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Abstract

High antibiotic resistance frequencies have become a major public health issue. The de-
crease in new antibiotics' production, combined with increasing frequencies of multi-drug re-
sistant (MDR) bacteria, cause substantial limitations in treatment options for some bacterial
infections. To diminish overall resistance, and especially the occurrence of bacteria that are
resistant to all antibiotics, certain drugs are deliberately scarcely used—mainly when other
options are exhausted. We use a mathematical model to explore the efficiency of such anti-
biotic restrictions. We assume two commonly used drugs and one restricted drug. The
model is examined for the mixing strategy of antibiotic prescription, in which one of the
drugs is randomly assigned to each incoming patient. Data obtained from Rabin medical
center, Israel, is used to estimate realistic single and double antibiotic resistance frequen-
cies in incoming patients. We find that broad usage of the hitherto restricted drug can re-
duce the number of incorrectly treated patients, and reduce the spread of bacteria resistant
to both common antibiotics. Such double resistant infections are often eventually treated
with the restricted drug, and therefore are prone to become resistant to all three antibiotics.
Thus, counterintuitively, a broader usage of a formerly restricted drug can sometimes lead
to a decrease in the emergence of bacteria resistant to all drugs. We recommend re-
examining restriction of specific drugs, when multiple resistance to the relevant alternative
drugs already exists.

Author Summary

Methods for minimizing antibiotic resistance are becoming more important as antibiotic
resistance frequencies are rising, coupled with low discovery rates of new antibiotics. In
this work we examined the practice of restricting specific drugs to be used only as 'last re-
sort'. The goal of such restrictions is to maintain low resistance levels to certain drugs, and
prevent the creation of bacteria resistant to all available treatment options. We used a
mathematical model to study the impact of such restrictions, when some resistance to the
unrestricted drugs is already present. We estimated the resistance frequencies of common
bacteria from hospital data. We find that restricting drugs leads to increased rates of
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incorrect treatment, and might simultaneously lead to increased emergence of multidrug
resistant bacteria. We conclude that restricting specific antibiotics should be done with
caution. In some cases lifting restrictions might even delay MDR emergence.

Introduction

Antibiotic resistance management is one of the most pressing public health issues challenging
modern medicine [1]. Resistance frequency is continually rising in abundant pathogenic bacte-
ria [2,3], entailing higher risk for patients and increased economic costs [4,5]. Especially peril-
ous are infections of multi-drug resistant (MDR) bacteria, which can lead to higher rates of
inadequate treatment and mortality [6-8], and at times are resistant to almost all available anti-
biotics [9,10]. Even drugs of last resort, with relatively low prescription rate, are revealed to
have increasing resistance frequencies [11,12].

The increase in antibiotic resistance frequencies is a consequence of microbial evolution
and adaptation, induced by vast anthropogenic antibiotic consumption and dissemination
[13]. This arms-race hinges on two main forces, acting at opposite directions: resistance acqui-
sition and spread in bacterial populations, and new antibiotic production [14]. Seeing that
rates of new antibiotics' production are steadily decreasing [15] (although efforts are made to
motivate the development of new antibiotics [16,17]), we are left to consider measures to im-
pede the emergence of new resistant, and particularly MDR, bacteria. Reducing superfluous an-
tibiotic usage, both in human consumption and veterinary usage, is currently considered the
prominent course of action [18,19].

Albeit the benefit of reducing overall superfluous antibiotic usage is easy to justify and
seems to have almost no drawbacks; restricting specific antimicrobial agents involves a com-
promise between increasing resistance to a drug saved for the most acute scenarios, versus in-
creasing the probability of correct treatment.

The rationale of restricting specific drugs is an evolutionary one. The use of a certain antibi-
otic exerts selective pressure on microbes to acquire resistance to that antibiotic. However, re-
stricting an antibiotic does not amount to complete avoidance of its usage, as it will still be used
against infections resistant to all other antibiotics [20]. Thus an increase in the frequency of
bacteria resistant to the common antibiotics might result in increased usage of the restricted
antibiotic as well.

Recent theoretical studies support these claims: Wu et al. have shown that maintaining vari-
ation in stockpiled influenza drugs might substantially reduce resistance [21], while Joyner
et al. demonstrated the benefits of developing new antibiotics and expanding the range of pos-
sible antimicrobial treatments [22].

In this work we try to assess the conditions under which a restricted antibiotic agent should
be considered for broader usage. We use a mathematical model to describe the dynamics of an-
tibiotic resistance within a hospital unit. We model three antibiotics effective against a bacterial
pathogen, and bacterial strains with all combinations of resistance to these antibiotics. We con-
centrate on a scenario where two antibiotics are more frequently used than a third one. There-
fore resistance levels to the first two antibiotics are high, while the third antibiotic has thus far
been restricted to emergency use only, and the level of resistance against it is lower. This is
compatible with 'last resort' antibiotics such as Vancomycin, Linezolid and Daptomycin. We
compare the efficiency of antibiotic appliance strategies where one of the antibiotics is restrict-
ed, to strategies where all drugs are equally applied. We examine the impact of antibiotics re-
striction in the context of a commonly used antibiotic prescription strategy: mixing, wherein
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each drug is prescribed to each patient with equal probability [23-25]. Several works have com-
pared mixing and other strategies [23-27]. Here, we focus on a different question: the potential
effect of restricting antibiotics on multi drug resistance within the framework of mixing. We
note that similar results were obtained under a 'cycling' strategy (S5 Text).

Data obtained from Rabin medical center, Israel, is used to estimate realistic single and dou-
ble antibiotic resistance frequencies in incoming patients.

Methods
Ethics statement
The study was approved by the Helsinki Committee of Rabin Medical Center.

The model

We have developed a mathematical model consisting of eight differential equations, describing
the changes in the frequencies of patients infected with different bacterial strains within a hos-
pital unit. The model is an extension of existing models, used for evaluating and predicting the
efficiency of antibiotic treatment strategies [23,24,26,27]. Here we assume there are three anti-
biotics available for empiric treatment, rather than two, as in most classical models. This exten-
sion allows us to consider the contribution of both double and single resistant bacteria to the
emergence of triple resistance. Frequencies of resistance can vary significantly between strate-
gies and conditions, so incorporating different combinations of resistant types entails a more
realistic depiction of the dynamics.

We denote by S the frequency of patients infected with bacteria susceptible to all three anti-
biotics; R; is the frequency of patients infected with strains resistant only to antibiotic i, for i €
{1,2,3}L R; ;18 the frequency of patients infected with bacteria resistant to both antibiotics i and
7, and only to these antibiotics, for (j, k) € {(1, 2),(1, 3), (2, 3)}; X is the frequency of patients un-
infected with any of the bacterial strains. We assume that strains resistant to all three antibiot-
ics are not present yet, and only the rate of their emergence is estimated.

Each infected patient is immediately treated upon admission, with one antibiotic only, and
is either cleared from infection or acquires resistance with rate 7. The probability of acquiring
resistance to antibiotic i is p;, so that the rate of resistance acquisition upon treatment is 7p;,
and the rate of clearance is 7(1-p;).

For each strategy, y; is the fraction of patients initially receiving antibiotic i.

The mixing strategy consists of the application of drugs at constant probabilities throughout

time. Using only two drugs, while reserving the third drug to double resistant infections alone,
—1
2

all three drugs equally will be denoted mix3:y, (mix3) = y,(mix3) = y,(mix3) = 1.

will be termed mix2. Formally:y, (mix2) = y,(mix2) =1, y,(mix2) = 0. The application of

A patient carrying an infection with a confirmed resistance to antibiotic k has to be treated
with either antibiotic i or j. Such a patient will be treated with antibiotic i with probability y; .
E.g. if a patient is found (through microbiological testing) to be resistant only to antibiotic 1,
under mix2 he will receive antibiotic 2 only (1, = 1, 73, = 0), while under mix3 and he will
receive either antibiotic 2 or 3 with equal probability (5, = x5, = ). For simplicity, we do not
differentiate between patients acquiring resistance during treatment and those admitted
with resistance.

An infection resistant to antibiotic i is assumed to be unaffected by treatment with it. Pa-
tients treated incorrectly—i.e., with an antibiotic that their infection is resistant to—are

switched to a correct treatment after a delay period [27]. This is modeled by assigning a slower
clearance rate to a proportion of the patients carrying resistant infections. The rate of recovery
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when the delay applies is given by 7d, so that for a delay of D days, we define d = ——. Thus,

1+<D"

for example, a fraction y; of patients of class R, will have a recovery rate of 7d while a fraction
X1+ x5 of that class will have a recovery rate 7. A fraction y, y; , will be treated with antibiotic 2,

after a delay, and their rate of resistance acquisition will be dzp,. ¥ is the rate of spontaneous re-
covery due to the response of the patient's immune system; j is the rate of bacterial transmis-
sions resulting in infection (for simplicity, super-infection is neglected). Since we assume the
bacterial infection considered is not the main reason of hospitalization, patients leave the hos-
pital, or die, at a rate proportional to their frequency, with the proportion constant c. This com-
mon assumption allows us to model constant hospital occupancy.
Ay is the rate of patients of class V entering the hospital (e.g., A5 is the rate of patients admit-
ted to the hospital with bacteria susceptible to all three antibiotics). We assume a constant pop-
ulation size, so that the total admission rate is equal to the discharge rate,
namely:dy + Ag + Ay + Ay, + Ay, + Ay, + A, + Ag,, = ¢. For convenience, we also define

the auxiliary parameters f, = 2, for V € {R,, Ry, Ry, R, 5, R, ;,R,;, S}. fy-is the frequency

—). 0
c—Ay

of incoming patients carrying a resistant pathogen of class V out of all patients carrying the
pathogen, and will be used throughout this work. The model parameters, interpretations, val-
ues used and references (taken from [20,28-35]) are given at Table 1.
The full model is comprised of the following differential equations (for i € {1, 2, 3},(j, k) €
{(1,2),(1,3), (2,3)L, i # j # k):

X:1_S_Rl_RQ_RS_RLZ_RL:}_RQ,S
S=)s—cS+pSX — (t+7)S

Ri = }“Ri —R(c+7)+ BRX — T(Xj + 2 + 2R, + T1,Sp;
= R(c+7) + BRX — (1 + (1 + 1) )R+

Rj,k = )LRj.k

(1 + deXﬁk)TRj ;T (Xj + Xkd}d.j)TRkPj

An illustration of the dynamics is given in Fig 1.

Table 1. Parameters, their meaning and values.

Parameter

B

Pi
14
7(1-py)

i
Xi‘j

t1-t0

Meaning

Rate of bacterial transmission

Probability of developing resistance to antibiotic i during treatment
Rate of clearance due to the patient's immune system

Rate of clearance due to antibiotic i

Rate of patient turnover (length of stay™")

Entrance rates of patients of class V

Resistance frequency of incoming patients, of the class V
Resistance frequency of incoming patients, of the restricted antibiotic
(antibiotic 3)

Delay of correct treatment factor

Hospital size relative to community

Fraction of patients initially treated with antibiotic i

Fraction of patients treated with antibiotic /, for which resistance to
antibiotic k # i, j was established.

Duration of time the dynamics are tested for.

doi:10.1371/journal.pcbi.1004340.1001

Value

0.01-0.5 day™
[28,29]

0-0.3 [30,31]

0.03 day™

1 day™ [20]

0.1 day™ [28]
Varies (day™" units)
Varies

0.001 [32,33]

0.778 [34]
2 [35]
Determined by
strategy

Varies

20-100 years
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Fig 1. An illustration of the dynamic system presented in Eq 1. The black frame represents the hospital, with hollowed arrows signifying patients moving
in and out between the hospital and the community; circles representing patient frequencies within the hospital, and squares representing the frequencies of
patients infected with bacterial strains in the community, with respect to variable names within the shapes (see methods). Colored arrows show the direction
of resistance acquisition due to treatment; solid black arrows are recovery from infected to cleared states, while dashed lines are infections. Several arrows
are marked with the corresponding rates of flow between variables.

doi:10.1371/journal.pcbi.1004340.9001

We derived an analytical approximation of the equilibrium state of (Eq 1) (see S1 Text for
the analysis and agreement between the approximation and the numerical solution of the
equilibrium).

We note that our model can be reduced to a two-drug model, if all the parameters and vari-
ables pertaining to double resistance and to resistance to the third drug are set to zero. We can
model a strategy where only the first drug is used, except for treatment of resistant infections,
and two alternative strategies of mixing and cycling both drugs (see supplementary material
ID).

Adding community feedback

We also include in our model the impact of different strategies on resistance rates in the com-
munity. Given that the mean patient length of stay is * days, then on average a fraction c of the
patients leave (and enter) each day. We will denote the ratio of the hospital size to the size of
the community it serves as 7. The number of hospital beds per capita can serve as an estimate
for 77, and the estimate is usually within the range ;i < © < i, with 7 & i for developed
countries [35].

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1004340 June 25,2015 5/15
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We assume that the total incidence of infection by the modeled pathogen is constant and
model only the change in the distribution of different types of resistant infections within
the community.

This is modeled by changing the frequencies of different incoming patients (which are pro-
portional to the entrance rates) from constant in (Eq 1) to dynamic. We add to (Eq 1) the fol-

lowing ODE:s:
. \%
fv= (m _fv> e

FOr V S {S, Rl’ Rz, R3, R1,2> R1)3, R2)3}.
Thus the entrance rates of all infected patients (4, 4y, Az, Ag,» Az, ,+ A, ;» 4z, ,) Decome dy-

namic and are affected by the efflux of the various strains to the community. The chosen meth-
od of modeling assumes that the discharged patients are replacing patients in the community
(which are admitted into the hospital) at rate ¢, with the weight of each discharged patient, rela-
tive to the community, being 7. Although models explicitly computing the dynamics in the
community exist [36], we chose a simplified model that captures the main component, of vary-
ing strength of influence of the hospital on the community (7).

Measuring the strategies' efficiency

We employ two criteria to measure the efficiency of each treatment strategy:

First, we measure the mean frequency of incorrectly treated patients. This measure was cho-
sen since inadequate treatment leads to higher mortality, in single-resistant and MDR bacteria
[6,37,38]. The mean frequency of initially incorrectly treated patients under a strategy o €
{mix2, mix3}, for i € {1, 2, 3},(j, k) € {(1, 2),(1, 3), (2, 3)}, i # j # k), is:

1
tl _to

Incorrect(o) =

[ R(tom(0) + SR, 1. )3 (0) + (o))

to

Where t,, t; are the times of beginning and end of measuring, respectively. Second, we measure
the emergence rate of triple resistant bacteria. We estimate triple resistance emergence as pro-
portional to the number of double resistant infections treated with the only antibiotic they are
susceptible to. Therefore, the mean emergence rate of triple resistance under a treatment strate-
gy ois proportional (with the proportion constant being the clearance rate) to:

Triple(a) o / (Z Ry, (t,0)(x:(0) + d(1;(0) + 1:(0)))p,)dt

fy

1
tl - to

We used several methods to decide which parameters are most influential in our system. First,
we used the analytical approximation of the equilibrium state of the ODE system without the
community feedback to see the influence of various parameters on the system (S1 Text). In ad-
dition, we performed a parameter sensitivity analysis (PSA) of the system (S4 Text). The result
of the PSA suggested that the resistance frequencies of incoming patients are the most influen-
tial parameters on the dynamics. We thus focus on these parameters and use estimates from
clinical data for their values. We also performed pairwise comparisons of parameters to deter-
mine the effect of their interaction on the emergence of triple resistance (S2 Text).

To further investigate the implications of our model, we estimated realistic resistance fre-
quencies of incoming patients, using data gathered from patients in Rabin medical center,
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Israel, dating 2009-2012, that had positive blood cultures for bacteremia. We used antibiotic
resistance profiles of blood cultures obtained up to 48 hours after patient admission, to avoid
estimating resistant infections acquired within the hospital. Antibiotics co-occurring in resis-
tance tests were divided to all possible pairs, and frequencies of single and double resistance
were estimated (corresponding to fi, f> and f; ,). Only observations with >50 instances of test-
ing for resistance of both antibiotics were considered, resulting in 73 pairs of antibiotics (see S1
Table).

Results

We concentrate on a scenario in which two antibiotics (in our model, antibiotics 1 and 2) are
frequently used, and resistance levels to them are not low. In contrast, antibiotics 3 is assumed
to have thus far been restricted for emergency use only, and the frequency of resistance to it is
still low. We examine the change prompted by enabling the broad usage of antibiotic 3 under
the mixing strategy.

The mixing strategy can be thought of as the default strategy applied in hospitals, when phy-
sicians are prescribing antibiotics from a predetermined set, with no specific time-dependent
preference. We use our mathematical model to examine the effect of mixing the three antibiot-
ics available versus mixing only two and restricting the third (mix3 and mix2, respectively).

We start by examining the frequency of double and single resistance of incoming patients'
infections, with respect to the commonly used antibiotics (f, , and f; , f,» respectively).

Whereas resistances to different antibiotics might be independent (f; , ~ fy fz,), selection for

resistance could drive the double resistance frequencies to higher values than expected by ran-
dom. In Fig 2 we set the values of single resistance frequency to f, = f,, = 0.1, while varying

JrJr, <Jr,, < 5/, on the horizontal axis.

The vertical axis presents the mean fraction of incorrectly treated patients (Fig 2A), and
mean triple resistance emergence rate (Fig 2B) over 20 years. We plot the results of the model
assuming no effect of hospital resistance frequencies on the community (solid lines) and of the
model with community feedback (dotted lines). We set the double resistance frequencies for
the third restricted antibiotic to f = f . = fz, > as a conservative estimation. Similar results

are obtained when resistance to antibiotic 3 is assumed to be independent of resistance to anti-
biotics 1 and 2. Other parameters are § = 0.3, 4, = 0.07,p, = p, = p, = 0.07, 45 =
€— Ay — Ap— Ap, = Ap, — Ar,, — &, — ‘z,, References for the parameter values used are

given in Table 1.

We can see that introducing the previously restricted drug to common usage decreases the
prevalence of incorrect treatment in our model, whether regarding community feedback or not
(Fig 2A). This is intuitive, as a relatively small fraction of the incoming patients is resistant to
antibiotic 3, and thus using it leads to a decreased probability of incorrect treatment.

When considering the emergence of triple resistance, the picture is more complex. On the
one hand, the unrestricted usage of the antibiotic 3 limits the spread of double resistance, most
common of which is resistance to antibiotics 1 and 2. On the other hand, more frequent usage
of antibiotic 3 causes more patients to acquire resistance to it during treatment. This can be
seen when examining the triple resistance emergence (Triple(0)). If we assume that resistance
to both common drugs is significantly higher than resistance to the third drug, then Triple(o) is
dominated by the term:

E(o) = Ry ,(t,0)(15(t,0) + d(1: (¢, 0) + 2,(t, 0)) )Py

The homogeneity in time of the mixing strategies allows for a simple analysis. E(¢) under mix2

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1004340 June 25,2015 7/15
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A Incorrect Treatment B Triple Resistance
0.25 : ' :
0.2 R
0.2 L » /
0.15¢
0.15¢
0.17
0.1
s  Mix2-Community
i ] 0.05s¢ Mix3-Community
0.05 = Mix2
‘ Mix3
0.01 0.25 0.5 0.01 0.25 0.5

leZ leZ

Fig 2. The mixing strategy for varying double resistance frequencies. We measure the fraction of incorrect treatment (A), and the rate of triple resistance
emergence (B) for varying levels of double resistance to the commonly used antibiotics (f5 ). Red curves represent the results under mixing 2 antibiotics and

1,2
restricting antibiotic 3 (mix2), while green curves are the results under mixing 3 antibiotics (mix3). Dotted and solid lines are the results of the model with and
without community feedback, respectively. Parameters are le = fp, = 0.1,=0.3, 4, =0.07,p, =p, =p, =0.07 g =C — 4, — ZRI - )‘R2 — ;“R;, - /‘LRH—
A, — *a,,» @nd the rest are given at Table 1. The system is simulated for 20 years and other parameter values are given in the text.

doi:10.1371/journal.pcbi.1004340.9002

becomes

E(mix2) = R, ,(t, mix2) (0 + d(% + %) )p3 = dR, ,(t, mix2)p,

while for mix 3 it becomes

1 1 1 2d+1
E(mix3) = R, ,(t,mix3)( =+ d|=+= ] |ps = —+R1 o (t, mix3)p,.
’ 3 3 3 3 ‘
Thus the condition for reducing triple resistance emergence under mix3 is approximately
E(mix2) > E(mix3), which implies that triple resistance is lower under mix3 at a time point ¢ if

R, ,(t, mz'x2) - g_'_ i )
R, ,(t,mix3) = 3 3d

Thus mix3 improves as switching to a correct treatment is done faster. Had patients been
immediately treated with an effective drug (d = 1), the strategy best minimizing R, , would
have reduced triple resistance emergence. When a delay occurs, mix3 will have to reduce R, ,
by a factor of 2 + -, relative to mix2. This is a lower bound (i.e. mix3 will have to reduce double
resistance more than the mentioned factor) since the neglected terms (R 3, R, ;) are higher
under mix3 than under mix2. Furthermore, under mix3 R 3, R, ; might increase with time due
to selective pressure, leading to a substantial underestimation of the bound in (Eq 2).

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1004340 June 25,2015 8/15
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We should note that if one strategy is able to decrease both incorrect treatment and triple re-
sistance emergence more efficiently than another, then this strategy should be preferred. How-
ever, when one strategy is only better at reducing incorrect treatment, while producing higher
triple resistance, the costs and benefits of the two effects should be considered.

Furthermore, we examined the effects of various parameters on the emergence of triple re-
sistance under mix3 relative to mix2 (S4 Text). We note that triple resistance emergence can be
decomposed to two main components: the resistance emanating from the common double re-
sistant strain (R ,), mainly affected by infection; and from the rare double resistant infections
(Ry3 + R, 3), which are usually a result of resistance acquisition. Typically, mix3 decreases R; ,
and increases R; 3 + R, 3, in comparison to mix2.

The parameters can act in opposing ways on these two terms.

High transmission rates () increase the effectiveness of mix3, since the main advantage of
using the restricted drug is inhibiting the spread of R; , (Fig A in S4 Text). The opposite is true
for the patient turnover rate (¢): high turnover limits the potential time for transmission, and
requires higher transmission rates for R, , to be substantial and for mix3 to be effective (Fig C
in S4 Text). High antibiotic clearance rates (7) increase the advantage of mix3, under which
R, , patients have a higher probability of being correctly treated (Fig A and B in S4 Text. Simi-
lar results are obtained when the rate of clearance 7 varies while the rate of acquisition 7p; is
kept constant: Fig E in S4 Text). These parameters act similarly on R; ;5 + R, 3, but the relative
weight of R ; is usually higher than that of R; 5 + R, 5. Thus high transmission rates, low turn-
over rates, and high clearance rates are conditions where restriction might be inefficient for re-
ducing triple resistance emergence. However, antibiotic clearance rates also have a strong

interaction with the delay of correct treatment (1/d). When the delay of treatment is short but

1
1427

rates (Fig B in S4 Text). This corresponds to the result obtained above in (Eq 2).

The probabilities of resistance acquisition (p;, p,, p3) also play a role in the dynamics' out-
come. As expected, mix3 will be less effective if resistance to antibiotic 3 is easily acquired—
high p; relative to p,, p, (Fig D in 54 Text).

Another important factor that can affect the hospital dynamics is the feedback from the
community. In Fig 3 we again decompose the frequency of resistant strains to R; , and R; 3 +
R, 3, and compare the levels of incorrect treatment and triple resistance emergence for mix2
(Fig 3A) and mix3 (Fig 3B).

The parameters used are as in Fig 2, with f; , = 0.5 f;. One might presume that mix3 will be
inefficient in the long term, as it results in increased R, ; + R, 3 over time. In contrast, the dy-
namics show that the rapid increase of R; , under mix2 might be a more serious pitfall under

realistic—about two days (d ~ —-)—mix3 is more efficient than mix2 even for low clearance

these parameters, and the sum of all double resistant infections is lower under mix3 than under
mix2. As a result mix3 stays more efficient than mix2 for extended periods of time. Decreasing
the number of hospital beds per capita relative to the community () reduces this effect, with

m = 0 equivalent to the model without community.

To further investigate the implications of our model, we estimated single and double resis-
tance frequencies of the common drugs (f;, f> and f; ;) from patients in Rabin medical center,
Israel, dating 2009-2012 (see Methods). We simulated our model using the estimated resis-
tance frequencies among incoming patients, with the rest of the parameters as in Fig 2. Fig 4
presents the ratios of incorrectly treated patients and triple resistance emergence, in mix3 rela-
tive to mix2, for both the model without community feedback (Fig 4A) and with community
teedback (Fig 4B).

The colors represent the sum of the estimated resistances in each sample (f + fi, + fz,,)-

We can see that mix3 reduces incorrect treatment by ~40% relative to mix2 (Fig 4, horizontal

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1004340 June 25,2015 9/15
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A Mix2 B Mix3

0.4 0.4 R '
0.35| 1 0.35/—R13+R23 _
—Incorrect
0.3 - 0.3|—Triple :
0.25} 0.25¢
0.2} 0.2}
0.15¢ 0.15
0.1} 0.1
0.05 ; 0.05
0 : 0 ' : :
0 25 50 75 100 0 25 50 75 100
Time (years) Time (years)

Fig 3. Time series of mix2 (A) and mix3 (B). We plot the frequencies of double resistant infections resistant to the third antibiotic (R4 3 + R2 3), the double
resistant infections resistant to the two commonly used antibiotics (R ), the measured incorrectly treated patients, and the emergence of triple resistance.
The model is simulated for an extended period of time (100 years) to capture long term effects and the rest of the parameters are as in Fig 2.

doi:10.1371/journal.pcbi.1004340.9003

axis), and has contrasting effects on triple resistance emergence: Albeit mix3 increases triple re-
sistance emergence rate by about 1% for some samples, it usually reduces it by up to 10%, rela-
tive to mix2 (Fig 4, vertical axis). We see that under low levels of resistance among the
infections of incoming patients, mix3 is strictly preferred over mix2—it reduces both triple re-
sistance emergence and incorrect treatment. When higher levels of resistance are present, the
dynamics may change so that refraining from treating with antibiotic 3, except when the other
two antibiotics fail, decreases triple emergence. This is once again the trade-off between effec-
tive short term treatment and the risk of creating new MDR bacteria. We can also see that both
ratios of incorrect treatment and triple resistance emergence rates tend to be smaller, indicating
a stronger preference for mix3, when the hospital population has an effect on the community
(Fig 4, compare panel A to panel B). This occurs due to the quick rise of R; , under mix2, and
its influence on the community resistance, which is moderated under the more diverse treat-
ment of mix3.

Discussion

In this work we examined whether restricting the usage of certain antibiotic agents, i.e. keeping
them as 'last resorts', is effective in inhibiting the spread of MDR bacteria. We developed a
model describing hospital dynamics of a bacterial pathogen potentially treated by three avail-
able antibiotics. We assumed that the pathogen is treated by two commonly used drugs, and a
third drug is only used when an infection is resistant to both common drugs. We examined the
scenario where the common drugs have been used for a long enough period, so that resistance
to each of the drugs, and double resistance to both of them, is not very uncommon. We tested
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Fig 4. The mixing strategy for estimated resistance frequencies. For each data point, its location on the X axis represents the predicted ratio of incorrect
treatment under mix3 relative to mix2 according to our model, and its location on the Y axis represents the predicted ratio of triple resistance emergence. A
red line is drawn where the strategies inhibit triple resistance equally well, so below the line mix3 reduces both incorrect treatment and triple resistance
emergence more efficiently than mix2. Panels A and B present the results of the models without community feedback and with it, respectively. Antibiotic
resistance frequencies among incoming patients are estimated from data (see Methods and S1 Table). The color indicates the estimated resistance
frequencies to the common antibiotics (le + 1, + me )- The system is simulated for 20 years and the rest of the parameters are as in Fig 2.
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the efficiency of restricting versus using the third drug extensively, for a common antibiotic
usage strategy: mixing. The criteria for efficiency were defined as the mean number of incor-
rectly treated patients, and the rate of triple resistance emergence. We considered dynamic re-
sistance frequencies in the community, affected by patients discharged from the hospital, as
well as constant frequencies.

We conclude that introducing the previously restricted antibiotic to broad usage always de-
creases incorrect treatment, and can even simultaneously reduce the emergence of triple
resistance sometimes.

A similar question can be asked considering only two antibiotics; one commonly used and
one restricted. In such a simple model, the usage of two antibiotics will decrease the level of in-
correct treatment, and under some conditions also the resistance emergence (see S3 Text).
However, the simple model does not apply when double resistant strains are already present, as
is the case for many antibiotics (see S1 Table). One major difference between the models is the
rate of conversion from the sensitive type to the multiply resistant type. More steps of resis-
tance acquisition are required for multiple resistance in the 3-antibiotics model, and treatment
strategies using all drugs or restricting some of them may affect the intermediate resistant
types differently.

However, an important insight to be gained from the simple model is that infections can be
crudely separated to resistant and sensitive to the restricted drug. This decomposition was
found useful in analyzing the influence of the model parameters on the emergence of triple
resistance.
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We found that when bacterial transmission is high, restricting antibiotics is usually not the
preferred strategy. Long hospitalization times have a similar effect, and if bacterial transmission
is indeed substantial, restricting antibiotics may not be advisable if the patients' mean length of
stay is above several days.

Additionally, if antibiotic clearance times are intermediate (less than weeks), or even low
but the switch to correct treatment is rapid (less than two days), restricting antibiotics also
performs poorly.

We extended our model and considered the interaction between the hospital and the com-
munity: where resistance frequencies in the community are affected by the efflux of resistant
infections discharged from the hospital, and resistance frequencies among incoming patients
are affected by resistance in the community. The weight of the community in the emergence of
MDR is hard to determine. The cost of resistance, for instance, could cause a reversion of resis-
tance in bacterial populations that were not recently exposed to a certain antibiotic. As a conse-
quence, the community resistance frequencies would be less influenced by the patient efflux,
which is equivalent to low effect of the hospital on the community in our model. However, the
significance of the cost of resistance is debatable and perhaps reversion to susceptibility is not
often feasible in relevant time scales [39,40].

Therefore, we examined the dynamics with both a relatively high and a negligible influence
of the hospital on the community. The community feedback tended to decrease the efficiency
of restricting antibiotics. The high usage of only two drugs gave rise to a steady increase in dou-
ble resistant strains, in the hospital as well as in the community, inevitably treated with the re-
stricted drug and increasing the emergence of triple resistance. Finally, we simulated our model
using incoming single and double resistance frequencies estimated from data. Again, restricting
antibiotics was usually the less efficient strategy, both with and without the
community feedback.

Interestingly, it was recently shown that hospital size affects resistance frequencies [41].
Small hospitals may facilitate extinction of rare resistant strains, and can have substantial effect
on the rare infections resistant to the third drug. However, this phenomenon may be mitigated
by the resistant strains in the community, and entails further attention.

We focus on mixing a prominent antibiotic prescription strategy, but other treatment strate-
gies may also be considered. Similar results were obtained when running our analyses on the
cycling strategy, where drugs are periodically switched every 100 days (S5 Text). Another ex-
ample is combination therapy, in which patients are treated with several drugs simultaneously.
Our model is applicable for this strategy if each of the drugs in the restricted combination have
not been abundantly used in the formerly prescribed combinations. To some extent, single
drugs in our model (i.e. antibiotics 1, 2, and 3) can be used to describe combinations of drugs,
with the addition of a term for partial resistance, due to the overlap of drugs between different
combinations. However, the efficiency and toxicity of combination therapy are still a subject of
controversy [42]. Moreover, we have previously shown that combination therapy might in-
crease MDR significantly if genetic variation rates are stress-induced [26], suggesting that its
use should be carefully considered in such cases.

One could claim that last resort drugs should be reserved for severe infections, to minimize
resistance in high risk patients. In contrast, we show that although the usage of the restricted
drug can increase its marginal resistance levels, the probability of getting infected by bacteria
resistant to all drugs is also decreased. Thus, severe infections with limited treatment options
are also minimized.

Our results suggest that the current frequency of resistance to alternative drugs is an impor-
tant component to be considered when deciding upon the restriction or usage of an antibiotic.
Since resistance frequencies can substantially vary between communities [43,44], a sound local
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estimate of them might be need. This could be obtained by analyzing the records of resistance
screens performed on incoming patients, often already available at no additional cost, and per-
haps also by sampling commensal bacteria, whose resistance pattern are correlated with the re-
sistance pattern of the infecting bacteria [45]. Analysis of local resistance frequencies could
contribute to properly deciding whether to restrict or broadly use certain antibiotics, as well as
to monitor and estimate the efficiency of this decision. Moreover, such data has also been pro-
posed for 'informed' strategies: dynamically changing the proportions of drugs prescribed as a
function of recent resistance instances within the hospital [46]. Incorporating restricted drug
usage with these strategies might lead to even better results at minimizing resistance
emergence.

In conclusion, we show that restricted usage of certain drugs, when resistance to the alterna-
tive drugs is already present, may sometimes hinder the fight against MDR bacteria. We would
like to emphasize that we do not encourage superfluous or increased usage of antibiotics, but
rather suggest that changing the proportions of currently used drugs may assist the fight
against antibiotic resistance. We hope that our work will promote clinical studies and empirical
assessment of the benefits and pitfalls of such a change in treatment policies.
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