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Plasmodium falciparum dihydrofolate reductase (pf-DHFR) is one of the several targets in the treatment of malaria.
Double and quadruple mutations at residues 51, 59, 108, and 164 of pf-DHFR have been linked to antifolate
resistance. Several efforts are underway to overcome this drug resistance and to produce potential inhibitors. In
this regard, the quantitative structure-activity relationship (QSAR) and docking studies were performed for
previously reported 4-anilinoquinoline and 1,3,5-triazines based molecular hybrids. The generated model showed
good correlation coefficients (R2 ¼ 0.70) and test set prediction coefficient (R2 ¼ 0.74). These outcomes showed
the good predictive competence of the established QSAR model. Based on these results we docked into active site
of pf-DHFR protein with the most active (4) and the less active (5) compounds. The docking results revealed that
these molecules interact specifically with SER108 and ILE164 in the pf-DHFR binding pocket as that of best active
compound but also showed additional interactions with LEU40 and GLY44.
1. Introduction

Malaria is an infectious disease caused by parasites of the genus
Plasmodium [1]. Five species of malaria parasites are known, namely,
P. falciparum, P. vivax, P. malariae, P. ovale and P. knowlesi [2]. Approx-
imately 90 % of deaths (generally of children in Africa) related to malaria
infections are caused by Plasmodium falciparum [3, 4]. In 2016, 216
million of human beings are counted by the World Health Organization
(WHO) over 91 countries of the world, which are affected by malaria,
with an increase of 5 million cases compared to previous years [5].

Despite of the great efforts devoted to discover an effective antima-
larial drugs, these efforts suffer from many obstacles, including drug
resistance issues [6, 7]. To overcome this problem, the concept of hybrid
molecules has been introduced as one of the most used solutions, in
which two or more pharmacophores are linked together and act by
inhibiting simultaneously two conventional targets [8]. In this regard,
the 1,3,5-triazine derivatives such as cycloguanil, chlorcycloguanil and
WR99210are already approved as effective dihydrofolatereductase (DHFR)
inhibitors, which selectively inhibit biochemical processes that are vital
for parasite growth [9]. In addition, quinoline nucleus has attracted
much interest of medicinal chemists, as an imperative pharmacophore
ni).
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accountable for imparting antimalarial action [10, 11]. Furthermore, to
become a drug a novel synthetic molecule must take a very long journey.
As a consequence, the pharmaceutical industry is moving towards new
research methods, involving predicting the activities of molecules before
they are even synthesized. The use of molecular modeling techniques
such as QSAR and molecular docking has produced very impressive re-
sults in last year's [12, 13]. In the purpose to pursue our previous works
[14, 15]. In this paper, we have performed the molecular modeling of
4-anilinoquinoline-triazines (Fig. 1) as a potential antimalarial com-
pounds by using QSAR and docking studies [16].

Quantitative Structure Activity Relationships (QSAR) is very impor-
tant tool in drug discovery [17]. The multidimensional molecular de-
scriptors (1D, 2D, 3D) have been calculated to identify regions in space
which are correlated to the biological activities (Table 1) [18]. QSAR
models could be generated by using statistical methods. In this study, we
have used a training set of 37 4-anilinoquinoline-triazines derivatives to
build the QSAR model [19]. For this purpose, we used multiple linear
regression analysis (MLR)) and artificial neural networks (ANN). The
predictive ability of the established model has been tested by several
validation techniques such as: internal and external validations as well as
Y-randomization methods. Plasmodium falciparum dihydrofolate reductase
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Fig. 1. The structure of the 4-anilinoquinoline-triazine derivatives.
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(pf-DHFR) is the most important targets for antimalarial drug discovery.
In addition, we have performed the docking molecular of two com-
pounds, 4 and 5, with Pf-DHFR in its two forms; the wild type and the
quadruple mutant [20]. Also we investigated the interaction of these
hybrids with the binding site of Pf-DHFR protein structures, in order to
gain structural insight for improved antimalarial activity.
Table 1
Studied compounds and their observed activities logIC50.

Compounds R1 R2

1 3-fluoroanilinyl 4-m
2 3-fluoroanilinyl 4-et
3 3-fluoroanilinyl 2-m
4 3-fluoroanilinyl 3-m
5 3-fluoroanilinyl pipe
6 4-fluoroanilinyl 4-m
7 4-fluoroanilinyl 4-et
8 4-fluoroanilinyl 2-m
9 4-fluoroanilinyl 3-m
10 4-fluoroanilinyl pipe
11 3-chloroanilinyl 4-m
12 3-chloroanilinyl 4-et
13 3-chloroanilinyl 2-m
14 3-chloroanilinyl 3-m
15 4-chloroanilinyl 4-m
16 4-chloroanilinyl 4-et
17 4-chloroanilinyl 3-m
18 3-methoxyanilinyl 4-m
19 3-methoxyanilinyl 4-et
20 3-methoxyanilinyl 3-m
21 4-methoxyanilinyl 4-et
22 4-methoxyanilinyl 3-m
23 3,4-dimethoxyanilinyl 4-m
24 3,4-dimethoxyanilinyl 4-et
25 3,4-dimethoxyanilinyl 3-m
26 1,2,3,4-tetrahydroquinolinyl 4-m
27 1,2,3,4-tetrahydroquinolinyl 4-et
28 1,2,3,4-tetrahydroquinolinyl 2-m
29 1,2,3,4-tetrahydroquinolinyl 3-m
30 1,2,3,4-tetrahydroisoquinolin-2(1H)-yl 4-m
31 1,2,3,4-tetrahydroisoquinolin-2(1H)-yl 4-et
32 1,2,3,4-tetrahydroisoquinolin-2(1H)-yl 2-m
33 1,2,3,4-tetrahydroisoquinolin-2(1H)-yl 3-m
34 morpholinyl 4-m
35 morpholinyl 4-et
36 morpholinyl 2-m
37 morpholinyl 3-m

Table 2
List of the calculate descriptors.

Type of descriptors Electronic lipophilic

Name of the
descriptors

HOMO energy
(EHOMO)
LUMO energy (ELUMO)
Dipole moment (Dp)
total energy (E)

lipophilic (Octanol-water partition coeffi
(LogP)
VDW energy (EVDW)
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2. Materials and methods

2.1. Studied molecules

To perform the molecular modeling we have taken the experimental
antimalarial activities data of 37 hybrids molecules described previously
[16]. Thus, the observed activities (IC50) are converted into logarithm
scale logIC50 and they are presented in Table 1.

2.2. Molecular descriptors calculation

In order to build a reliable QSAR model, a total of 14 descriptors
including lipophilic, geometrical, physicochemical, and steric. Those are
calculated with the MM2 method using ACD/ChemSketch [21] and
ChemBioOffice softwares [22]. Meanwhile, the geometry of the studied
compounds was optimized using DFT/B3LYP(6-31G) method [23, 24].
The electronic descriptors were calculated by Gaussian 03 quantum
chemistry software [25]. All descriptors used in this work are presented
in Table 2.
IC50(obs) LogIC50(obs)

ethylpiperazin-1-yl 22.80 1.358
hylpiperazin-1-yl 2.47 0.393
orpholinoethan-1-aminyl 40.02 1.602
orpholinopropan-1-aminyl 1.36 0.134
ridin-1-yl 128.74 2.110
ethylpiperazin-1-yl 8.97 0.953
hylpiperazin-1-yl 11.11 1.046
orpholinoethan-1-aminyl 9.81 0.992
orpholinopropan-1-aminyl 15.82 1.199
ridin-1-yl 41.75 1.621
ethylpiperazin-1-yl 2.41 0.382
hylpiperazin-1-yl 2.11 0.324
orpholinoethan-1-aminyl 30.60 1.486
orpholinopropan-1-aminyl 3.82 0.582
ethylpiperazin-1-yl 7.80 0.892
hylpiperazin-1-yl 4.14 0.617
orpholinopropan-1-aminyl 4.63 0.666
ethylpiperazin-1-yl 4.26 0.629
hylpiperazin-1-yl 8.90 0.949
orpholinopropan-1-aminyl 2.98 0.474
hylpiperazin-1-yl 4.26 0.629
orpholinopropan-1-aminyl 3.81 0.581
ethylpiperazin-1-yl 5.04 0.702
hylpiperazin-1-yl 2.58 0.412
orpholinopropan-1-aminyl 4.58 0.661
ethylpiperazin-1-yl 12.64 1.102
hylpiperazin-1-yl 20.84 1.319
orpholinoethan-1-aminyl 17.35 1.239
orpholinopropan-1-aminyl 14.70 1.167
ethylpiperazin-1-yl 28.12 1.449
hylpiperazin-1-yl 12.12 1.084
orpholinoethan-1-aminyl 45.21 1.655
orpholinopropan-1-aminyl 20.32 1.308
ethylpiperazin-1-yl 3.22 0.508
hylpiperazin-1-yl 2.16 0.334
orpholinoethan-1-aminyl 5.87 0.769
orpholinopropan-1-aminyl 2.76 0.441

Geometrical physicochemical Steric

cient) Torsion energy (T)
stretch-bend energy
(SB)

Critical pressure (CP)
Critical volume (CV)

Density (D)
Refractive Index (R)
Surface Tension
(ST)
parchor (P)



Table 3
The values of selected descriptors and observed/predicted activity (logIC50).

N E S–B T EVDW LogP ST LogIC50 (Obs) MLR ANN Cv(LOO)

2 -2213.007 0.520 -15.547 42.004 7.347 72.100 0.393 0.7412 0.724 0.739
3 -2288.181 0.532 -12.073 43.096 6.065 77.900 1.602 1.1958 1.311 1.299
4 -2327.486 0.556 -12.039 43.729 6.170 75.700 0.134 0.8582 0.667 0.772
5 -2118.390 0.371 -15.879 39.069 7.986 76.600 2.110 2.1119 2.099 2.100
7 -2213.006 0.522 -15.540 42.003 7.347 72.100 1.046 0.7385 0.725 0.737
8 -2288.181 0.534 -12.048 43.091 6.065 77.900 0.992 1.1959 1.310 1.298
9 -2327.485 0.558 -12.034 43.726 6.170 75.700 1.199 0.8560 0.665 0.769
11 -2534.064 0.483 -15.753 41.898 7.409 76.700 0.382 0.7792 0.649 0.628
12 -2573.369 0.533 -15.553 42.645 7.747 73.800 0.324 0.5348 0.473 0.472
13 -2648.544 0.545 -12.055 43.739 6.465 79.600 1.486 0.9925 1.416 1.288
14 -2687.848 0.570 -12.044 44.369 6.570 77.400 0.582 0.6502 0.629 0.740
15 -2534.064 0.485 -15.692 41.838 7.409 76.700 0.892 0.7776 0.641 0.625
16 -2573.369 0.533 -15.557 42.558 7.747 73.800 0.617 0.5202 0.461 0.464
18 -2188.972 0.518 -15.798 44.081 6.724 73.200 0.629 0.7116 0.675 0.678
19 -2228.277 0.571 -15.560 44.843 7.062 70.600 0.949 0.5258 0.762 0.761
20 -2342.756 0.624 -12.094 46.444 5.886 74.100 0.474 0.5699 0.495 0.515
21 -2228.275 0.578 -15.558 44.824 7.062 70.600 0.629 0.5114 0.764 0.756
22 -2342.754 0.615 -12.040 46.569 5.886 74.100 0.581 0.6138 0.527 0.550
23 -2303.447 0.477 -13.677 47.151 6.598 70.600 0.702 0.7632 0.718 0.768
25 -2457.232 0.593 -9.705 49.569 5.759 71.600 0.661 0.6775 0.659 0.611
26 -2191.186 0.989 -15.240 49.085 7.482 71.700 1.102 1.2207 1.110 1.177
27 -2230.491 1.046 -14.930 49.892 7.820 69.200 1.319 1.0648 1.320 1.174
28 -2305.667 1.058 -11.375 51.018 6.538 74.400 1.239 1.4323 1.243 1.280
30 -2191.189 0.605 -15.188 46.528 7.381 71.700 1.449 1.3842 1.403 1.300
31 -2230.494 0.660 -14.869 47.331 7.719 69.200 1.084 1.2315 1.108 1.204
32 -2305.670 0.669 -11.361 48.401 6.437 74.400 1.655 1.5870 1.661 1.600
34 -2074.665 0.796 -6.763 43.187 5.271 72.000 0.508 0.5254 0.508 0.392
35 -2113.970 0.851 -6.497 43.975 5.609 69.300 0.334 0.3270 0.356 0.390
37 -2228.449 0.885 -3.101 45.637 4.433 72.900 0.441 0.4175 0.436 0.427

H. Hadni, M. Elhallaoui Heliyon 5 (2019) e02357
2.3. Statistical methods

In the aim to build QSAR model, we have chosen a set of 37 com-
pounds from previously reported work, whose shown important anti-
malarial activity [16]. The complete set was randomly divided into two
subsets a training set (29 compounds) to build the model and a test set (8
compounds) to evaluate the reliability of the established model. Various
statistical methods were used to build the QSAR model, viz: Multiple
Linear Regression (MLR) [26], and Artificial Neural Networks (ANN)
[27]. Indeed, the MLR with descendent selection of variables was used to
study the relation between one dependent variable (antimalarial activity)
and several independent variables (calculated molecular descriptors).
Furthermore, the MLRwas used to select the descriptors that will serve as
the input parameters for ANN. Hence, ANN could be considered as
suitable tools that have powerful mechanism to capture patterns in data,
which has been widely used to model nonlinear system [28]. In addition,
the high values of the correlation coefficient indicate how the equations
fit the data. On other hand, validation a strategy has been recognized to
inquire into the applicability of the QSAR models on a new data. For this
reason, we have used Cross-Validation with “leave-one-out” procedure,
in order to explore the reliability of the proposed models. Cross valida-
tion was used in which a number of models were developed with one
sample ignored each time. The model was evaluated by measuring its
accuracy in predicting the responses of the remaining data (the ones that
have not been used in the development of the model) [29, 30].

According to Golbraikh and Tropsha study on validation methods,
cross-validation is necessary but not sufficient to ensure the predictive
capability of the proposed QSAR model. In this study, we have validated
the QSAR model by both MLR and ANN methods based on training set.
The external validation should be in perfect agreement with the criteria
of Golbraikh and Tropsha [31]. Finally, Y-randomization test has been
used to exclude the possibility of random correlation between descriptors
and its corresponding bioactivities in the obtained model. This test
consists to mix randomly many properties/experimental activities for the
new learning series using the same descriptors. For an acceptable QSAR
model, the average correlation coefficient (Rr) of randomized models
should be less than the correlation coefficient (R) of nonrandomized
3

model [32].

2.4. Molecular docking modeling

A molecular modeling study was conducted in order to gain insight
into the key structural requirements of a geometrical model and to
analyze the interactions of the hybrid systems with the active sites of the
protein pf-DHFR [14, 20] of both wild (coded as 1J3I.pdb) and quadruple
mutant types (coded as 1J3K.pdb), which are obtained from the Protein
Data Bank RCSB [33]. In this study, we have performed the molecular
docking of two compounds with pf-DHFR protein. We have chosen the
highest active compound (compound number 4) and the lowest active
compound (compound number 5) of the studied series. First, we have
removed all water molecules from the receptor, the ligands and
non-protein parts by using the Discovery Studio software [34]. The
AutoDock 4.2, has been used to analyze the interactions between the
ligand and the protein [35]. The 3D grid was created by the AUTOGRID
algorithm [36]to evaluate the interacting energy between ligands and
wild-type protein. The grid maps were constructed using 60, 60 and 60
pointing in x, y and z directions, with grid point spacing of 0.375� A. The
center grid box is about (30.323Å, 5.116Å and 58.385Å) by the ligand
location in the complex. However, the center grid box of the quadruple
mutant type protein is about (29.987Å, 5.56 Å and 57.424 Å). Discovery
Studio software was used for the 2D and 3D visualizations of the estab-
lished interactions [34].

3. Results and discussion

To perform this study, we have divided the 37 studied compounds
randomly into training sets and test sets which containing 29 and 8
compounds respectively. The values of the selected descriptors and the
predicted values of antimalarial activity of the training set which ob-
tained by using MLR, ANN and CV methods are presented in Table 3.

3.1. Multiple linear regression

The MLR method is based on three criteria: Coefficient of
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-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5

Lo
gI

C 5
0(M

LR
)

LogIC50(obs)

Ac�ve Model

Conf. interval (Mean 95%) Conf. interval (Obs. 95%)
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established by ANN.
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determination (R2), the root mean square error (RMSE) and the Fisher
ratio value (F) [14]. The MLR results which contain the corresponding
normalized descriptors coefficients and the correlation between the
observed and predicted activities are presented in Figs. 2 and 3 respec-
tively. In addition, the QSARmodel of the training set built is represented
by the following Eq. (1):

LogIC50 ¼ -15.8 þ 0.0026*E – 1.67* S–B þ 0.18*T þ 0.15*VDW þ 0.91
LogP þ 0.18* ST (1)

N ¼ 29 R ¼ 0.84 R2 ¼ 0.70 F ¼ 8.84 RMSE ¼ 0.29
The selected descriptors involved in the MLRmodel of the training set

are: Total energy (E), stretch-bend energy (SB), Torsion energy (T), VDW
energy (EVDW), lipophilic (LogP) and Surface Tension (ST). According to
the coefficient normalization diagram, we have found that the built
model presented four most important descriptors (LogP, T, ST and S-b)
correlated with Log IC50 with high value of R2 (0.7). Indeed, the most
important parameter in the model is LogP (coefficient of 0.91). The
positive sign of the Log P Eq. (1), indicates that the larger the Log P value,
the lower the activity of the compound is. From Table 3, compounds 4
4

and 5, which have respectively the lowest and the largest Log P values,
also have the greatest and the minor antimalarial activities. The com-
pound 4 possess large alkyl chains; therefore, it is possible that there are
hydrophobic interactions between the substituent and the receptor.

The second most important descriptor in Model 1 is the T and ST
(coefficient of 0.18). The number of torsion plays a very important role in
the activity, this is due to the flexibility of the molecule inside the active
site. Moreover, the Surface tension is closely related to the forces of
intermolecular attraction. The stronger the intermolecular forces are, the
more tightly the molecules are held together in the liquid phase and,
therefore the higher the surface tension will be. T and ST appears in the
Eq. (1) with apositive sign which shows that the molecules with higher
value of T and ST have the lowest antimalarial activity.

The third most important descriptor in model 1 is S–B (coefficient of
-1.67). The S–B a geometry parameter, deals with the stretching and
bending or one can say the conformational flexibility of the molecule.
The descriptor S–B exhibits negative correlation with LogIC50, so the
substituents that increase the stretch-bend energy of the compound will
also enhance the antimalarial activity.

High correlation coefficient (R¼ 0.84) of the built QSARmodel based
on the training set indicates good variance explanation of the model,
further supported by low standard deviation (RMSE ¼ 0.23). Further-
more, evaluation of the degree of visual significance of the Fischer Test
(F) confidence (p < 0.0001) reflects the good predictive competence of
the generated model.
3.2. Artificial neural networks

In this study, we have used 3 layers Neural Networks: The input layer
that contains six neurons representing the selected descriptors, the
output layer which represent the observed activity values (logIC50) and
the hidden layer. It should be noted that there are no theoretical or
empirical rules to determinate the number of hidden layers. While, few
authors [37, 38] recommended to take into consideration ρ¼ (number of
weight)/(number of connection) parameter which must in the range of 1
< ρ < 3 [39,40]. Thus, the final ANN architecture is (6-2-1). The Fig. 4
shows the correlation between the observed and the predicted activities
established by the ANN.

The plot of observed versus predicted activity (Fig. 4) shows a good fit
with R2 value of 0.81 and the mean squared error RMSE ¼ 0.18 indicate
that model possesses a significant statistical quality and the selected
descriptors by MLR are pertinent.
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Table 5
The results of external validation by the MLR and ANN methods.

N LogIC50 Pred (LogIC50) MLR Residual Pred (LogIC50) Residual

1 1.358 0.99 0.388 0.776 0.443
6 0.953 0.984 -0.013 0.769 0.042
10 1.621 2.119 -0.158 2.099 -0.109
17 0.666 0.65 -0.061 0.611 -0.146
24 0.412 0.646 -0.312 0.525 -0.347
29 1.167 1.155 0.079 1.014 0.106
33 1.308 1.326 0.097 1.393 0.013
36 0.769 0.736 -0.02 0.544 -0.002

Table 6
Golbraikh and Tropsha criteria.

Parameter Formula Threshold Modelscore

R2
ANN ext R2

ext ¼ 1�
P ðYpredðtestÞ � YðtestÞÞ2

P ðYðtestÞ � YtrÞ2
R2
ext>0.6 0.68

r2 Coefficient of determination for the
plot of predicted versus observed for
test set by MLR

r2 > 0.6 0.74

r20 r2 at zero intercept 0.67

r '20 r2 for the plot of observed versus
predicted activity for the test set at
zero intercept

0.68

�
�r20 � r '20

�
�

�
�r20 �
r '20

�
� < 0:3

0.01

k Slope of the plot of predicted versus
observed activity for test set at zero
intercept

0.85 < k <

1.15
0.92

r2 � r20
r2

r2 � r20
r2

< 0:1
0.07

k’ Slope of the plot of observed versus
predicted activity at zero intercept

0.85 <

k’<1.15
0.93

r2 � r '20
r2

r2 � r '20
r2

< 0:1
0.08
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3.3. Cross Validation

The results obtained by Cross Validation (CV)with “leave-one-out”are
represented in Fig. 5. Therefore, the obtained parameters R2 ¼ 0.78 and
RMSE ¼ 0.19 shows that the built QSAR model is not sensitive to the CV.
Which obviously, indicate that the proposed QSAR model is stable and
robust. However, Cross Validation is not a good parameter to estimate
the ability of QSAR models according to Golbraikh and Tropsha study
[31].

3.4. Y-randomization

Herein, we have randomly mixed descriptors and observed activity of
the newly training set which contains 29 compounds obtained by
excluding 8 compounds and adding 8 compounds of test set. Then, we
build new model through MLR methods us described previously. The
obtained results are given in Table 4.

The newly QSAR model using the Y-randomization method is repre-
sented by the following Eq. (2):

LogIC50 ¼ -15.08 þ 0.0026*E - 1.44*S–B þ0.16*T þ 00.14*VDW þ
0.85*LogP þ 0.17*ST (2)

N ¼ 29 R ¼ 0.83 R2 ¼ 0.69 F ¼ 8.14 RMSE ¼ 0.29
The obtained correlation coefficient value R2 ¼ 0.69 of the newly

training set is compared to the obtained using the first training set. The
results of Y-randomization confirm the absence of dependence between
descriptors included in the QSAR model.

3.5. External validation

The study conducted by Golbraikh and Tropsha on validation
methods lead to the insufficient of the internal validation methods to
confirm the reliability of the built QSAR models. For this reason, external
Table 4
Calculated results using Y-randomization.

N 4 23 5 26 30 37 2

logIC50 0.134 0.702 2.110 1.102 1.449 0.441 0.393
pred logIC50 0.869 0.732 2.102 1.254 1.368 0.401 0.774
N 36 1 27 25 16 19 13
logIC50 0.769 1.358 1.319 0.661 0.617 0.949 1.486
pred logIC50 0.716 1.032 1.080 0.610 0.528 0.556 0.980

5

validations are hardly needed to build a reliable QSAR model [31]. The
later must respect some important criteria recommended by Golbraikh
and Tropsha. In Table 5, we present the test set containing 8 compounds
that has been reserved to external validation, maintaining their original
numbers and taken from Table 3 with their observed and predicted ac-
tivity by MLR and ANN models. The results of Golbraikh and Tropsha
criteria's validation are presented in Table 6 [31].

Overall, we can conclude that Golbraikh and Tropsha criteria's and
external validation are successfully validated, which indicate that the
built QSAR model is in perfect agreement with all validation methods in
one hand. In the other hand, the experimental antimalarial activity could
be accurately predicted using the established QSAR model.
3.6. Molecular docking study

The molecular Docking study was performed for two reasons. The
first is to understand the good antimalarial activity potency manifested
with some compounds. The second is to find out the key interaction types
established with the protein (pf-DHFR) in its two type (wild and mutant)
[14]. The reported study of Yuvanyama et al [41] has found the binding
modes, and has localized the active sites in wild and mutant of protein
32 24 21 28 9 7 20 11

1.655 0.412 0.629 1.239 1.199 1.046 0.474 0.382
1.534 0.588 0.543 1.428 0.867 0.772 0.585 0.802
31 8 12 34 17 33 15 -
1.084 0.992 0.324 0.508 0.666 1.308 0.892 -
1.196 1.211 0.541 0.545 0.626 1.261 0.800 -



Fig. 6. 2D and 3D docking poses showing interactions of compounds 4 and5 in the binding sites of wild type and quadruple mutant of pf-DHFR-TS. (a) Compound 4:
wild type of pf-DHFR (binding energy �10.6 kcal/mol). (b) Compound 4: quadruple mutant of pf- DHFR-TS (binding energy �10.9 kcal/mol). (c) Compound 5: wild
type of pf-DHFR (binding energy �11.4 kcal/mol). (d) Compound 5: quadruple mutant of pf-DHFR-TS (binding energy �10.3 kcal/mol).

H. Hadni, M. Elhallaoui Heliyon 5 (2019) e02357

6



H. Hadni, M. Elhallaoui Heliyon 5 (2019) e02357
(pf-DHFR). The study performed with a potent inhibitor 1,3,5-triazine
derivative which is a preclinical molecule called WR99210. It is found
that the important sites in the case of the wild type are located in Ile14,
Ala16, Met55, Asp54, Ser108, Ile164 and Tyr170. It was also found that
important sites are located in Ala16, Cys50, Asn51, Cys59, Asn108,
Leu164 and Tyr170 in the case of the wild type. The interactions mode
obtained by molecular docking for compounds 4 and 5 are presented in
Fig. 6.

In the case of the wild type, compound 4 performs four interactions
through hydrogen bonding with SER111, LEU40, SER108 and GLY44
amino acids. The interactions involve three nitrogen atoms linked to the
triazine system and one fluorine atom linked to benzene group, with the
distance of 2.43 Ǻ, 2.01 Ǻ, 3.08 Ǻ and 2.95 Ǻ, respectively. However,
compound 5 performs only three hydrogen bonds with less important
binding sites, Ser111 and Gly46, as they are not cited as active sites for
antimalarial activity. In the case of quadruple mutant, compound 4per-
forms four hydrogen bonds between four nitrogenatoms linked to the
triazine group and SER111, ASN108, LEU164 and LEU40 amino acids
with the distance of 2.47 Ǻ, 2.63 Ǻ, 2.71 Ǻ and 2.52 Ǻ, respectively. For
compound 5 showed only two hydrogen bonding interaction with less
important binding sites SER 111 and LYS49.

In summary, the interactions formed by the compounds 4 with the
binding sites of pf-DHFR are in good agreement with the previous study
for antimalarial activity [41]. Moreover, no significant interactions with
critical amino acid in pf-DHFR protein on both wild and mutant types,
showed for compound 5. When, we have noticed for compound 4 bearing
N-methy-3-morpholinopropan-1-amine substitute, the number of rota-
tions increased 11 rotations versus 7 rotations in the case of compound 5.
This could make molecule more flexible inside the active site of the
protein. Furthermore, the introduction of new nitrogen atoms in the
compound 4 influence on the number of hydrogen bond compared to
compound 5. These outcomes, can explain the difference of measured
activity between compound 4 and compound 5.

4. Conclusion

In the purpose of producing new effective antimalarial drugs, a
QSAR model was developed using the in vitro antimalarial data re-
ported. The built model was statistically significant and the signifi-
cance was validated. Molecular docking study highlight the exclusive
binding signature of the ligands with the active site residue i.e.
ILE164, SER108 and LEU40of the target and it explains the specificity
and subtle differences in their predicted IC50 values. The study has
provided insights to improve biological activity with the change of 1-
methylpiperidine by 3-morpholinopropan-1-aminein 4-aminoquino-
line-triazinederivatives.
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