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We studied the reliability of radiomic features on abdominal computed tomography (CT) images reconstructed
with multiple CT image acquisition settings using the ACR (American College of Radiology) CT Phantom. Twenty-
four sets of CT images of the ACR CT phantom were attained from a GE Discovery 750HD scanner using 24
different image acquisition settings, combinations of 4 tube currents (25, 50, 100, 200 Effective mAs), 3 slice
thicknesses (1.25, 2.5, 5 mm), and 2 convolution kernels (STANDARD and SOFT). Polyethylene (�95 HU) and
acrylic (120 HU) of the phantom model were selected for calculating real feature value; a noise-free, computer-
generated phantom image series that reproduced the 2 objects and the background was used for calculating ref-
erence feature value. Feature reliability was defined as the degree of predicting reference feature value from real
feature value. Radiomic features mean, std, skewness, kurtosis, gray-level co-occurrence matrix (GLCM)-energy,
GLCM-contrast, GLCM-correlation, GLCM-homogeneity were investigated. The value of R2 � 0.85 was consid-
ered to be of high reliability. The reliability of mean and std were high across all image acquisition settings. At
200 Effective mAs, all features except GLCM-homogeneity showed high reliability, whereas at 25 Effective mAs,
most features (except mean and std) showed low reliability. From high to low, reliability was ranked in the follow-
ing order: mean, std, skewness, kurtosis, GLCM-energy, correlation, contrast and homogeneity. CT image acquisi-
tion settings affected the reliability of radiomic features. High reliable features were attained from images recon-
structed at high tube current and thick slice thickness.

INTRODUCTION
Medical imaging plays an ever greater role in disease diagnosis
and patient care. One of the most exciting new areas related to
cancer diagnosis, treatment planning, and response assessment
is the field of radiomics, which involves the extraction and
analysis of a large number of quantitative imaging features from
medical images for characterization of tumor and tissue pheno-
types (1, 2).

Owing to the associations between tumor phenotypes and
underlying biological processes, radiomic features (RFs) or RF-
derived phenotypes can act as biomarkers that convey informa-
tion about disease to help with the management of therapies. To
date, radiomics has shown promise in improving cancer diag-
nosis and prognostic assessment in several tumor types includ-
ing lung (3-5), brain (6), breast (7), liver (8-10), kidney (11), and
esophagus (12) cancers. Moreover, RFs also exhibit correlations
with genetic mutation status (5) and disease recurrence (13), as
well as therapeutic response (14) and survival (15) in lung
cancer.

While serving as an imaging biomarker for oncology, the
influence of image acquisition settings on RFs should be well
understood before the biomarker can be fully utilized (16).
Until now, numerous studies have been conducted on the
“reproducibility” of RFs (17-20), which refers to whether
feature values could remain the same when reimaged using
different equipment and different image acquisition settings.
To the best of our knowledge, with the exception of studies on
the accuracy of volume measurements (21, 22), there has been
no report to date exploring the “reliability” of RFs. “Reliabil-
ity” refers to whether true feature value could be maintained
when imaged using different scanners and image acquisition
settings. The true feature value in our study was defined as
the feature value that was calculated on computed tomogra-
phy (CT) image within which the CT number of each tissue
composition was equal to its theoretical CT number at 120
kVp, for example, air equals to �1000 HU, and water equals
to 0 HU. Thus, true feature value was also called as reference
value in our study.
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The challenge of such a reliability study lies in the fact that
reference values for RFs are generally quite difficult to obtain,
especially for in vivo lesions, because of unknown tissue com-
position, as well as anatomic, physiologic, and even positional
variations among different patients. In view of this point, we
aimed to carry out a pilot study on RF reliability using the ACR
CT phantom (American College of Radiology CT accreditation
phantom) (23). The ACR CT phantom is a widely used CT QC
phantom, and has a well-defined CT number for each object
inside module 1.

In this study, we attained CT images of the phantom under 24
image acquisition settings using a GE Discovery 750HD scanner
(GE Healthcare, Waukesha, WI). The reliability of 8 widely used
RFs—mean, std, skewness, kurtosis, GLCM [gray-level co-occur-
rence matrix (24)]-energy, GLCM-contrast, GLCM-correlation, and
GLCM-homogeneity—was investigated on the 24 sets of CT images.

METHODS
Scanning the ACR CT Phantom
A Gammex CT ACR 464 phantom was scanned on a GE Discov-
ery 750HD scanner using a routine adult abdomen protocol at 4
different tube currents (25, 50, 100, 200 Effective mAs). The CT
images were then reconstructed with 3 different slice thicknesses
(1.25, 2.5, 5 mm) and 2 convolution kernels (STANDARD, SOFT),
resulting in a total of 4 � 3 � 2 � 24 sets of CT images. The CT
scanning parameters used in this study are listed in Table 1.

Preparation of Image Region and ROIs for Extracting
Real Feature Value
The ACR CT phantom is composed of 4 modules and primarily
constructed from water-equivalent materials (23). Each module
contains several components made of different materials. In our
study, 2 circular objects from module 1, made of polyethylene
and acrylic each, were selected to create image patterns for
feature extraction. Polyethylene and acrylic are materials with
CT numbers of �95 HU and 120 HU at a 120-kVp setting falling
within the ranges of the abdominal CT window.

For each object, a 2-dimensional region of 45 � 45 mm
containing the object was cropped from the CT image located at
the center of module 1 along the axial direction. Within the

cropped region, 100 regions of interest (ROIs) were randomly
generated. The criteria to generate ROIs included the following:

(1) The center of the ROI should be located inside the object.
(2) ROI shall cover part of the object and part of the back-

ground outside the object, for the purpose of studying
radiomic features on nonhomogenous patterns rather
than only on homogenous patterns, such as that derived
from cartridge phantoms filled with paper/rubber in the
literature (19).

(3) The size of the ROI must range from 12 � 12 mm to 18 �
18 mm; the sizes of the cropped region and ROIs were
empirically determined on the basis of the physical size of
the object (a cylinder with diameter � 25 mm and depth �
4 cm as provided in the manual of ACR CT phantom). The
process of preparing the cropped region and ROIs is illus-
trated in Figure 1.

Preparation of Computer-Generated Images for
Extracting Reference Feature Value
A noise-free digital image series to simulate module 1 of the
ACR CT phantom was generated for the extraction of reference
feature values. The 2 selected objects (polyethylene and acrylic)
were reproduced via an image-processing algorithm on the basis
of designated parameters (eg, location, size, shape, and density
in CT number) provided in the phantom manual (23). The rest of
the computer-generated images were defined as water-equiva-
lent background with a CT number � 0. The image region and
ROIs for feature extraction from the computer-generated images
were copied from those used in the scanned phantom images to
guarantee that they were identical so that variations introduced
by position misalignment and density difference could be min-
imized and the bias of real value to reference value would be
purely because of the different image acquisition settings.

Extraction of Feature
In our study, 8 2D RFs were investigated, including 4 histogram-
based features—mean, std (standard deviation), skewness, and
kurtosis—and four texture-based GLCM features (24), GLCM-
energy, GLCM-contrast, GLCM-correlation, and GLCM-homoge-
neity. Mean, std, skewness, and kurtosis are first-order statistic
features to characterize an histogram of image intensity. GLCM
features are textural features characterizing the gray-tone spa-
tial dependencies of an image, that is, quantifying the relation-
ship between pixels within an ROI. Details of definitions of the 8
RFs are provided in the online Supplemental Material.

In the implementation, the 8 RFs were calculated on each
ROI by using an in-house feature extraction algorithm pro-
grammed on the MATLAB 2016b platform (MathWorks, Natick,
MA). Before feature calculation, images were interpolated into
isotropic pixel spacing of 0.5 � 0.5 mm2.

Reliability of Feature
In our study, feature reliability was defined as the degree of
predicting reference feature value from real feature value. Ref-
erence feature value was the feature value extracted from noise-
free computer-generated phantom images, while real feature
value is the feature value extracted from CT images attained
from the physical ACR phantom. High predictability means that

Table 1. Image Acquisition Parameters

Scanner
GE Discovery

750HD (64 slices)

kVp 120

Display field of view (cm) 22

Pitch 1.375

Tube Currents (effective mAs) 25, 50, 100, 200

Rotation time (second) 0.7

Beam width (mm) 40 (64x0.625)

Slice thickness (mm) 1.25, 2.5, 5

Overlap (%) 0

Reconstruction algorithms STANDARD, SOFT
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a change in reference feature value can be correctly reflected by
a proportional change in the real feature value. If an RF exhib-
ited high predictability under a certain image acquisition set-
ting, then the RF calculation was believed to be reliable.

Consequently, R2, a statistical metric widely used to assess
the proportion of variance in the dependent variable that is
predictable from the independent variable, was adopted to
quantify feature reliability. An R2 value of 1 indicated that the
reference feature value could be predicted by a real feature value
to a degree of 100%, whereas an R2 value of 0 indicated that
there was no relation between reference feature value and real
feature value. The R2 equation can be defined as follows:

R2 � 1 �

�
i�1

n

�xi � y��2

�
i�1

n

(yi � y� )2

(1)

Where xi represents real feature value extracted from the ith ROI
on the ACR CT phantom images, yi represents reference feature
value extracted from the corresponding ith ROI on the comput-
er-generated phantom images, y� represents the mean of refer-
ence feature values extracted from 200 ROIs, and n equals 200
(100 ROIs from each of the 2 ACR objects).

Figure 2 shows an example of how to use R2 to assess
feature reliability under certain image acquisition setting.
The graphs (A) and (B) in Figure 2 present the skewness
values, one of the histogram-based RFs, calculated from ROIs
under the image acquisition settings of “convolution ker-
nel � STANDARD, slice thickness � 1.25 mm, and Effective
mAs � 200” and “convolution kernel � STANDARD, slice
thickness � 1.25 mm, Effective mAs � 25,” respectively. The
feature data used to estimate R2 value consisted of 200 pairs of
skewness values, corresponding to the reference and real skew-
ness values calculated on the 200 ROIs on the computer-gener-

ated and physical phantom images, respectively. As shown in
Figure 2, high reliability (R2 � 0.9575) indicated that reference
skewness values approximated the real skewness values mea-
sured at high tube current, while low reliability (R2 � 0.4021)
indicated reference skewness values diverged from real skew-
ness values measured at low tube current.

RESULTS
Figure 3 shows the reliability values for the 8 RFs under 24
image acquisition settings, combinations of 4 tube currents (25,
50, 100, 200 Effective mAs), 3 slice thicknesses (1.25, 2.5, 5 mm),
and 2 convolution kernels (STANDARD and SOFT). Overall, we
were able to observe that feature reliability decreased with a de-
crease in tube current, features were more reliable on 5-mm CT
images than on 1.25- and 2.5-mm CT images, there was little
difference in feature reliability between CT images of STANDARD
and SOFT convolution kernels, and histogram-based RFs are more
reliable than textural RFs.

We averaged the reliability values across individual image
acquisition parameters to further investigate their influence
(Table 2). For example, when investigating the influence of “200
Effective mAs,” we averaged the feature reliability values of
“STANDARD_ST125_EffmAs200,” “STANDARD_ST250_Effm
As200,” “STANDARD_ST500_EffmAs200,” “SOFT_ST125_
EffmAs200,” “SOFT_ST250_EffmAs200,” and “SOFT_ST500_
EffmAs200” together as presented in Figure 3.

To facilitate the analysis, we empirically set R2 � 0.85 as
high reliability. As shown in Table 2, in the case of tube current,
100 Effective mAs could be regarded as a threshold to guide the
application of RFs, that is, using tube current �100 Effective
mAs resulted in more reliable RFs, especially the histogram-
based RFs, while using tube current �100 Effective mAs pro-
duced only a few reliable RFs. For slice thickness, 5-mm CT
images yielded more reliable RFs. For convolution kernel, the
STANDARD and SOFT showed similar influence on feature re-

Figure 1. Example of an ACR CT phantom image being prepared for feature extraction. One region containing the
object (yellow frame of 45 � 45 mm) is selected from the ACR CT phantom image (A). Samples of 100 randomly gen-
erated nonhomogenous ROIs of the object (B). Each ROI was a 2-dimensional square with random location and random
size ranging from 12 � 12 mm to 18 � 18 mm.
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liability. The feature mean and std showed extremely high reli-
ability across all image acquisition settings.

We observed an obvious unusual trend that the average reli-
ability of GLCM-energy at slice thickness of 1.25 mm was higher
than that at slice thickness of 2.5 mm (see Table 2). As we turned to
the details of reliability presented in Figure 3, we found that the

unusual trend was caused by a great drop of reliability at tube
current 25 Effective mAs, a very low dose condition for the slice
thickness of 2.5 mm. Actually, based on our results, low tube
current easily led to unusual trends for some RFs, for example,
GLCM-homogeneity at 50 and 25 Effective mAs and GLCM-homo-
geneity at 1.25- and 2.5-mm slice thicknesses in Table 2.

Figure 2. Reliability of the skewness feature at high tube current (A) and low tube current (B), respectively. Each point
on the plot corresponds to the values calculated from one randomly generated ROI on the computer-generated (X-axis)
and the physical phantom images (Y-axis), respectively. There are a total of 200 points on each plot corresponding to
the 200 randomly generated ROIs from the two selected objects in the phantom.

Figure 3. Reliability of 8 radiomic features under 24 image acquisition settings. Top panel with pink title: reconstructed
using Standard kernel; Bottom panel with yellow title: reconstructed using Soft Kernel. For example, the number of
0.998 in the top-left cell is the R2 value of the feature mean calculated between the computer-generated image and CT
scan image obtained at 200 Effective mAs and reconstructed using STANDARD kernel, 1.25 mm slice thickness.
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DISCUSSION
In this study, we introduced the concept of RF reliability and
evaluated the RF reliability of 8 commonly used RFs under 24
different image acquisition settings. The 24 image acquisition
settings involved 3 image acquisition parameters, for example,
tube current, slice thickness, and convolution kernel, and cov-
ered a wide range of imaging protocols for abdominal CT imag-
ing. Moreover, our study was based on heterogeneous ROIs, that
is, ROIs containing both object and background, which is an
advantage over previous studies using homogenous ROI phan-
toms, for example, paper/rubber-filled cartridges (19).

Overall, for the ACR CT phantom, tube current affected
reliability the most, slice thickness the second, and convolution
kernel the least. The small effect of convolution kernels was due
to the similarity of the 2 “smooth” kernels used in this abdom-
inal study. The histogram-based RFs showed much higher reli-
ability than textural RFs.

For tube current, 200 Effective mAs represented high-dose
CT imaging, while 25 Effective mAs represented low-dose CT
imaging. It is quite intuitive that CT images derived from high-
dose scanning would yield more reliable RFs as it produced
higher quality images than low noise scanning. Therefore, to
obtain high RF reliability, high-dose CT imaging is recom-
mended, especially for those radiomic studies using textural
RFs. When keeping all other imaging acquisition parameters
unchanged, increasing the slice thickness from 1.25 mm to 5
mm can reduce image noise by 50%. It is reasonable to believe
that thick-section CT imaging yielded more reliable RFs. How-
ever, thick-section CT imaging introduces larger partial volume
effect than thin-section CT imaging. In clinical practice, partial
volume effect is one of the main negative effects that lowered
image resolution and thus blurred fine structures within/around
lesions, for example, small vessels, boundary of tumor margin,
etc. It will also affect some RFs extracted from thick-section CT
images. Therefore, the selection of RFs and slice thickness
should depend on the aim of the radiomic study. Because the 2
convolution kernels, STANDARD and SOFT, both belonged to
smooth soft-tissue kernels which yielded low-noise image, their
influence on RF reliability was similar. Also, our results showed

that smooth soft-tissue kernels used by abdominal CT scans had
little impact on RF reliability.

In this study, 2 categories of RFs, histogram-based and the
textural, were investigated. Histogram-based RFs showed much
higher reliability than textural RFs, especially the mean and std.
It is actually one of the basic requirements for a CT scanner that
mean should be reliable across different image acquisition set-
tings. Our results showed this. For the std, its high reliability was
somewhat due to the use of the polyethylene and acrylic objects
to create image patterns, which possessed dozens of Hounsfield
unit (HU) intensity different from the water-equivalent back-
ground. Nevertheless, according to this finding, it is quite reli-
able to apply std in charactering tumor lesions with dozens of
HU difference from the background, such as liver metastasis of
colorectal cancer [mean, 68 HU; range, 40–115 HU as reported
in the CRYSTAL clinical trials (25, 26)] and gastrointestinal
stromal tumors [mean, 72 HU; range, 46–156 HU as reported in
the Choi criteria study (27)].

In contrast to histogram-based RFs, more attention should
be paid to the use of textural RFs. Textural RFs are easily
affected by tube current, which is an imaging parameter directly
proportional to patient radiation dose. High tube current guar-
antees high reliability of textural RFs, but leads to high patient
dose. Therefore, the use of textural RFs should depend on the
aim of a study. For example, it is inadvisable to use textural RFs
in a low-dose CT screening study (28), whereas it might be safe
to use textural RFs in a CT-based radiation therapy study (29).

There were several limitations of our pilot study. First, the
created image patterns were simple, involving only 2 materials
for each pattern, polyethylene, and a water-equivalent back-
ground, or acrylic and a water-equivalent background. Second,
only a small set of RFs from 2 feature categories were investi-
gated. Third, only 1 CT scanner was used. To address these
limitations, we propose future studies, including designing more
sophisticate phantoms that mimic in vivo lesions with the help
of 3D-printing technique (30), using a high-throughput analysis
method to evaluate a large scale of RFs (20), and involving
multiple scanners from multiple institutions to attain CT images
under more image acquisition settings (19).

Table 2. Average of Reliability Values Under Individual Image Acquisition Parameters

Features

Tube Current Slice Thickness Convolution Kernel

All
200 Effective

mAs
100 Effective

mAs
50 Effective

mAs
25 Effective

mAs
1.25
mm

2.5
mm

5.0
mm STANDARD SOFT

Mean 0.997 0.998 0.998 0.995 0.997 0.997 0.997 0.997 0.997 0.997

Std 0.989 0.987 0.977 0.970 0.975 0.981 0.987 0.980 0.982 0.981

Skewness 0.973 0.922 0.767 0.592 0.703 0.811 0.927 0.786 0.841 0.813

Kurtosis 0.961 0.922 0.816 0.666 0.753 0.841 0.931 0.818 0.864 0.841

GLCM-energy 0.940 0.942 0.887 0.675 0.877 0.819 0.885 0.870 0.852 0.861

GLCM-contrast 0.914 0.792 0.389 0.371 0.529 0.551 0.770 0.583 0.650 0.616

GLCM-correlation 0.880 0.817 0.802 0.792 0.804 0.826 0.839 0.818 0.828 0.823

GLCM-homogeneity 0.758 0.658 0.167 0.338 0.429 0.419 0.592 0.473 0.487 0.480
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CONCLUSION
In this study, we explored the reliability of RFs on multiple CT
image acquisition settings. To the best of our knowledge, this is
the first study investigating RF reliability by comparing real
feature values calculated from scanned phantom images and
reference feature values computed from computer-generated
phantom images. We found that CT image acquisition settings

influenced RF reliability to varying degrees. Therefore, attention
should be paid when using RFs for CT-based radiomic studies,
especially textural RFs.
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