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Abstract 

Background:  The machine learning algorithm (MLA) was implemented to establish an optimal model to predict the 
no reflow (NR) process and in-hospital death that occurred in ST-elevation myocardial infarction (STEMI) patients who 
underwent primary percutaneous coronary intervention (pPCI).

Methods:  The data were obtained retrospectively from 854 STEMI patients who underwent pPCI. MLA was applied 
to predict the potential NR phenomenon and confirm the in-hospital mortality. A random sampling method was used 
to split the data into the training (66.7%) and testing (33.3%) sets. The final results were an average of 10 repeated 
procedures. The area under the curve (AUC) and the associated 95% confidence intervals (CIs) of the receiver operator 
characteristic were measured.

Results:  A random forest algorithm (RAN) had optimal discrimination for the NR phenomenon with an AUC of 0.7891 
(95% CI: 0.7093–0.8688) compared with 0.6437 (95% CI: 0.5506–0.7368) for the decision tree (CTREE), 0.7488 (95% CI: 
0.6613–0.8363) for the support vector machine (SVM), and 0.681 (95% CI: 0.5767–0.7854) for the neural network algo-
rithm (NNET). The optimal RAN AUC for in-hospital mortality was 0.9273 (95% CI: 0.8819–0.9728), for SVM, 0.8935 (95% 
CI: 0.826–0.9611); NNET, 0.7756 (95% CI: 0.6559–0.8952); and CTREE, 0.7885 (95% CI: 0.6738–0.9033).

Conclusions:  The MLA had a relatively higher performance when evaluating the NR risk and in-hospital mortality in 
patients with STEMI who underwent pPCI and could be utilized in clinical decision making.

Keywords:  Machine learning, ST-elevation myocardial infarction, Primary percutaneous coronary intervention, 
No-reflow, In-hospital mortality
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Background
The progressively developing reperfusion strategy 
has shown significant improvement in the prognosis 
for patients with ST-elevation myocardial infarction 
(STEMI) [1]. Since the rapid development of chest pain 
centers (CPCs) in urban areas in China [2], the primary 
goal of these centers has been to highlight primary percu-
taneous coronary intervention (pPCI) to achieve a major 
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reperfusion therapy for patients with evolving STEMI 
[3]. When a pPCI procedure is carried out, the risk of 
occurrence of no-reflow (NR) needs to be recognized and 
managed to improve patient outcomes. NR is defined as 
inadequate coronary perfusion within the myocardium 
even after the occluded blood vessels have been opened 
[4]. It is an important causative factor in the short-term 
death of STEMI patients who underwent pPCI. The 
occurrence rate of NR in such cases is approximately 
11%–41%, and the subsequent mortality rate is about 
7.4%–30.3% [5]. NR is considered a powerful independ-
ent predictive factor for in-hospital mortality [6]. When 
NR occurs, pharmacological therapy becomes difficult as 
the drugs applied do not reach the distal micro-vessels. 
To restore normal flow, preventive measures should be 
taken [7]. Therefore, early prediction, prevention, and 
proper drug pretreatment are essential in NR treatment 
[8].

Early risk management and stratification that are piv-
otal aspects in STEMI patients for early targeted inter-
vention during hospitalization include effective dual 
antiplatelet therapy, anti-glycoprotein IIb IIIa, statin, 
optimal anticoagulation, intracoronary calcium inhibi-
tors or adenosine, rotational atherectomy, thrombus 
aspiration, maintained stable hemodynamically, and 
intra-aortic balloon pump [1, 8, 9]. Previous studies have 
documented important risk factors and other predic-
tors, including demographic, clinical, laboratory, and 
angiographic features. However, previous studies mainly 
focused on using univariate and multivariate logistic 
regression analysis to identify the independent vari-
ables. They have also detected a lower risk algorithm for 
NR and in-hospital mortality. This was resolved through 
machine learning, or artificial intelligence, an emerg-
ing field in computer science. Machine learning builds 
automated data-driven  predictive models to program 
complex problems that include many factors through 
statistical tools. [10, 11]. A drawback of machine learn-
ing is overfitting; however, it can incorporate more fac-
tors and analyze complex mathematical models against 
the traditional statistical models. This study integrated 
demographic data, clinical characteristics, laboratory 
parameters, electrocardiogram, echocardiogram, and 
angiography results to design a scoring and evaluation 
system using a machine learning approach. This strat-
egy provided a more convenient, practical, and accurate 
methodology to evaluate and predict NR incidences and 
in-hospital mortality. With accurate prediction, appro-
priate interventions can be provided to individuals at the 
highest risk and thus help reduce the mortality rate. This 
study focuses on using a multicenter dataset of STEMI 
patients who underwent pPCI and the feasibility and 
accuracy of machine learning to predict the incidence of 

NR and in-hospital mortality to improve medical pros-
pects and decision making. To the best of the authors’ 
knowledge, this study is the first to evaluate machine 
learning models on the NR phenomenon, a life-threat-
ening challenge, including demographic, clinical, labora-
tory, and angiographic features.

Methods
Patients
In this retrospective study, data were obtained from 
STEMI patients who underwent pPCI and were hospital-
ized at the four National Chest Pain Center Alliance units 
in Nanning, Guangxi, China (The First Affiliated Hospital 
of Guangxi Medical University, Guangxi Zhuang Autono-
mous Region People’s Hospital, The First People’s Hospi-
tal of Nanning, The Second People’s Hospital of Nanning) 
from August 2015 to December 2019. Ethical approval 
was granted by the Ethics Committee of The First Affili-
ated Hospital of Guangxi Medical University2021 (KY-
E-299). The study was consistent with internationally 
accepted ethical standards; all methods were carried out 
according to relevant guidelines and regulations. The 
inclusion criteria were: (1) persistent typical chest pain 
> 30  min, with ST-segment elevation in ≥ 2contiguous 
leads (≥ 0.2mv in precordial leads, ≥ 0.1mv in limb leads), 
or new left bundle branch block, and an increased level 
of myocardial injury markers; (2) patients that presented 
with STEMI within 12  h of the onset of the symptoms 
and were treated with pPCI; and (3) pPCI strategy could 
be provided to patients that suffered from chest pain for 
> 12 h with the presence of any of the following: (1) elec-
trocardiogram (ECG) suggested ongoing ischemia; (2) 
sustained or recurrent chest pain with dynamic changes 
in ST-segment; and (3) sustained or recurrent chest pain, 
with a composite of malignant arrhythmias, heart fail-
ure, or shock [1]. The exclusion criteria were: (1) patients 
having hypersensitivity to antiplatelet agents, anticoagu-
lation drugs, or iodinated contrast; (2) patients showing 
contraindications to anticoagulant treatment; (3) patients 
with a previous history of coronary artery bypass surgery; 
(4) patients with severe hepatic and kidney disorders; (5) 
patients with autoimmune diseases or malignant tumors; 
and (6) patients with recent severe infections. The pri-
mary outcome of this study was the analysis of the NR 
and in-hospital mortality rate, which could be identified 
from the angiography results, PCI procedure reports, 
and discharge status. NR was defined as post-PCI throm-
bolysis in a myocardial infarction trial (thrombolysis and 
thrombin inhibition in myocardial infarction (TIMI)) 
flow grade that showed ≤ 2 in the infarction related 
artery, with the exclusion of obstruction due to dissec-
tion, spasm, apparent thrombus, or residual stenosis [12, 
13].
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Feature selection
An extensive literature search was conducted to deter-
mine the potential factors influencing NR and in-hospital 
mortality. The most eligible features were extracted and 
noted according to previous literature reports. Then, all 
the potentially eligible features were selected after discus-
sions with cardiologists and statisticians. The variables 
included in this study were demographic data, clinical 
characteristics, laboratory parameters, electrocardio-
gram, echocardiogram, and angiography results. Body 
mass index (BMI) is one of the dependent variables of NR 
and in-hospital mortality, which was excluded from the 
models for the missing values that were > 5%. The study 
of NR provided a complete set of predictors for 36 vari-
ables (21 continuous variables, 15 categorical variables) 
(Table  1). The study of in-hospital mortality provided a 
complete set of predictors (the occurrence rate of NR 
was regarded as a variable) of 37 variables (21 continuous 
variables, 16 categorical variables) (Table 2). In the base-
line data analysis, a univariate analysis was performed 
by SPSS (SPSS version 22.0; SPSS Chicago, IL, USA) 
(p < 0.05 was considered statistically significant).

Data processing
Some continuous variables, which included cardiac tro-
ponin I (cTnI), creatine kinase-MB (CK-MB), and high-
sensitivity C-reactive protein (hs-CRP), were normalized 
(from 0 to 1) because of inconsistent value ranges and 
units. For predictors with missing values < 5%, this 
was filled up with the mean value, a general and widely 
adopted method used to practice resolving the missing 
values in machine learning [14]. Before model building, 
value correlation was carried out to eliminate the vari-
ables that might cause numerical instability, which might 
lead to model overfitting or worsen, or both the inter-
pretability of the model and value correlation of vari-
ables. The correlation analyses used Pearson’s correlation 
coefficient and were performed using Sanger Box soft-
ware [11].

Supervised machine learning methods
The workflow of the supervised machine learning models 
that used the clinical, laboratory, and angiographic vari-
ables is shown in Fig. 1. Based on the data from the train-
ing set, four supervised machine learning methods were 
used to develop the predictive classifiers: (1) random 
forest (RAN); (2) neural network algorithm (NNET); (3) 
support vector machine (SVM); and (4) decision tree 
(CTREE).

(1) RAN: This is an integrated learning algorithm 
based on a decision tree. It is easy to implement, has 
advantages over other algorithms in many data sets, 

Table 1  Baseline characteristics of the NR study population 
(n = 854)

Variable Normal blood 
flow (n = 755)

NR (n = 99) p-value

Age (years) 60.34 (13.27) 62.79 (13.88) 0.086

Male (n (%)) 628 (83.2) 74 (74.7) 0.039

Hypertension (n (%)) 345 (45.7) 38 (38.4) 0.169

Diabetes (n (%)) 124 (16.4) 12 (12.1) 0.271

Smoke (n (%)) 377 (49.9) 34 (34.3) 0.004

Angina pectoris (n (%)) 41 (5.4) 7 (7.1) 0.505

Previous PCI (n (%)) 19 (2.5) 5 (5.1) 0.267

Anterior wall MI (n(%)) 391 (51.8) 48 (48.5) 0.536

Cardiac troponin I (normal-
ized)

0.47 (0.33) 0.67 (0.31)  < 0.001

creatine kinase-MB (normal-
ized)

0.13 (0.13) 0.22 (0.17)  < 0.001

hs-CRP (normalized) 0.34 (0.33) 0.50 (0.39)  < 0.001

Hemoglobin (g/L) 137.65 (19.28) 133.90 (19.60) 0.07

WBC count (109/L) 11.50 (3.94) 12.40 (3.78) 0.033

Creatinine (μmol/L) 89.68 (43.15) 99.38 (45.22) 0.037

Uric acid (μmol/L) 385.33 (118.53) 407.30 (135.37) 0.089

Albumin (g/L) 38.72 (4.37) 38.43 (4.91) 0.544

Glucose (mmol/L) 7.31 (3.44) 7.52 (2.84) 0.577

LDL-C (mmol/L) 3.28 (1.05) 3.12 (0.97) 0.156

HDL-C (mmol/L) 1.20 (0.44) 1.15 (0.32) 0.351

Triglyceride (mmol/L) 1.65 (1.13) 1.60 (1.25) 0.734

Total cholesterol (mmol/L) 5.01 (1.24) 4.89 (1.26) 0.347

Fibrinogen (g/L) 3.65 (1.08) 3.63 (1.24) 0.862

Shock (%) 13 (1.7) 7 (7.1) 0.003

Malignant arrhythmia (n (%)) 90 (11.9) 18 (18.2) 0.078

Killip class (n (%))
 I 610 (80.8) 64 (64.6)  < 0.001

 II 83 (11.0) 15 (15.2) 0.222

 III 15 (2.0) 3 (3.0) 0.758

 IV 47 (6.2) 17 (17.2)  < 0.001

LVEF (%) 57.97 (9.15) 54.30 (10.16)  < 0.001

Total ischemia time (h) 4.85 (3.51) 6.29 (5.61)  < 0.001

SO-to-FMC (min) 157.21 (166.20) 262.06 (290.03)  < 0.001

Door-to balloon (min) 85.68 (49.34) 88.53 (54.05) 0.594

Baseline TIMI flow
 0 581 (77.0) 90 (90.9) 0.001

 1 38 (5.0) 5 (5.1) 1.0

 2 77 (10.2) 1 (1.0) 0.003

 3 59 (7.8) 3 (3.0) 0.085

Criminal blood vessels (n (%))
 LAD 431 (57.3) 49 (49.5) 0.140

 LCX 56(7.4) 8 (8.1) 0.814

 RCA​ 263 (34.8) 41 (41.4) 0.199

 LM 5 (0.7) 1 (1.0) 0.524

Double or multiple lesions 
(n (%))

501 (66.4) 78 (78.8) 0.013

Post dilatation (n (%)) 446 (59.1) 56 (56.6) 0.634

Thrombus aspiration (n (%)) 84 (11.1) 29 (29.3)  < 0.001
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and performs well in classification and regression. It 
can handle very high-dimensional data and does not 
need to carry out feature selection (because the fea-
ture subset is selected at random); after training, RAN 
provided the significant features. In addition, the abil-
ity to resist overfitting is relatively strong. Compared 
with decision trees, RANs are slower because they are 
ensemble methods.

The steps to construct the RAN for classifica-
tion were: (1) there are N times of extraction for put-
ting back from a sample of size Q, one at a time, and 
finally, N samples are formed. The N samples selected 
were used to train the decision tree as the samples at 
the root node of the decision tree. (2) when each sam-
ple has M attributes, and each decision tree node needs 
to be split, m attributes are randomly selected from the 
M attributes to meet the condition m ≪ M. Then, a spe-
cific strategy (i.e., information gain) was adopted from 
the M attributes to select one attribute as the splitting 
attribute of the node. (3) to form a decision tree, each 
node should split according to step 2 until it can no 
longer split; and (4) many decision trees are established 
according to steps 1–3, which constitutes a random 
forest.

(2) NNET: This realizes a nonlinear mapping func-
tion from input to output, automatically extracts the 
reasonable rules between the input and output data 
through learning, and adaptively memorizes the learn-
ing content in the weight of the network. It has a strong 
generalization and fault tolerance. However, the net-
work is overly sensitive compared with the initial net-
work weights. Initializing the network with different 
weights tended to converge to different local minima; 
therefore, each training could obtain different results. 
The convergence speed of the algorithm is slow, and 
there is no unified and complete theoretical guidance 
for the selection of the network structure. In general, it 
can only be selected by experience;

The steps to construct the NNET for classification 
were: (1) obtain the input of the neural network. This 

extracts the feature vector in the problem entity as the 
input of the neural network; (2) defines the structure of 
the neural network and how to get the output from the 
input in the neural network. This process is the forward 
propagation algorithm of the neural network: (3) train 
the neural network. The neural network parameters, for 
example, weight and threshold, were obtained from the 
training data. Network optimization is often required 
in this process, and the most commonly used method 
is a backpropagation algorithm. This process needs to 
define a loss function to describe the gap between the 
current predicted value and the real data, then adjust 
the value of neural network parameters through a 
backpropagation algorithm to narrow the gap: and 
(4) predict where the trained network is used for data 
prediction.

(3) SVM uses the integral operator kernel functions to 
replace the nonlinear mapping to the high-dimensional 
space. This avoids the traditional process from induction 
to deduction and achieves efficient training from training 
samples to forecasting samples. Transduction reasoning 
significantly simplifies the usual classification and regres-
sion problems. However, it is not sensitive to outliers, and 
it is easy to catch important samples and remove a large 
number of redundant samples. Therefore, the algorithm 
is simple and has good robustness. But SVM uses quad-
ratic programming to solve the support vector, and to 
solve the quadratic programming involves the calculation 
of the m-order matrix (m = number of samples). When 
m is large, the storage and calculation of the matrix will 
consume a lot of machines’ memory and computation 
time. SVM is sensitive to the selection of parameters and 
kernel functions, and to date, there is not a good method 
to solve the problem of selecting kernel functions;

The steps to construct the SVM for classification were: 
(1) prepare the dataset and convert it to the data format 
supported by SVM; (2) simple scaling of the data; (3) Ker-
nel function selection (i.e., radial function); (4) cross-val-
idation (i.e., using fivefold cross-validation) and select the 
best parameters c and g; (5) SVM model is obtained by 
training the whole training set with the obtained optimal 
parameters c and g; and (6) The obtained SVM model is 
used for test classification.

The excavated classification rules are highly accurate, 
easy to understand, generate understandable rules, do 
not require domain knowledge or parametric assump-
tion, and are suitable for high-dimensional data.

(4) CTREE: The calculation speed of this method is 
fast, and it is easy to transform into classification rules. 
The disadvantage is that for data with inconsistent sample 
sizes in each category, the information gained is biased 
toward those with more values. It is easy to overfit, which 
ignores the correlation between attributes.

hs-CRP high-sensitivity C-reactive protein, HDL-C high-density lipoprotein 
cholesterol, LVEF left ventricular ejection fraction, LAD left anterior descending 
coronary artery, LCX left coronary circumflexus artery, LDL-C low-density 
lipoprotein cholesterol, LM left main coronary artery, MI myocardial infarction, 
PCI percutaneous transluminal coronary intervention, RCA​ right coronary artery, 
SO-to-FMC symptom-onset to-first medical contact, TIMI thrombolysis and 
thrombin inhibition in myocardial infarction

Table 1  (continued)

Variable Normal blood 
flow (n = 755)

NR (n = 99) p-value

Stent diameter (mm) 3.14 (0.43) 3.14 (0.40) 0.895

Stent length (mm) 33.94 (17.25) 41.57 (18.78)  < 0.001
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Table 2  Baseline characteristics of in-hospital mortality study population (n = 854)

Variable Better discharge (n = 807) In-hospital mortality (n = 47) p-value

Age (years) 60.09 (13.20) 69.83 (12.72)  < 0.001

Male (n (%)) 674 (83.5) 28 (59.6)  < 0.001

Hypertension (n (%)) 362 (44.9) 21 (44.7) 0.981

Diabetes (n (%)) 122 (15.1) 14 (29.8) 0.008

Smoke (n (%)) 394 (48.8) 17 (36.2) 0.091

Angina pectoris (n (%)) 43 (5.3) 5 (10.6) 0.124

Previous PCI (n (%)) 21 (2.6) 3 (6.4) 0.284

Anterior wall MI (n (%)) 412(51.1) 27(57.4) 0.394

Cardiac troponin I (normalized) 0.47 (0.33) 0.76 (0.32)  < 0.001

Creatine kinase-MB (normalized) 0.14 (0.13) 0.30 (0.24)  < 0.001

hs-CRP (normalized) 0.33 (0.33) 0.73 (0.35)  < 0.001

Hemoglobin (g/L) 137.73 (19.16) 128.38 (20.53) 0.001

WBC count (109/L) 11.47 (3.82) 13.95 (5.00)  < 0.001

Creatinine (μmol/L) 89.20 (42.11) 118.37 (56.25)  < 0.001

Uric Acid (μmol/L) 382.15 (116.94) 486.27 (141.94)  < 0.001

Albumin (g/L) 38.88 (4.28) 35.30 (5.50)  < 0.001

Glucose (mmol/L) 7.26 (3.35) 8.59 (3.68) 0.009

LDL-C (mmol/L) 3.27 (1.04) 3.18 (1.12) 0.59

HDL-C (mmol/L) 1.19 (0.43) 1.18 (0.33) 0.92

Triglyceride (mmol/L) 1.66 (1.17) 1.38 (0.63) 0.111

Total cholesterol (mmol/L) 5.01 (1.23) 4.84 (1.44) 0.372

Fibrinogen (g/L) 3.63 (1.07) 3.94 (1.55) 0.061

Shock (n (%)) 13 (1.6) 7 (14.9)  < 0.001

Malignant arrhythmia (n (%)) 95 (11.8) 13 (27.7) 0.001

Killip class (n (%))

 I 663 (82.2) 11 (23.4)  < 0.001

 II 89 (11.0) 9 (19.1) 0.090

 III 14 (1.7) 4 (8.5) 0.014

 IV 41 (5.1) 23 (48.9)  < 0.001

LVEF (%) 58.05 (9.02) 48.88 (10.50)  < 0.001

Total ischemia time (h) 4.94 (3.76) 6.42 (4.81) 0.01

SO-to-FMC (m) 163.53 (178.73) 269.81 (287.02)  < 0.001

Door-to-balloon (m) 85.49 (50.01) 94.98 (47.24) 0.205

Baseline TIMI flow (n (%))

 0 628 (77.8) 43 (91.5) 0.026

 1 40 (5.0) 3 (6.4) 0.927

 2 78 (9.7) 0 (0.0) 0.017

 3 61 (7.6) 1 (2.1) 0.269

Criminal blood vessels (n (%))

 LAD 455(56.4) 25 (53.2) 0.668

 LCX 60 (7.4) 4 (8.5) 1.0

 RCA​ 290 (35.9) 14 (29.8) 0.392

 LM 2 (0.2) 4 (8.5)  < 0.001

Double or multiple lesions (n (%)) 538 (66.7) 41 (85.4) 0.007

Post dilatation (n (%)) 480 (59.5) 22 (46.8) 0.086

Thrombus aspiration (n (%)) 104 (12.9) 9 (19.1) 0.218

Stent diameter (mm) 3.14 (0.43) 3.03 (0.36) 0.066

Stent length (mm) 34.39 (17.30) 42.29 (20.86) 0.003

NR (n (%)) 83(10.3) 16(34.0)  < 0.001
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The starting point to choose RANs and CTREEs is to 
compare the classification of single trees and ensemble 
trees. SVMs and NNET implement nonlinear mapping. 
In addition, SVMs, NNET, and RANs can be regarded as 
black-box models. Therefore, the three methods are com-
pared and studied.

The steps to construct the CTREE for classification 
were: (1) initialize feature set and data set; (2) informa-
tion entropy of the data set and the conditional entropy of 
all features were calculated, and the feature with the larg-
est information gain was selected as the current decision 
node; (3) update the data set and feature set (e.g., delete 
the feature used in the previous step, and divide the data 
set for different branches according to the feature value); 
and (4) repeat steps 2 and 3. If the subset value contains a 
single feature, it is a branch leaf node.

All machine learning operations were performed using 
the R language platform by calling the program package.

The parameter settings were: (1) RAN or random for-
est function in the random forest package, which pro-
vided the function for using the random forest algorithm 
to solve classification and regression problems. Here, the 
application of random forest algorithms for classification 

problems was focused on. The random forest function 
was used for model training. One of the necessary param-
eters of the random forest algorithm is the number of 
features that can be searched at each segmentation point. 
A good default value for classification is M = sqrt (P), 
where M is the number of features that can be searched 
at the segmentation point and P is the total number of 
input variables. The number of trees is obtained when the 
error of data outside the bag is the smallest. The others 
were default values; (2) the R language platform provided 
an algorithm package NNET that dealt with the artificial 
neural network. This algorithm provided the implemen-
tation of the traditional feed-forward and backpropaga-
tion neural network algorithm. The hidden node (n2) and 
the input node (n1) in the three-layer NNET were related 
by n2 = 2n1 + 1, where M is the number of features. The 
weight adjustment speed was 0.1, and the maximum 
number of iterations was 1,000; (3) the e1071 software 
package was used to complete the data analysis and min-
ing based on SVM. One of the most important func-
tions in this package is the SVM function that can build 
the SVM model. The SVM can be used as a classification 
machine, regression machine, or novelty detection.

Table 2  (continued)
hs-CRP high-sensitivity C-reactive protein, HDL-C high-density lipoprotein cholesterol, LAD left anterior descending coronary artery, LCX left coronary circumflexus 
artery, LDL-C low-density lipoprotein cholesterol, LM left main coronary artery, LVEF left ventricular ejection fraction, MI myocardial infarction, PCI Percutaneous 
Transluminal Coronary Intervention, RCA​ right coronary artery, SO-to-FMC symptom-onset to-first medical contact, TIMI thrombolysis and thrombin inhibition in 
myocardial infarction

Fig. 1  Schematic workflow for AI. The AI method to predict NR and in-hospital mortality included feature selection, training, and testing split, which 
combined four different model algorithms (e.g., RAN, NNET, SVM, and CTREE). Random sampling was conducted 10 times, and the results were 
averaged. AI, artificial intelligence; CTREE, Decision Tree; NNET, Neural Network Algorithm; RAN, random forest; SVM, Support Vector Machine
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Depending on whether the output is a factor or not, the 
default setting for type is C-classification or eps-regres-
sion, respectively, but might be overwritten by setting an 
explicit value. In this paper, the method was C-classifi-
cation, kernel as radial (the kernel used in training and 
predicting), because SVM is a nonlinear model when 
adjusting the values of parameters c (cost of constraints 
violation) and g (parameter needed for all kernels except 
linear), an initial value will be given, and then multiply 
it by 0.1 or 10 as a step according to the performance of 
the model. When the approximate range is determined, 
refine the search interval. c as 10 and g was 0.1, obtained 
in the end; (4) use the rpart package with the ID3 algo-
rithm. The processing for rpart was: independent vari-
ables, and all segmentation points were evaluated first. 
The best choice of the evaluation was to make the data 
in the segmented group pure, where pure means that the 
variation in the value of the dependent variable of the 
data in the group was small. The rpart package’s default 
measure for pure was the Gini value. Many param-
eters determine the stop division. It is very important 
to determine these parameters because for a finer divi-
sion, the more complex the model, which is more prone 
to overfitting, and the coarser the division, the lower the 
fitting. This problem is usually handled using the prun-
ing method. First, establish a tree model with a fine and 
complex division, then estimate the error of each model 
under different pruning conditions according to the 
cross-validation method and select the tree model with 
the smallest error. In this paper, the method took class, 
and the rest took default values.

To evaluate the efficacy of each model, a random sam-
pling method was applied to split the entire data into 
training (66.7%) and testing (33.3%) sets. Random sam-
pling was conducted 10 times, and the final value was the 
average value of the 10 operation results. The AUC and 
95% CI were calculated, and the ROC curves were drawn. 
There was limited data on in-hospital deaths (47/854) or 
NR (99/854) in the samples, which meant that the clas-
sification evaluation index, such as the F1 score, was dif-
ficult to obtain because the F1 score would be zero. A 
variable importance plot was produced after performing 
the training with the training data set (66.7%) by using 
the importance function in the random forest model. The 
programming language adopted the R version 4.05.

Results
Patient characteristics
Between August 2015 and December 2019, 907 con-
secutive STEMI patients were screened who underwent 
pPCI in four CPCs. Among them, 2 patients had a pre-
vious history of coronary artery bypass surgery, 10 had 
severe hepatic and kidney disorders, 1 had autoimmune 

diseases, 8 had malignant tumors, 5 had recent severe 
infections, and 27 had pPCI procedures within an unrea-
sonable time frame were excluded. Following the exclu-
sions, 854 patients were included in the subsequent 
analyses. The patients were categorized into a normal 
blood flow (n = 775) and the NR (n = 99) group. Their 
demographic, clinical, laboratory and angiographic 
parameters are summarized in Table  1. The included 
854 patients were further categorized into discharged 
(n = 807) and in-hospital mortality (n = 47) groups, and 
their demographic, laboratory, clinical, and angiographic 
parameters are summarized in Table 2.

Variables examined
The value correlation graph shows that the data set did 
not contain many relevant variables for the NR study 
(Fig.  2) and in-hospital mortality study (Fig.  3). There-
fore, none of the other independent variables were 
excluded based on the correlation coefficient and clinical 
significance.

NR and in‑hospital mortality prediction
An optimal AUC (0.7891, 95% CI: 0.7093–0.8688) for 
NR was derived from the RAN model, and the AUC of 
the SVM model was 0.7488 (95% CI: 0.6613–0.8363), 
the AUC of NNET was 0.681 (95% CI: 0.5767–0.7854), 
and the AUC of the CTREE was 0.6437 (95% CI:0.5506–
0.7368) (Fig. 4A).

An optimal AUC (0.9273, 95% CI: 0.8819–0.9728) 
for in-hospital mortality was derived from the RAN 
model, and the AUC of the SVM model was 0.8935 (95% 
CI:0.826–0.9611), the AUC of the NNET was 0.7756 
(95% CI: 0.6559–0.8952), and the AUC of the CTREE was 
0.7885 (95% CI:0.6738–0.9033) (Fig. 4B).

Feature importance ranking
Figures 5 and 6 depict the relative importance of the vari-
ables when predicting NR and in-hospital mortality that 
used an optimal machine, learning-based model. In the 
RAN model, SO-to-FMC, CK-MB, stent length, triglyc-
eride (TG), Alb, LVEF, Cr, cTnI, and total ischemia time 
were relatively important independent variables to pre-
dict NR (Fig. 5); however, Killip class, Alb, CK-MB, stent 
length, Cr, LVEF, WBC, low-density lipoprotein choles-
terol (LDL-C), SO-to-FMC, hs-CRP, and cTnI were rela-
tively important independent variables for in-hospital 
mortality prediction (Fig. 6).

Model validation between different centers
To validate the model, we attempted to analyze the effect 
of the training models on the data from one center and 
tested it on another. Two centers were randomly selected 
from the four used in this study and matched in different 
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ways, using one center (The Second People’s Hospital 
of Nanning) as a training set and another center (The 
First People’s Hospital of Nanning) as testing was bet-
ter. An optimal AUC (0.7013, 95% CI: 0.6318–0.7709) 
for NR was derived from the RAN model, and the AUC 
of the SVM model was 0.6506 (95% CI: 0.5712–0.7301), 

the AUC of NNET was 0.6860 (95% CI: 0.6065–0.7655), 
and the AUC of the CTREE was 0.5000 (95% CI: 0.5000–
0.5000) (Fig. 7A).

An optimal AUC (0.871, 95% CI: 0.7933–0.9488) 
for in-hospital mortality was derived from the RAN 
model, and the AUC of the SVM model was 0.8256 

Fig. 2  Correlation analysis of the variables in the dataset to predict NR, as shown in the heat map, the dataset was not composed of many 
correlated variables, which indicated the model was simpler and more stable. ALB, albumin; Cr, creatinine; CK-MB, creatine kinase-MB; cTnI, cardiac 
troponin I; DM, diabetes mellitus; D-to-B, door-to-balloon; EF, ejection fraction; Fib, Fibrinogen; Glu, glucose; Hb, hemoglobin; Hbp, high blood 
pressure; HDL-C, high-density lipoprotein cholesterol; hs-CRP, high-sensitivity C-reactive protein; LDL-C, low-density lipoprotein cholesterol; PCI, 
percutaneous coronary intervention; SO-to-FMC, symptom-onset to-first medical contact; TC, total cholesterol; TG, triglyceride; TIMI, thrombolysis 
and thrombin inhibition in myocardial infarction; UA, uric acid; WBC, white blood cells
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(95% CI: 0.7531–0.8981), the AUC of the NNET was 
0.8328 (95% CI: 0.7574–0.9083), and the AUC of the 
CTREE was 0.7262 (95% CI: 0.6822–0.7702) (Fig. 7B).

Statistical analysis was performed by controlling 
demographic factors
The machine learning procedure was performed with 

Fig. 3  Correlation analysis of the variables in the dataset for the prediction of in-hospital mortality, the dataset was not composed of many 
correlated variables, which indicated the model was simpler and more stable. ALB, albumin; Cr, creatinine; CK-MB, creatine kinase-MB; cTnI, cardiac 
troponin I; DM, diabetes mellitus; D-to-B, door-to-balloon; EF, ejection fraction; Fib, Fibrinogen; Glu, glucose; Hb, hemoglobin; Hbp, high blood 
pressure; HDL-C, high-density lipoprotein cholesterol; hs-CRP, high-sensitivity C-reactive protein; LDL-C, low-density lipoprotein cholesterol; PCI, 
percutaneous coronary intervention; SO-to-FMC, symptom-onset to-first medical contact; TC, total cholesterol; TG, triglyceride; TIMI, thrombolysis 
and thrombin inhibition in myocardial infarction; UA, uric acid; WBC, white blood cells
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the remaining metrics after removing age and gen-
der to control the influence of the demographic fac-
tors. The results showed that the corresponding AUC 
values (Fig. 8A, B) did not change significantly. There-
fore, the Lasso algorithm was performed to screen the 
variables by calling the R language package glmnet and 
setting the following parameters: family = "gaussian", 

nlambda = 100, alpha = 1. To obtain the relation-
ship between the mean square error and the num-
ber of variables, the function cv.glmnet was called, 
and the parameter was set: type. measure = "mse", 
alpha = 1, family = "gaussian". Following variables 
screening (Fig.  8C–F), age and gender had little effect 
on the outcome, especially in-hospital mortality. The 

Fig. 4  ROC curves to predict NR and in-hospital mortality: A a RAN model presented a higher AUC for NR; and B in-hospital mortality prediction 
than all other models (e.g., NNET, SVM, and CTREE). AUC, area under the curve; CTREE, Decision Tree; NNET, Neural Network Algorithm; RAN, random 
forest; SVM, Support Vector Machine

Fig. 5  Ranking of feature importance to predict NR: Contribution of clinical, laboratory, and angiographic variables to the optimal AI-based 
prediction model (RAN). ALB, albumin; Cr, creatinine; CK-MB, creatine kinase-MB; cTnI, cardiac troponin I; DM, diabetes mellitus; D-to-B, 
door-to-balloon; EF, ejection fraction; FIB, Fibrinogen; Glu, glucose; Hb, hemoglobin; HBP, high blood pressure; HDL-C, high-density lipoprotein 
cholesterol; hs-CRP, high-sensitivity C-reactive protein; LDL-C, low-density lipoprotein cholesterol; MA, Malignant arrhythmia; PCI, percutaneous 
coronary intervention; RAN, random forest; SO-to-FMC, symptom-onset to-first medical contact; TC, total cholesterol; TG, triglyceride; TIMI, 
thrombolysis and thrombin inhibition in myocardial infarction; UA, uric acid; WBC, white blood cells
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direct removal of the demographic factors could be 
considered.

Discussion
This pilot study was designed to analyze whether an 
MLA could be used to benefit STEMI patients. The major 
implications and findings of this multicenter study were 

that compared to the other proposed models, the RAN 
exhibited the highest discriminatory performance for the 
prediction of NR (AUC, 0.7891) and in-hospital mortality 
(AUC, 0.9273) in STEMI patients who underwent pPCI.

Various studies have developed predictive models for 
the occurrence of NR in STEMI patients who under-
went pPCI. These models were based on variables such 

Fig. 6  Ranking of feature importance to predict in-hospital mortality: Contribution of clinical, laboratory, and angiographic variables to the optimal 
AI-based prediction model (RAN). ALB, albumin; Cr, creatinine; CK-MB, creatine kinase-MB; cTnI, cardiac troponin I; DM, diabetes mellitus; D-to-B, 
door-to-balloon; EF, ejection fraction; FIB, Fibrinogen; Glu, glucose; Hb, hemoglobin; HBP, high blood pressure; HDL-C, high-density lipoprotein 
cholesterol; hs-CRP, high-sensitivity C-reactive protein; LDL-C, low-density lipoprotein cholesterol; MA, Malignant arrhythmia; PCI, percutaneous 
coronary intervention; RAN, random forest; SO-to-FMC, symptom-onset to-first medical contact; TC, total cholesterol; TG, triglyceride; TIMI, 
thrombolysis and thrombin inhibition in myocardial infarction; UA, uric acid; WBC, white blood cells

Fig. 7  Model validation between different centers, one center (The Second People’s Hospital of Nanning) as a training set and another center (The 
First People’s Hospital of Nanning) as a testing set, ROC curves to predict NR and in-hospital mortality: A a RAN model presented a higher AUC for 
NR; and B in-hospital mortality prediction than all other models (NNET, SVM, and CTREE). AUC, area under the curve; CTREE, Decision Tree; NNET, 
Neural Network Algorithm; RAN, random forest; SVM, Support Vector Machine
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as the atherogenic index of plasma (log TG/HDL-C) 
[15], the neutrophil-to-lymphocyte ratio [16], the lym-
phocyte-to-monocyte ratio [17], the fibrinogen-to-albu-
min ratio [18], R wave peak time [19], a combination of 
plasma D-Dimer and endothelin-1 levels [20], plasma 

D-Dimer and pre-infarction angina [21], a combina-
tion of pre-infarction angina and mean platelet volume 
to lymphocyte count ratio [22], the red cell distribution 
width–platelet ratio (RPR) [23], CHA2DS2-VASc [24] 
or CHA2DS2-VASc-HSF score [25], and some new risk 

Fig. 8  Statistical analysis was performed by controlling demographic factors. Machine learning procedure was performed after removal of age and 
gender. ROC curves to predict NR and in-hospital mortality: A a RAN model presented a higher AUC for NR and; B in-hospital mortality prediction 
than all other models (NNET, SVM, and CTREE). Texture feature selection using the least absolute shrinkage and selection operator (Lasso) binary 
logistic regression model. The tuning parameter (λ) selection in the Lasso model was based on minimum criteria. C Lasso coefficient profiles of the 
36 features for NR; D Lasso coefficient profiles of the 37 features for in-hospital mortality;  coefficient profile plot was produced against the log (λ) 
sequence; E AUC curve was plotted versus log (λ) for NR; and F in-hospital mortality. Dotted vertical lines were drawn at the optimal values using 
the minimum criteria and one standard error of the minimum criteria. AUC, area under the curve; CTREE, Decision Tree; NNET, Neural Network 
Algorithm; RAN, random forest; SVM, Support Vector Machine
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scoring system [26]. Based on the AUC values, moderate 
accuracy was observed in this study, which is similar to 
previous reports. In general, NR is considered a complex 
pathophysiological process involving multiple risk fac-
tors, which might cause difficulty in the prediction [27]. 
Compared to traditional statistical methods, machine 
learning offers a new approach to improve risk predic-
tion. Combining machine learning with big data could be 
helpful to promote the development of prediction models 
for NR. Although this study is limited by sample size, an 
approach that uses machine learning models could bring 
advantages that highlight the novel outcomes. More 
details are required on the contribution of each feature 
for model prediction. The RAN model was the optimal 
MAL among the four AI models used in this study, and 
important correlated features were derived from this 
algorithm. Figure  5 shows that SO-to-FMC is the most 
important factor when predicting NR with the RAN 
model, followed by CK-MB, stent length, TG, Alb, LVEF, 
Cr, cTnI, and total ischemia time. In addition, previ-
ous studies have demonstrated that delayed reperfusion, 
decreased EF, elevated CK-MB and cTnI, increased cre-
atinine, and stent length has a larger impact on NR [28]. 
A recent study confirmed that the low serum albumin 
level at admission is an independent predictive factor for 
NR following pPCI in STEMI patients [29]. The coronary 
slow flow phenomenon is present in patients with lower 
high-density lipoprotein cholesterol (HDL-C) but higher 
BMI and TG levels [30]. An independent study confirmed 
that the atherogenic index of plasma (logTG/HDL-C) is 
independently associated with NR [15]. These reports 
support our findings that Alb and TG are important fac-
tors when predicting NR in the RAN model.

To date, the TIMI score and Global Registry of Acute 
Coronary Events  (GRACE) score are the most widely 
applied death risk scores in acute coronary syndromes. 
A recent study confirmed that the discrimination in the 
TIMI score (AUC, 0.867) and GRACE score (AUC, 0.871) 
shows similarity when predicting in-hospital mortality 
in STEMI patients [31]. A study used machine learn-
ing methods to construct the in-hospital mortality pre-
diction models (with CTREE, Bayes, and generalized 
linear models) for STEMI patients with data derived 
from the Chinese Acute Myocardial Infarction Regis-
try. The models achieved relatively higher predictive 
ability (AUC = 0.80–0.85) [32]. Another independent 
study applied deep learning-based risk stratification in 
acute myocardial infarction patients (DAMI) to predict 
in-hospital mortality rate, and the results showed that 
the AUC of DAMI was 0.905 in STEMI patients, which 
significantly outperformed those of the GRACE, acute 
coronary treatment and intervention outcomes network, 
and TIMI scores [33]. In addition, a recent study used 

the SYNTAX score II [34], and another study used Lasso 
analysis [35], both performed to predict the in-hospital 
mortality in STEMI patients who underwent pPCI, and 
the results suggested that the predictability was quite 
high, and AUC values were 0.927 and 0.990 respectively. 
In this study, four machine learning models were used. 
However, an optimal AUC of 0.9273 to predict in-hospi-
tal mortality was RAN, which suggested that the predic-
tion accuracy was good. Based on the relevant previous 
study results, machine learning methods could signifi-
cantly improve the predictive ability for in-hospital mor-
tality. Figure  6 shows that the Killip class was the most 
important factor when predicting the in-hospital mortal-
ity rate using the RAN model, Alb, CK-MB, stent length, 
Cr, LVEF, WBC, LDL-C, FMC, hs-CRP, and cTnI. Many 
studies have proved that Killip class delayed reperfusion, 
decreased LVEF and Alb, elevated WBC, LDL-C, hs-
CRP, CK-MB, and cTnI, increased creatinine, and stent 
length was associated with STEMI in-hospital mortality 
[34, 36–38]. More attention should be paid to this, and 
optimal treatment decisions should be made for STEMI 
patients with these characteristics.

Some major limitations of this study should be men-
tioned. First, this study was a retrospective data analysis 
study, and not every patient had full medical records for 
clinical data. Therefore, the missing values could not be 
measured reliably and accurately. Some patients died in 
the hospital following the pPCI procedure, which meant 
that some of the relevant data that could have been use-
ful for the study analysis was missing. Inappropriate use 
of the mean value might lead to deviations in the results. 
Second, some reference studies reported that BMI was 
associated with the incidence of NR [39] and in-hospital 
mortality [11]. However, the combined analysis of BMI 
was not included in this study. The excessive pursuit of 
improving D–B time contributed to the loss of informa-
tion on STEMI patients’ weight and height during admis-
sion and transport, which failed to obtain BMI data on all 
the patients. Third, theoretically, larger sample sizes lead 
to more robust models, in particular, for machine learn-
ing algorithms [40]. This is even more true for neural 
network algorithms [41]. Therefore, sample-size determi-
nation methodologies (SSDMs) are required to estimate 
the optimum number of participants to arrive at scien-
tifically valid results [42, 43]. Although an attempt was 
made to collect all the available STEMI patients’ informa-
tion from four National Chest Pain Centers in the city, 
the sample size was limited by its restricted geographic 
scope, and the chest pain center database had not been 
established for very long. Neural network-based methods 
performed worse in this study. This was probably because 
the positive sample size was too small for low statistical 
power in NNET. In addition, this study was not externally 
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verified in a separate cohort; independent external vali-
dation is required to confirm the findings. Fourth, several 
studies have been carried out on NR and in-hospital mor-
tality prediction [35, 44–47]. They had similar or even 
better predictions by using generalized linear models 
or simpler statistical methods than the machine learn-
ing approach in this study. Many uncertain factors could 
influence the occurrence of NR and in-hospital mortality 
in STEMI patients. In addition to these features used in 
the models in this study, other potential features are asso-
ciated with NR and in-hospital mortality, which could 
be considered predictive risk markers. Future research 
should focus on designs that include more extensive 
influencing factors to improve prediction performance. 
Admission ECG parameters are very important in pre-
dicting no-reflow; however, these parameters were not 
included in this analysis. Therefore, further exploration 
of how to determine the perfect admission electrocar-
diographic parameter to predict no-reflow is required. 
New techniques are required that could contribute to 
improving the model. For example, a factor disentangling 
sequential autoencoder approach could help the further 
intensive analyses and obtain additional information 
from raw electrocardiograms [48], which could be inte-
grated into the machine learning model; this could be 
a new direction for future research. Fifth, although this 
data was obtained from a multicenter, the design was 
retrospective, and investigating and validating the scor-
ing system was not carried out in the study group; there-
fore, considering the risk score in patients could provide 
appropriate therapy for NR patients.

Further, studying the etiopathogenesis of NR at the 
internal molecular level and investigating the effective 
strategies for the prevention of NR were absent. Com-
bining machine learning and big data was the optimal 
aspect of this study; however, the sample sizes were not 
large enough. More patients from other centers should be 
included in future machine learning studies.

Conclusions
The NR phenomenon is a life-threatening challenge for 
patients with STEMI. It does not have a clear progno-
sis and associated factors, which might be individual or 
combined, exhibit the relevant clinical factors. NR is one 
of the main causes of in-hospital mortality in patients 
with STEMI. Accurate and interpretable predictions of 
the incidence of NR and in-hospital mortality are critical 
in clinical decision-making in STEMI patients. This study 
used machine learning to establish a predictive model 
for NR and in-hospital mortality in STEMI patients who 
underwent pPCI. The results of this study showed that 
the RAN model that was used to predict NR and in-
hospital mortality had high predictive performance and 

provided significant output features for the prediction 
of the event, which might help in the early detection and 
identification and allow the adoption of appropriate clini-
cal interventions to prevent NR and in-hospital deaths, 
and therefore, improve prognosis and reduce mortal-
ity. However, studying the machine learning aspect on a 
large sample size, combined with a long-term follow-up 
period, would help to confirm these findings.
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