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Abstract: Unsupervised learning for monocular camera motion and 3D scene understanding has
gained popularity over traditional methods, which rely on epipolar geometry or non-linear opti-
mization. Notably, deep learning can overcome many issues of monocular vision, such as perceptual
aliasing, low-textured areas, scale drift, and degenerate motions. In addition, concerning supervised
learning, we can fully leverage video stream data without the need for depth or motion labels. How-
ever, in this work, we note that rotational motion can limit the accuracy of the unsupervised pose
networks more than the translational component. Therefore, we present RAUM-VO, an approach
based on a model-free epipolar constraint for frame-to-frame motion estimation (F2F) to adjust the ro-
tation during training and online inference. To this end, we match 2D keypoints between consecutive
frames using pre-trained deep networks, Superpoint and Superglue, while training a network for
depth and pose estimation using an unsupervised training protocol. Then, we adjust the predicted
rotation with the motion estimated by F2F using the 2D matches and initializing the solver with
the pose network prediction. Ultimately, RAUM-VO shows a considerable accuracy improvement
compared to other unsupervised pose networks on the KITTI dataset, while reducing the complexity
of other hybrid or traditional approaches and achieving comparable state-of-the-art results.

Keywords: visual odometry; depth estimation; unsupervised learning; deep learning

1. Introduction

One of the key elements for robot applications is autonomously navigating and plan-
ning a trajectory according to surrounding space obstacles. In the context of navigation
systems, self-localization and mapping are pivotal components, and a wide range of
sensors—from exteroceptive ones, such as the Global Positioning System (GPS), to pro-
prioceptive ones, such as inertial measurement units (IMUs), as well as light detection
and ranging (LiDAR) 3D scanners, and cameras—have been employed in the search for
a solution to this task. As humans experience the rich amount of information coming
from vision daily, exploring solutions that rely on a pure imaging system is particularly
intriguing. Besides, relying only on visual clues is desirable as these are easy to interpret,
and cameras are the most common sensor mounted on robots of every kind.

Visual simultaneous localization and mapping (V-SLAM) methods aim to optimize the
tasks of motion estimation, that is, the 6 degrees of freedom (6DoF) transform that relates
one camera frame to the subsequent one in 3D space, and 3D scene geometry (i.e., the depth
and structure of the environment), in parallel. Notably, due to the interdependent nature of
the two tasks, an improvement on the solution for one influences the other. On the one hand,
the mapping objective is to maintain global consistency of the locations of the landmarks,
that is, selected points of the 3D world that SLAM tracks. In turn, revisiting a previously
mapped place may trigger a loop-closure [1], which activates a global optimization step
for reducing the pose residual and smoothing all the past trajectory errors [2]. On the
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other hand, visual odometry (VO) [3] intends to carry out a progressive estimation of the
ego-motion without the aspiration of obtaining a globally optimal path. As such, we can
define VO as a sub-component of V-SLAM without the global map optimization routine
required to minimize drift [4]. However, even VO methods construct small local maps
composed by the tracked 2D features, to which a depth measurement is associated either
through triangulation [5] or probabilistic belief propagation [6,7]. In turn, these 3D points
are needed to estimate the motion between future frames.

Unsupervised methods have gained popularity for camera motion estimation and
3D geometry understanding in recent years [8]. Especially regarding monocular VO,
approaches such as TwoStreamNet [9] have shown equally good or even superior perfor-
mances compared to traditional methods, such as VISO2 [10] or ORB-SLAM [11]. The unsu-
pervised training protocol [12] bears some similarities with the so-called direct methods [13].
Both approaches synthesize a time-adjacent frame by projecting pixel intensities using the
current depth and pose estimations and minimizing a photometric loss function. However,
the learned strategy differs from the traditional one because the network incrementally
incorporates the knowledge of the 3D structure and the possible range of motions into
its weights, giving better hypotheses during later training iterations. Moreover, through
learning, we can overcome the typical issues of traditional monocular visual odometry.
For example, the support of a large amount of example data during training can help
solve degenerate motions (e.g., pure rotational motion), scale ambiguity and scale drift,
initialization and model selection, low or homogeneously textured areas, and perceptual
aliasing [4]. However, being aware of the solid theory behind the traditional methods [14]
and their more general applicability, we leverage geometrical image alignment to improve
the pose estimation.

Therefore, in this work, we present RAUM-VO. Our approach, shown in Figure 1,
combines unsupervised pose networks with two-view geometrical motion estimation based
on a model-free epipolar constraint to correct the rotations. Unlike recent works [15,16] that
train optical flow and use complex or computationally demanding strategies for selecting
the best motion model, our approach is more general and efficient. First, we extract 2D
keypoints using Superpoint [17] from each input frame and match the detected features
from pairs of consecutive frames with Superglue [18]. Subsequently, we estimate the
frame-to-frame motion using the solver proposed by Kneip et al. [19], which we name F2F,
and use the rotation to guide the training with an additional self-supervised loss. Finally,
RAUM-VO efficiently adjusts the rotation predictions with F2F during online inference,
while retaining the scaled translation vectors from the pose network.

Our contributions are summarized as follows:

• We present RAUM-VO, an algorithm to improve the pose estimates of unsupervised
pose networks for monocular odometry. To this end, we introduce an additional self-
supervision loss using frame-to-frame rotation to guide the network’s training. Further,
we adjust the rotation predicted by the pose network using the motion estimated by
F2F during online inference to improve the final odometry.

• We compare our method with state-of-the-art approaches on the widely adopted
KITTI benchmark. RAUM-VO improves the performance of pose networks and is
comparably good as more complex hybrid methods, while being more straightforward
to implement and more efficient.
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Figure 1. RAUM-VO block diagram. The figure shows the flow of information inside RAUM-VO from
the input image sequence to the final estimated pose between each pair of consecutive image frames.

2. Background on SLAM

The difference between SLAM and VO is the absence of a mapping module that
performs relocalization and global optimization of the past poses. Aside from this aspect,
we can consider contributions in monocular SLAM works seamlessly with those in the
VO literature. A primary type of approach to SLAM is filter-based, either using extended
Kalman filters (EKFs) (as in MonoSLAM [20]) or particle filters (as in FastSLAM [21]),
and keyframe-based [5], referred in robotics to as smoothing [22]. This name entails the
main difference between keyframe-based and filtering. While the first optimizes the poses
and the landmarks associated with keyframes (a sparse subset of the complete history
of frames) using batch non-linear least squares or bundle adjustment (BA) [23], the latter
marginalizes past poses’ states to estimate the last at the cost of accumulating linearization
errors [24]. In favor of bundle adjustment, Strasdat et al. [25] show that the accuracy of the
pose increases when the SLAM system tracks more features and that the computational
cost for filtering is cubic in the number of features’ observations, compared to linear for BA.
Thus, using BA with an accurate selection of keyframes allows more efficient and robust
implementations of SLAM. Unsupervised methods are more similar to the keyframe-based
SLAM. The motion is not the result of a probabilistic model propagation and a single-step
update but of an iterative optimization to align a batch of image measurements.

Motion estimation approaches fall into either direct or indirect categories based on
the information or measurements included in the optimized error function. The direct
method [13,26] includes intensity values in a non-linear energy function representing the
photometric difference between pixels’ or patches’ correspondences. These are found by
projecting points from one frame to another using the current motion and depth estimation,
which is optimized either through the Gauss–Newton or Levenberg–Marquardt method.
Instead, indirect methods [5,11] leverage epipolar geometry theory [14] to estimate motion
from at least five matched 2D point correspondences, in the case of calibrated cameras [27],
or eight, in the case of uncalibrated cameras [28]. After initializing a local map from
triangulated points, perspective-n-point (PnP) [29] can be used with a random sample
consensus (RANSAC) robust iterative fitting scheme [30] to obtain a more precise relative
pose estimation. Subsequently, local BA refines the motion and the geometrical 3D structure
by optimizing the reprojection error of the tracked features.

We do not apply the BA technique to correct the accumulated pose errors in this work.
However, we investigate PnP motion estimation in place of the trained pose network and
compare the results in Section 6.1.
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3. Related Work
Unsupervised Learning of Monocular VO

The pioneering work of Garg et al. [31] represents a fundamental advancement, be-
cause they approached the problem of depth prediction from a single frame in an unsu-
pervised manner for the first time. Their procedure consists of synthesizing a camera’s
depths in a rectified stereo pair by warping the other using the calibrated baseline and focal
lengths. Godard et al. [32] use the stereo pair to enforce a consistency term between left and
right synthesized disparities, while adopting the structural similarity (SSIM) metric [33]
as a more informative visual similarity function than the L1 loss. SfM-Learner [12] relies
entirely on monocular video sequences and proposes the use of a bilinear differentiable
sampler from ST-Nets [34] to generate the synthesized views.

Because the absolute metric scale is not directly observable from a single camera
(without any prior knowledge about object dimensions), stereo image pairs are also helpful
to recover a correct metric scale during training while maintaining the fundamental nature
of a monocular method [35–37]. Mahjourian et al. [38] impose the scale consistency between
adjacent frames as a requirement for the depth estimates by aligning the 3D point clouds
using iterative closest point (ICP) and approximating the gradients of the predicted 6DoF
transform. Instead, Bian et al. [39], arguing that the previous approach ignores second-order
effects, show that it is possible to train a globally consistent scale with a simple constraint
over consecutive depth maps, allowing one to reduce drift over long video sequences.
In [40], a structure-from-motion (SfM) model is created before training and used to infer
a global scale, using the image space distance between projected coordinates and optical
flow displacements. More recently, several approaches [15,16,41] have leveraged learned
optical flow dense pixel correspondences to recover up-to-scale two-view motion based on
epipolar geometry. Therefore, they resolve the scale factor by aligning a sparse set of points
with the estimated depths.

One of the main assumptions of the original unsupervised training formulation is that
the world is static. Hence, many works investigate informing the learning process about
moving objects through optical flow [42–53]. The optical flow, which represents dense maps
of the pixel coordinates displacement, can be separated into two components. The first,
the rigid flow, is caused by the camera’s motion. The second, the residual flow, is caused
by dynamic objects that move freely in relation to the camera frame. Therefore, these
methods train specific networks to explain the pixel shifts inconsistent with the two-view
rigid motion. However, these methods focus principally on the depth and optical flow
maps quality and give few details about the impact of detecting moving objects on the
predicted two-view motion. Notably, they use a single metric to benchmark the relative
pose that is barely informative about the global performance and cannot distinguish the
improvements clearly.

A recent trend is to translate traditional and successful approaches such as SVO [54],
LSD-SLAM [26], ORB-SLAM [11], and DSO [13] into their learned variants, or to take them
as inspiration for creating hybrid approaches, where the neural networks usually serve as
an initialization point for filtering or pose graph optimization (PGO) [55–62]. However,
RAUM-VO focuses on improving the predicted two-view motion of the pose network
without introducing excessive computation overhead as required by a PGO backend.

Instead of training expensive optical flow, RAUM-VO leverages a pre-trained Super-
point [17] network for keypoint detection and feature description and Superglue [18] for
finding valid correspondences. Unlike optical flow, the learned features do not depend
on the training dataset and generalize to a broader set of scenarios. In addition, using
Superglue, we avoid heuristics for selecting good correspondences among the dense optical
flow maps, which we claim could be a more robust strategy. However, we do not use any
information about moving objects to discard keypoints lying inside these dynamic areas.
Finally, differently from other hybrid approaches [15,16], we do not entirely discard the
pose network output, but we look for a solution that improves its predictions efficiently and
sensibly. Thus, the adoption of the model-free epipolar constraint of Kneip and Lynen [19]
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allows us to find the best rotation that explains the whole set of input matches without
resorting to various motion models and RANSAC schemes. To the best of our knowl-
edge, we are the first to test such an approach combined with unsupervised monocular
visual odometry.

4. Method

This section outlines the proposed algorithm, RAUM-VO, for estimating the motion
from a sequence of monocular camera images using a combination of deep neural networks
and traditional epipolar geometry. This work follows Zhou et al. [12], who established an
unsupervised training protocol based on view synthesis and photometric loss, which we
describe in Section 4.1. In addition, to facilitate the learning process, we describe additional
techniques implemented in our training in Sections 4.2 and 4.3. As shown in Figure 2,
the training outcome is a depth network that has learned to associate a disparity map to a
single input image frame and a pose network that predicts the 6DoF rigid transformation
between two consecutive frames. Additionally, we use the Superpoint [17] network to
extract 2D keypoints descriptors. Consequently, using a pre-trained Superglue graph
neural network (GNN) [18], RAUM-VO matches the corresponding features between pairs
of successive frames. These matches are the input for the two-view motion estimation
method [19] (see Section 4.4), whose rotation corrects the network’s output.

DISPARITIESDEPTH NET

POSE NET 6DoF  
TRANSFORMATION

2D MATCHES

Minimize Residual
Rotation Loss

Initialize
Rotation

INPUT IMAGES

F2F

Su
pe

rp
oi

nt
Su

pe
rp

oi
nt

Superglue
GNN

matching

Figure 2. Diagram of RAUM-VO training. A sequence of images and 2D matches between pairs is
the input for the training. The depth network takes only a single image to output a disparity map.
The pose network outputs the 3D rigid transformation, as rotation and translation, between the two
input images temporally ordered concatenated along the channel dimension. The matches are the
input to the frame-to-frame rotation algorithm, whose output guides the training and adjusts the
pose network estimation at test time.

4.1. View Synthesis and Photometric Loss

The principle for obtaining a supervision signal shares some similarities with direct
visual odometry [55]. Given two images at time t and t + 1, It and It+1, respectively,
the depth network produces disparity (inverse depth) maps dt and dt+1, respectively,
and the pose network produces a 6DoF transformation. Tt→t+1 = [ R | t ]. Then, we obtain
the depth maps Dt and Dt+1 by inverting the disparities and normalizing them between a
predefined minimum and maximum range limit. Finally, let K denote the intrinsic camera
matrix, and pt = [u, v] a 2D pixel coordinate on It image plane, in 2D homogeneous
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coordinates. The projection of pt into the reference frame of It+1, pt→t+1, is given by the
following equation:

pt→t+1 = π(KTt→t+1K−1H(pt, Dt[pt])) , (1)

where Dt[pt] denotes the depth value at the point pt, andH is the operation to lift the 2D
pixel coordinates to 3D homogeneous coordinates:

H : ([u, v], z) 7→ [u ∗ z, v ∗ z, z, 1] = [x, y, z, 1] , (2)

while π is the projection to the image plane:

π : ([x, y, z, 1]) 7→ [x/z, y/z] = [u, v] . (3)

Using the (sub-)differentiable bilinear sampling operation, which we note with S ,
introduced with spatial transformer networks (STNs) [34], we obtain a synthesized version
of It+1, It→t+1, by interpolating its intensity values at the locations indicated by a grid of
points pt→t+1.

It→t+1 = S(It+1, pt→t+1) . (4)

Next, we optimize the estimated disparities and poses by minimizing the perceptual
distance between the image It+1 and its synthesized version It→t+1. Following the initial
suggestion of [63] and the example of previous similar works [32,35], this distance is best
assessed by a combination of L1 and SSIM [33], which is differentiable with respect to both
depth and pose networks parameters. Particularly, the SSIM function aims to quantify the
visual similarity of It+1 and its synthetic reconstruction It→t+1 by comparing the luminance,
contrast, and structure measurements on windows of size n× n.

Therefore, the photometric loss Lp, equates to:

Lp = αSSIM
1− SSIM(It+1, It→t+1)

2
+ αl1‖It+1 − It→t+1‖1 . (5)

In our experiments, we set αSSIM = 0.85 and αl1 = 0.15.
Notably, this warping mechanism succeeds with the assumptions that the scene is

static, there are no occlusions, and the lighting conditions are constant, without reflections.
Notwithstanding that the training process may be robust to minor violations of these
assumptions, solutions for reducing dynamic objects [49] and non-Lambertian surfaces’ [62]
impact on the optimization convergence have been provided in the recent literature. Instead,
we rely on simpler mechanisms to alleviate the dynamic world conditions. During training,
we extend the view synthesis procedure to the previous frame It−1 as well. Hence, we
consider the minimum between Lp(It−1, It) and Lp(It−1, It) on a per-pixel basis as the final
photometric loss. This strategy mitigates the effects of dis-occluded pixels [37].

To conclude, we would like to add a few observations. First, while the output would
be random at the beginning, it is expected to converge to a meaningful value through the
joint optimization process of the two networks. Next, the scale of the 6DoF transformation,
foreseeably, reflects the depth scale, as they are jointly optimized. However, even if not
aligned with the metric scale of the scene, it is plausibly globally consistent. Remarkably,
this is an advantage over geometrical methods since, for the latter, we would need to
take further precautions to avoid scale drifts [26,64]. In Section 4.3, we will introduce an
additional loss term to reinforce a global consistency constraint during training.

4.2. Depth Smoothness Loss

The photometric loss is not informative with homogeneous or low-textured areas of an
image, and the depth estimation problem becomes ill posed. The pixels in these regions can
be associated with disparity values and still obtain a similar visual appearance for a fixed
rigid transformation [37]. However, we can introduce a prior on the estimated depth maps
that encourage smooth changes of the disparities inside these regions while discouraging
the formation of holes. Thus, by considering the first (or second [55])-order gradients of the
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image as weighting terms, we allow sharp discontinuities to appear only in correspondence
of edges [32].

Therefore, the following equation constitutes the depth smoothness loss Ls:

Ls = |∂xdt|e−|∂x It | +
∣∣∂ydt

∣∣e−|∂y It| , (6)

where ∂x and ∂y are the first derivatives of the color image and disparity map taken along
x and y directions.

4.3. Depth Consistency Loss

An issue of monocular VO, famously, is the non-observability of the metric scale
of the surrounding environment and, consequently, of the motion between two views.
This limitation leads to the well-known issue of scale drift, which has been successfully
addressed in traditional BA-SLAM by performing the pose graph optimization over 3D
similarity transforms [26,64]. From the perspective of learned mono-VO, Tateno et al. [65]
explore the path of predicting depth maps using CNNs, confident of their capability to
reproduce the metric scale passed through the ground-truth depths supervision. On the
other hand, without depth supervision, an alternative approach to learning a metrically
scale-aware network is from information regarding the translation vectors norm, as in [66],
where the authors impose a velocity loss. Even though we cannot obtain the real scale
during training, ensuring the depth consistency is fundamental for reducing the drift and
easing the task of aligning the estimated trajectory with an external metric map. Therefore,
in this work, lacking the knowledge of real-world scale and ground-truth depths, we adopt
the loss for imposing depth consistency between two frames introduced by Bian et al. [39].
The following equation defines the depth consistency loss Ldc:

Ldc =
|Da→b − Db|
Da→b + Db

, (7)

where Da→b represent the synthesized version of the depth estimated for image Ia to the
camera reference of image Ib by means of the estimated pose Ta→b and the bilinear sampler.

4.4. F2F: Frame-to-Frame Motion

Here, we describe the pivotal component of our proposed method. In particular, we
incorporate the rotation optimization formulated by Kneip and Lynen [19]. They propose an
alternative epipolar constraint that enables one to solve the relative pose problem without
many of the issues encountered in essential-matrix-based methods. Namely, these are:

• the indirect parametrization of the motion that has to be decomposed from the essential
matrix, as in [14]:

E = [t]x R ; (8)

• multiple solutions from the decomposition that have to be disambiguated through a
cheirality check and hence by triangulation;

• degenerate solutions that may result from either points lying on a single planar surface,
distribution of the points in a small image area, and pure translational or rotational
motion. In these cases, one approach is to select a different motion model, e.g., the
homography matrix, after identifying the degeneracy with a proper strategy.

Therefore, given a set of image points (pi, p′i) matched between two views, we trans-
lated them into pairs of unit-bearing vectors (fi, f′i) through normalization. These vectors
ideally start from the camera center and point in the direction of the corresponding 3D
points, and each pair defines an epipolar plane. Then, the authors observe that the all the
normal vectors of the epipolar planes need to be coplanar [67]. The normal vectors form
together a 3-by-n matrix N = [n1 . . . nn], and are defined as follows:

ni = fi × Rf′i . (9)
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Due to the coplanarity constraint, the covariance matrix NNT = M has to be at most
of rank 2. Notably, the problem is equivalent to a rank minimization parametrized by R,
and is solved by finding the matrix M with the smallest minimum eigenvalue:

R = arg min
R

λM,min . (10)

Furthermore, the authors observe that the eigenvector associated with λM,min corre-
sponds to the translation direction vector. Therefore, this method, which we name F2F, is
able to retrieve the full frame-to-frame motion.

The problem is solved with a Levenberg–Marquardt procedure. To avoid the possible
presence of local minima typical of non-linear optimization, we use the rotation estimated
by the pose network as a starting point. In Section 6.1, we show the benefits of this
initialization. In addition, we choose to perform a single optimization with all the matches
instead of multiple RANSAC iterations. For restricting the number of matches outliers, we
set the threshold of the Superglue match confidence score to 0.9. At the moment, we found
that this approach works best for the data at hand after empirical evaluation of multiple
RANSAC settings and inlier criteria.

Lastly, we include the rotation RF2F as supervision for the rotation output of the pose
network, RPN, in the residual rotation loss Lr. To this aim, we map the rotation matrices into
their axis-angle counterparts through the logarithm function:

log : SO(3)→ so(3); R 7→ log(R) , (11)

where so(3) is the Lie algebra associated to the Lie group of 3D rotations SO(3) [68]. Based
on the isomorphism between so(3) and R3 with the cross product, we treat the logarithm of
a rotation matrix as a vector ω ∈ R3 decomposed into a unit-norm direction vector u ∈ R3,
representing the rotation axis, and its L2 norm θ ∈ R, where θ ∈ [0, π] represents the angle
of rotation:

log(R) = ω = θu . (12)

Therefore, we can compute the L1 norm, denoted by ‖·‖1, of the distance between the
rotation vector predicted by the network, ωPN , and the one estimated by F2F, ωF2F. Thus,
we obtain the following residual rotation loss Lr:

Lr = ‖ωF2F −ωPN‖1 . (13)

In Figure 2, we show how all the components we described interact during the training
of RAUM-VO.

The implementation of F2F used in this work is the one provided by the OpenGV
library [69].

5. Experiments

This section provides details regarding our experimental procedure and the settings
for accurately reproducing our results. In addition, we provide the results of VO obtained
on KITTI and compare them with state-of-the-art methods.

5.1. Training Procedure

Because we have experienced a degradation in performance when including the ldc
term early in training, we split it into two phases. Particularly, when the depth network
has not yet found a convergence direction for a plausible geometrical structure, the ldc
term, especially if it has a magnitude outweighing the photometric loss norm, could cause
the depth maps to collapse towards a local minimum during the initial training phase.
An alternative solution may be to adaptively adjust the weighing of ldc based on the value
of lp. Therefore, we add the depth consistency loss after the convergence of the photometric



Sensors 2022, 22, 2651 9 of 19

loss. In addition, we add the contribution of the loss lr in the second training phase to let
the pose network reach an initial convergence plateau first.

Consequently, we obtain two models:

• Simple-Mono-VO is obtained after the first training phase by selecting the checkpoint
with the best terr on the training set;

• RAUM-VO is obtained after the second phase by selecting the checkpoint with the
best terr on the training set and correcting the rotations with the output of F2F.

5.2. Networks Architectures

The depth network has an encoder-decoder architecture [70] with skip connection sim-
ilar to DispNet [71] used by SfM-Learner [12]. Specifically, the encoder is a ResNet18 [72],
and the decoder has five layers of 3 × 3 convolutions followed by an ELU activation
function [73], an up-sampling, and a concatenation with the “connected” encoder feature.
In accordance with [39], we avoid multi-scale training for efficiency purposes. Therefore,
we apply the sigmoid function to the last output to obtain a disparity map.

The pose network consists of one ResNet18 [72] encoder that takes as input a pair of
images concatenated along the channel dimension. The feature extracted by the last layer
is then the input to a small CNN decoder composed by:

1. one linear layer that reduces the feature to a 256-dimensional vector followed by
ReLU [74] non-linearity;

2. two convolutional layers with 256 kernels of size 3 × 3 followed by ReLu non-
linearities;

3. one linear layer that outputs the 6DoF pose vector as the vector x ∈ R6, which contains
the concatenation of the translation t ∈ R3 and the axis-angle rotation ωPN ∈ R3.

The network architectures are based on the Monodepth2 implementation [37] and
use PyTorch [75]. Both networks encoders are initialized with pre-trained weights on the
ImageNet dataset [76].

5.3. Experimental Settings

The images are resized to 640× 192 before entering the network. During training,
we sample with repetition 2000 images for each epoch. We use standard color image
augmentation by slightly changing saturation, brightness, contrast, and hue, as in [37],
and horizontal flipping. For the optimization, we use Adam [77] with parameters β1 = 0.9
and β2 = 0.999, and a learning rate lr = 10−4 . We halve the learning rate when the loss
does not decrease for 10 epochs. We keep the training until convergence of the loss or for at
most 1800 epochs. The depth smoothness loss, depth consistency loss, and residual rotation loss
weighing factors are 10−3, 5× 10−1, and 1, respectively.

5.4. KITTI Results

We evaluate our visual odometry network on the KITTI odometry dataset [78]. To this
aim, we use the sequences from 0 to 8 for training and the sequences 9 and 10 for testing.
Furthermore, we use the tool provided by the author of DF-VO [16] to make sure we apply
the same criteria for evaluation. Notably, we evaluate with the “7DoF alignment” setting
that computes the similarity transform that best aligns the predicted trajectory with the
ground truth using the Umeyama algorithm [79].

In Figure 3, we show the plots of the trajectories for the training sequences predicted
by our two models and the ground-truth poses. By comparing these with the testing
sequences displayed in Figure 4, we can appreciate the generalization capability of the
neural network to unseen sequences, even if KITTI contains images from similar scenarios.
Then, in Table 1, we compare our results with two pure geometrical approaches, ORB-
SLAM [11] and VISO2 [10]; two unsupervised networks methods, SfM-Learner [12] and
SC-SfMLearner [39]; and with the hybrid approach DF-VO [16]. For the evaluation, we
use data from [16]. We note that the reported results for [39] are slightly different from the
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one in the paper and may refer to training with additional data. For our evaluation, we
select those works that use only monocular image sequence during training and evaluation
phases, as RAUM-VO does, because stereo image pairs give an unfair advantage to the
depth reconstruction and, consequently, to the pose estimation, as documented in the
literature [37]. Another condition for the evaluation regards the architectures of the depth
and pose networks. Therefore, we selected methods in the learned categories that use
comparable, if not equal, deep networks. Unfortunately, this is one element of discrepancy
among the works in the literature of unsupervised pose and depth estimation, and that has
to be taken into account when making comparisons.
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Figure 3. KITTI Train trajectories. Estimated trajectories for the KITTI Odometry sequences from 00
to 08. Poses are given in camera frame. Thus, positive x means right direction and positive z means

forward. Best viewed in colors.

Figure 3. KITTI train trajectories. Estimated trajectories for the KITTI odometry sequences from 00 to
08. Poses are given in camera frame. Thus, positive x means right direction and positive z means
forward. Best viewed in color.
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Figure 4. KITTI Test trajectories. Estimated trajectories for the KITTI Odometry sequences 09 and
10. Poses are given in camera frame. Thus, positive x means right direction and positive z means

forward. Best viewed in colors.

We evaluate our visual odometry network on KITTI odometry dataset [77]. To this
aim, we use the sequences from 0 to 8 for training and the sequences 9 and 10 for testing.
Furthermore, we use the tool provided by the author of DF-VO [16] to make sure we apply
the same criteria for evaluation. Notably, we evaluate with the “7DoF alignment” setting
that computes the similarity transform that best aligns the predicted trajectory with the
ground truth using the Umeyama algorithm [78].

In Figure 3, we show the plots of the trajectories for the training sequences predicted
by our two models and the ground-truth poses. By comparing these with the testing
sequences displayed in Figure 4, we can appreciate the generalization capability of the
neural network to unseen sequences even if KITTI contains images from similar scenarios.
Then, in Table 1, we compare our results with two pure geometrical approaches, ORB-
SLAM [11] and VISO2 [10], two Unsupervised Networks methods, SfM-Learner [12] and
SC-SfMLearner [38], and with the hybrid approach DF-VO [16]. For the evaluation we
use data from [16]. We note that the reported results for [38] are slightly different from
the one in the paper and may refer to training with additional data. For our evaluation,
we select those works that use only monocular image sequences during training and
evaluation phases as RAUM-VO because stereo image pairs give an unfair advantage to
the depth reconstruction and, consequently, to the pose estimation, as documented in the
literature [20]. Another condition for the evaluation regards the architectures of the depth
and pose networks. Therefore, we selected methods in the learned categories that use
comparable, if not equal, deep networks. Unfortunately, this is one element of discrepancy
among the works in the literature of unsupervised pose and depth estimation, and that has
to be taken into account when making comparisons.

While RAUM-VO does not surpass DF-VO performances in many sequences, his accu-
racy is comparable while being more efficient. Because DF-VO is one of the most promising
hybrid approaches using monocular images for the VO, in Section 6.2, we examine the
differences and advantages of our method in more detail. Regarding traditional methods,
the average error of RAUM-VO is generally lower except only for the rerr metric computed
on ORB-SLAM. However, unlike ORB-SLAM, we do not apply local BA. Regarding the
Unsupervised Pose Networks category, the proposed RAUM-VO proves to reduce the error
effectively with the proposed rotation adjustment step. Through the link 1, we provide a
video that shows the depth map predictions for all the KITTI sequences.

1 https://youtu.be/4woTiJRCrUI

Figure 4. KITTI test trajectories. Estimated trajectories for the KITTI odometry sequences 09 and
10. Poses are given in camera frame. Thus, positive x means right direction and positive z means
forward. Best viewed in color.

Table 1. Odometry quantitative evaluation. Result obtained on KITTI odometry seq. 00–10. Data is
retrieved from [16]. Best results are highlighted in bold, second best with an underline.

Category Method Metric 00 01 02 03 04 05 06 07 08 09 10 Train Avg. Err. Tot. Avg. Err.

Geometric

ORB-SLAM2 [11]
(w/o LC)

terr 11.43 107.57 10.34 0.97 1.30 9.04 14.56 9.77 11.46 9.30 2.57 19.604 17.119
rerr 0.58 0.89 0.26 0.19 0.27 0.26 0.26 0.36 0.28 0.26 0.32 0.372 0.357

ATE 40.65 502.20 47.82 0.94 1.30 29.95 40.82 16.04 43.09 38.77 5.42 80.312 69.727
RPE (m) 0.169 2.970 0.172 0.031 0.078 0.140 0.237 0.105 0.192 0.128 0.045 0.455 0.388
RPE (◦) 0.079 0.098 0.072 0.055 0.079 0.058 0.055 0.047 0.061 0.061 0.065 0.067 0.066

VISO2 [10]

terr 10.53 61.36 18.71 30.21 34.05 13.16 17.69 10.80 13.85 18.06 26.10 23.373 23.138
rerr 2.73 7.68 1.19 2.21 1.78 3.65 1.93 4.67 2.52 1.25 3.26 3.151 2.988

ATE 79.24 494.60 70.13 52.36 38.33 66.75 40.72 18.32 61.49 52.62 57.25 102.438 93.801
RPE (m) 0.221 1.413 0.318 0.226 0.496 0.213 0.343 0.191 0.234 0.284 0.442 0.406 0.398
RPE (◦) 0.141 0.432 0.108 0.157 0.103 0.131 0.118 0.176 0.128 0.125 0.154 0.166 0.161

Unsupervised

SfM-Learner [12]

terr 21.32 22.41 24.10 12.56 4.32 12.99 15.55 12.61 10.66 11.32 15.25 15.169 14.826
rerr 6.19 2.79 4.18 4.52 3.28 4.66 5.58 6.31 3.75 4.07 4.06 4.584 4.490

ATE 104.87 109.61 185.43 8.42 3.10 60.89 52.19 20.12 30.97 26.93 24.09 63.956 56.965
RPE (m) 0.282 0.660 0.365 0.077 0.125 0.158 0.151 0.081 0.122 0.103 0.118 0.225 0.204
RPE (◦) 0.227 0.133 0.172 0.158 0.108 0.153 0.119 0.181 0.152 0.159 0.171 0.156 0.158

SC-SfMLearner [39]

terr 11.01 27.09 6.74 9.22 4.22 6.70 5.36 8.29 8.11 7.64 10.74 9.638 9.556
rerr 3.39 1.31 1.96 4.93 2.01 2.38 1.65 4.53 2.61 2.19 4.58 2.752 2.867

ATE 93.04 85.90 70.37 10.21 2.97 40.56 12.56 21.01 56.15 15.02 20.19 43.641 38.907
RPE (m) 0.139 0.888 0.092 0.059 0.073 0.070 0.069 0.075 0.085 0.095 0.105 0.172 0.159
RPE (◦) 0.129 0.075 0.087 0.068 0.055 0.069 0.066 0.074 0.074 0.102 0.107 0.077 0.082

Simple-Mono-VO
(Ours)

terr 9.365 8.920 6.830 3.697 2.570 4.964 3.138 3.568 7.125 13.625 11.131 5.575 6.812
rerr 2.840 0.562 1.582 2.478 0.566 2.083 0.959 1.866 2.608 3.146 4.784 1.727 2.134

ATE 94.949 30.004 83.155 4.112 2.377 30.227 8.726 8.872 59.887 66.591 18.792 35.812 37.063
RPE (m) 0.090 0.304 0.087 0.037 0.055 0.041 0.051 0.044 0.074 0.166 0.077 0.087 0.093
RPE (◦) 0.072 0.042 0.057 0.048 0.036 0.049 0.040 0.048 0.052 0.067 0.083 0.049 0.054

Hybrid

DF-VO [16]
(Mono)

terr 2.33 39.46 3.24 2.21 1.43 1.09 1.15 0.63 2.18 2.40 1.82 5.969 5.267
rerr 0.63 0.50 0.49 0.38 0.30 0.25 0.39 0.29 0.32 0.24 0.38 0.394 0.379

ATE 14.45 117.40 19.69 1.00 1.39 3.61 3.20 0.98 7.63 8.36 3.13 18.817 16.440
RPE (m) 0.039 1.554 0.057 0.029 0.046 0.024 0.030 0.021 0.041 0.051 0.043 0.205 0.176
RPE (◦) 0.056 0.049 0.045 0.038 0.029 0.035 0.029 0.030 0.037 0.036 0.043 0.039 0.039

RAUM-VO
(Ours)

terr 2.548 8.354 2.578 3.217 2.860 3.045 3.033 2.390 3.632 2.927 5.843 3.517 3.675
rerr 0.775 0.868 0.582 1.334 0.645 1.153 0.837 1.037 1.074 0.318 0.683 0.923 0.846

ATE 16.272 23.748 16.139 2.602 2.283 17.470 9.234 2.164 16.303 8.664 12.297 11.802 11.561
RPE (m) 0.040 0.257 0.050 0.030 0.052 0.038 0.046 0.028 0.053 0.068 0.078 0.066 0.067
RPE (◦) 0.059 0.062 0.048 0.048 0.035 0.044 0.042 0.058 0.045 0.042 0.051 0.049 0.049

While RAUM-VO does not surpass DF-VO performances in many sequences, its
accuracy is comparable while being more efficient. Because DF-VO is one of the most
promising hybrid approaches using monocular images for the VO, in Section 6.2, we
examine the differences and advantages of our method in more detail. Regarding traditional
methods, the average error of RAUM-VO is generally lower, except for the rerr metric
computed on ORB-SLAM only. However, unlike ORB-SLAM, we do not apply local BA.
Regarding the unsupervised pose networks category, the proposed RAUM-VO proves to
reduce the error effectively with the proposed rotation adjustment step. In the link (https:
//youtu.be/4woTiJRCrUI, accessed on 10 February 2022), we provide a video that shows
the depth map predictions for all the KITTI sequences.

https://youtu.be/4woTiJRCrUI
https://youtu.be/4woTiJRCrUI
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6. Discussion

Herein, we discuss and analyze the characteristics of RAUM-VO. First, in Section 6.1,
we consider the rotational and translational components of the pose error separately to
argue that the rotations offer a larger space to decrease the absolute trajectory error (ATE)
shown in Table 1. In turn, this motivates the adoption of a specific measure to adjust the
predicted rotations. Hence, we demonstrate how the pose network plays a valuable role in
initializing the F2F solver. Lastly, in Section 6.2, we speculate on the factor that contributes
the most to the accuracy of DF-VO compared to our approach.

6.1. General Considerations

In Table 2, we show that by modifying the simple-mono-VO predictions using the
ground truth of either the translation or the rotation, there is a larger margin for improve-
ment enclosed in the current rotation estimates than in the translational component of the
error. We presume that this behavior is because we optimize translations directly on their
vector space, contrary to the rotations. The manifold of rotations, special orthogonal group
SO(3), only locally resembles a Euclidean topology [80] and needs intermediate represen-
tations to enable the optimization with gradient descent methods. As such, the axis-angles
are a many-to-one mapping with SO(3), and alternative representations may be easier to
approximate with a neural network [81]. In addition, the linear distance metric between
translation vectors is easier to approximate than the non-linear counterparts for the SO(3)
group [82]. Nevertheless, the rotation provided by the pose network is a better initialization
point for the F2F than the identity or constant motion assumption. The results of the
different types of initialization are visible in Table 3. By this, the pose network’s predicted
rotations are always the best option for initializing the F2F solver and are paired only by
constant motion assumption in some cases.

Table 2. The table shows an insight into the possible margins for improvement in the pose predictions
coming from unsupervised methods. Hence, we substitute alternately the ground-truth translations
and rotations in the pose network estimates. We show the variation in the relevant metrics for the
KITTI test sequences 9 and 10.

Metrics 09 10

Simple-Mono-VO

terr 13.625 11.131
rerr 3.146 4.784

ATE 66.591 18.792
RPE (m) 0.166 0.077
RPE (◦) 0.067 0.083

Ground-Truth
Translation

terr 13.325 11.409
rerr 3.146 4.784

ATE 65.081 20.715
RPE (m) 0.162 0.028
RPE (◦) 0.067 0.083

Ground-Truth
Rotation

terr 3.029 6.038
rerr 0.010 0.014

ATE 9.026 12.894
RPE (m) 0.070 0.080
RPE (◦) 0.005 0.005
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Table 3. F2F solver initialization. Comparison of different initialization approaches for the Levenberg–
Marquardt scheme that solves the frame-to-frame motion. Overall, the rotation from the pose network
is the best, followed by a constant motion model.

Initialization Metrics 00 01 02 03 04 05 06 07 08 09 10 Avg. Train Avg. All

Identity

terr 6.192 8.023 5.888 3.919 2.860 7.659 9.100 10.969 5.402 3.851 9.475 6.668 6.667
rerr 2.222 1.025 1.670 1.909 0.645 3.340 2.926 6.565 1.926 0.742 2.605 2.470 2.325

ATE 39.195 21.231 91.621 2.651 2.283 40.192 19.682 20.592 30.142 12.939 13.399 29.732 26.721
RPE (m) 0.040 0.259 0.060 0.030 0.052 0.039 0.046 0.036 0.052 0.069 0.077 0.068 0.069
RPE (◦) 0.100 0.101 0.072 0.082 0.035 0.083 0.059 0.158 0.067 0.070 0.088 0.084 0.083

Constant Motion

terr 6.062 12.009 5.823 6.606 2.860 5.877 3.033 2.481 19.533 3.255 5.843 7.143 6.671
rerr 2.128 1.833 1.728 3.119 0.645 2.105 0.837 1.150 7.772 0.862 0.683 2.368 2.078

ATE 58.308 49.099 79.710 6.678 2.283 29.920 9.234 2.258 99.024 11.190 12.297 37.390 32.727
RPE (m) 0.044 0.265 0.056 0.030 0.052 0.039 0.046 0.028 0.160 0.069 0.078 0.080 0.079
RPE (◦) 0.075 0.086 0.059 0.066 0.035 0.060 0.042 0.068 0.702 0.072 0.051 0.133 0.120

Pose Network
(RAUM-VO)

terr 2.548 8.354 2.578 3.217 2.860 3.045 3.033 2.390 3.632 2.927 5.843 3.517 3.675
rerr 0.775 0.868 0.582 1.334 0.645 1.153 0.837 1.037 1.074 0.318 0.683 0.923 0.846

ATE 16.272 23.748 16.139 2.602 2.283 17.470 9.234 2.164 16.303 8.664 12.297 11.802 11.561
RPE (m) 0.040 0.257 0.050 0.030 0.052 0.038 0.046 0.028 0.053 0.068 0.078 0.066 0.067
RPE (◦) 0.059 0.062 0.048 0.048 0.035 0.044 0.042 0.058 0.045 0.042 0.051 0.049 0.049

Then, we suggest that the pose network can regress the motion even in difficult
motion situations, assuming that the depth network has learned a valid geometric structure.
The pose and depth outcomes are strongly entangled due to their joint training, even if
produced by separate networks. However, more precisely, we note that the performance of
one component may be restricted by the other. While this may seem a trivial conclusion,
it is necessary to clarify the limitations of this approach and bring us to the last reflection.
We evaluate the odometry poses obtained by PnP combined with the depth network to
prove our argument. To this aim, we back-project to 3D coordinates the matches in one
view frame, the same utilized for our RAUM-VO, by interpolating the depth map values
with the bilinear sampler of STNs.

Consequently, we can apply PnP with RANSAC to estimate the two view motions for
all the sequences. Remarkably, the outcome of PnP, on average, matches closely that of the
pose network (see Table 4), especially for the training sequences when we fix the rotation
with F2F. This result aligns with those of, for example, DeepMatchVO [83] or DF-VO [16],
which do not obtain significantly better odometry results by leveraging PnP directly during
the training or at the test time. Interestingly, though, the combination of a PnP with the
estimated depths works best for the test sequences, indicating that this approach may
generalize more.

Table 4. PnP vs. pose network. Comparison of the trajectory estimated by PnP combined with the
depth network and the poses predicted by our trained network.

Poses Source Metrics 00 01 02 03 04 05 06 07 08 09 10 Avg. Train Avg. All

Pose Network
(Simple-Mono-VO)

terr 9.365 8.920 6.830 3.697 2.570 4.964 3.138 3.568 7.125 13.625 11.131 5.575 6.812
rerr 2.840 0.562 1.582 2.478 0.566 2.083 0.959 1.866 2.608 3.146 4.784 1.727 2.134

ATE 94.949 30.004 83.155 4.112 2.377 30.227 8.726 8.872 59.887 66.591 18.792 35.812 37.063
RPE (m) 0.090 0.304 0.087 0.037 0.055 0.041 0.051 0.044 0.074 0.166 0.077 0.087 0.093
RPE (◦) 0.072 0.042 0.057 0.048 0.036 0.049 0.040 0.048 0.052 0.067 0.083 0.049 0.054

PnP

terr 6.808 17.627 6.319 4.046 2.627 4.629 2.981 3.013 6.360 7.019 6.708 6.045 6.194
rerr 2.190 1.195 1.339 2.364 0.582 1.863 0.781 1.691 2.317 2.029 2.644 1.591 1.727

ATE 79.125 63.596 76.800 4.402 2.424 29.000 8.660 7.106 52.700 35.664 9.576 35.979 33.550
RPE (m) 0.061 0.636 0.086 0.033 0.055 0.039 0.049 0.040 0.067 0.082 0.073 0.118 0.111
RPE (◦) 0.060 0.057 0.049 0.042 0.029 0.039 0.032 0.036 0.043 0.068 0.085 0.043 0.049

F2F rotation w/
PnP translation

terr 2.796 15.552 2.775 3.482 3.123 3.008 3.164 2.373 3.876 3.072 4.343 4.461 4.324
rerr 0.775 0.868 0.582 1.334 0.645 1.146 0.837 0.861 1.074 0.318 0.683 0.902 0.829

ATE 17.662 41.782 15.194 2.342 2.459 17.203 9.451 3.983 16.741 8.288 8.909 14.091 13.092
RPE (m) 0.043 0.527 0.053 0.034 0.055 0.040 0.050 0.035 0.055 0.071 0.073 0.099 0.094
RPE (◦) 0.059 0.062 0.048 0.048 0.035 0.045 0.042 0.059 0.046 0.042 0.051 0.049 0.049

F2F rotation w/
Pose Network translation

(RAUM-VO w/o Lr)

terr 2.829 9.870 2.766 4.146 3.080 3.029 3.177 2.802 3.804 3.130 5.875 3.945 4.046
rerr 0.775 0.868 0.582 1.334 0.645 1.146 0.837 0.861 1.074 0.318 0.683 0.902 0.829

ATE 18.339 28.499 15.497 2.468 2.419 17.363 9.502 4.732 16.426 9.033 12.410 12.805 12.426
RPE (m) 0.043 0.307 0.053 0.037 0.055 0.041 0.051 0.036 0.056 0.070 0.079 0.075 0.075
RPE (◦) 0.059 0.062 0.048 0.048 0.035 0.045 0.042 0.059 0.046 0.042 0.051 0.049 0.049

6.2. Comparison with DF-VO

We can probably ascribe the success of DF-VO to an accurately trained optical flow,
which provides a significantly higher number of precise matches, in the order of thousands.
Still, these correspondences are specific to the scenario they use to train the optical flow
network. Conversely, the 2D features detected by Superpoint are fast to compute, distinctly
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identified, repeatable, and, more importantly, sparser (a few hundred). Therefore, we note
that the optical flow network can hardly reach the generalization capability of a dedicated
feature extraction network. Additionally, due to dense but noisy correspondences, DF-
VO needs to iteratively search the best fit mode (e.g., based on the number of inliers),
and decide between the essential or homography motion model with multiple RANSAC
routines. While this approach accurately describes the two-view motion of the KITTI
sequences, it turns out to be computationally expensive. Instead, RAUM-VO uses all the
matches found by Superglue for solving the eigenvalue minimization problem of F2F
only once, adding minimal overhead to the pose network run-time. Thus, we remove the
need for repeated samples of the correspondences and avoid the numerous estimation of
homography and essential matrices with the related model selection strategy. Therefore,
we resort to the output of the pose network and a single model-free rotation adjustment
step, which is comparably a more efficient approach.

Furthermore, another potential determining factor of success is the depth scale con-
sistency. DF-VO considers the depth maps as a source of multiple hypotheses for the
translation vector scale. Thus, we can presume that the disparities jointly learned with the
optical flow have a higher degree of long-term scale consistency and structure accuracy.
In this way, the DF-VO scale alignment procedure can recover the best norm for the transla-
tion vector, which the employed Nister 5-point [27] algorithm delivers only up to a scale
factor. In addition, the depth consistency loss may not be as effective as the consistency
loss between rigid motion and optical flow in maintaining a unique long-term scale factor.

Consequently, for evaluating our depth scale consistency, we applied a scale alignment
procedure similar to DF-VO for scaling the translation solutions obtained from the F2F and
essential matrix, using the implementations of OpenGV [69] and OpenCV, respectively.
Notably, we pick the essential matrix with the most inliers after ten iterations, sampling
each time 20% of the matches and estimating it using RANSAC with threshold 10−3. Next,
we triangulate the 2D correspondences and keep only those that pass the cheirality check.
Finally, we sample 80% of the triangulated points Xt ten times and fit a linear model
with RANSAC:

Yd = s Xt (14)

to find the coefficient s that maps Xt to Yd, which is the set of 3D points obtained by
projecting the matches with the estimated depths. Finally, we take the scale s that has the
minimum δ = ‖1− s‖2. We fall back to the pose-network-estimated translation only if less
than 51% of matches do not pass the cheirality check or if δ > 5× 10−1. We accept the
F2F or essential matrix translation in 93–97% of the cases with these loose constraints. We
present the result of this test in Table 5. Still, we could not obtain a better translation than
the pose network’s output. Besides, the multiple RANSAC routines and sampling matches
from dense correspondences may grant a decisive advantage to DF-VO. We leave a deeper
analysis to understand the factors at stake for future works.

Table 5. Scale alignment. Results of the scale alignment procedure applied to the translation vector
from the F2F and the essential matrix estimated motions.

Metrics 09 10

F2F
Translation

terr 4.14 5.68
ATE 12.91 11.67

RPE (m) 0.114 0.091

Essential Matrix
Translation

terr 4.02 5.99
ATE 11.77 12.42

RPE (m) 0.124 0.099

Pose Network
(RAUM-VO)

terr 2.927 5.843
ATE 8.664 12.297

RPE (m) 0.068 0.078
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7. Conclusions

In this paper, we have presented our approach, RAUM-VO, that combines the transla-
tion predicted by a pose network with the rotations estimated by a geometrical method
named F2F. In practice, we introduced an additional self-supervised loss to guide the
training. More importantly, during online inference, we adjust the rotations predicted by
the pose network with a single estimation of F2F, avoiding complex strategies for model
selection and multiple RANSAC loops. In addition, RAUM-VO uses Superpoint with
Superglue to find robust 2D correspondences in place of randomly sampling optical flow,
thus reducing training time and generalizing to more environments. Finally, we evaluated
RAUM-VO on the KITTI odometry dataset and compared it with other relevant state-of-the-
art methods. While efficient, this adjustment step is decisive for improving the prediction
of unsupervised pose networks.

Future works can track or match the Superpoint features, using the associated descrip-
tors, over longer frame distances, enabling local or global BA with loop closures similar
to ORB-SLAM. More interestingly, the extension of F2F to multiple views, proposed by
Lee and Civera [84], could be an alternative to rotation averaging [85] to initialize the pose
graph optimization [86] together with the pose network prediction.
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