’s utility can be investigated
by using real-world data from historical epidemics or similar processes, e.g. livestock
herd contact tracing data or Twitter data tracking the prevalence of a hashtag over
time. Using real data, model parameters could be estimated using Bayesian estimation
techniques and the resultingmodel predictions comparedwith prior knowledge ofwhat
occurred. The basic reproduction number R0 can be tested in the same way.

This work considers an SIR compartmental model under the guise of a disease
spreading through a networked population. Thought must be given to what other real-
world processes can be well described by the SIR compartmental model, such as
opinion formation, rumour spreading or uptake of fashion trends. Further, a two-layer
multiplex like the proposed model could be used to investigate the dynamics of two
interacting SIR-type processes, such as a physical disease spreading process occurring
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on one network layer in combination with a disease awareness process occurring on
the opposing network layer, using similar approaches to those of Funk et al. (2009)
and Li et al. (2015).

Future research can build on these observations by considering similar modelling
approaches that account for compartmental models other than the SIR type. For exam-
ple, the SIS model (describing infections that do not confer lasting immunity, such as
the common cold) and the SEIRmodel (describing infections with incubation periods,
where individuals have contracted a disease but are not yet infectious and hence are
in the ‘exposed’ disease state) are not considered here. Modelling an SEIR infection
may require simple adaptation of the existing EBCM approach. However, considera-
tion of an SIS-type epidemic process requires an altogether new modelling approach.
A key assumption of the present approach is the consideration of all neighbours of
the test node u as being independent. Attempting to impose this assumption would
prevent modelling of SIS dynamics, a consequence which is discussed in Miller and
Kiss (2014) and Miller et al. (2012).

Experiments that can be performed to improve and inform future modelling
approaches include: quantifying the levels of heterogeneity in existing populations,
including behavioural and structural heterogeneity, gaining a deeper understanding of
the biological processes underlying disease spreadingprocesses, improvingon existing
algorithmic and analytic approaches and fostering closer relations between modellers
and practitioners, in order to maximise the benefits arising from research.
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