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Abstract

High resolution melt (HRM) is gaining considerable popularity as a simple and robust method for genotyping sequence
variants. However, accurate genotyping of an unknown sample for which a large number of possible variants may exist will
require an automated HRM curve identification method capable of comparing unknowns against a large cohort of known
sequence variants. Herein, we describe a new method for automated HRM curve classification based on machine learning
methods and learned tolerance for reaction condition deviations. We tested this method in silico through multiple cross-
validations using curves generated from 9 different simulated experimental conditions to classify 92 known serotypes of
Streptococcus pneumoniae and demonstrated over 99% accuracy with 8 training curves per serotype. In vitro verification of
the algorithm was tested using sequence variants of a cancer-related gene and demonstrated 100% accuracy with 3 training
curves per sequence variant. The machine learning algorithm enabled reliable, scalable, and automated HRM genotyping
analysis with broad potential clinical and epidemiological applications.
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Introduction

Nucleic acid characterization by High Resolution Melting

(HRM) is a powerful technique for identifying sequence variation.

By measuring the fluorescence of a saturating intercalating dye as

PCR-amplified DNA fragments are heated and disassociate,

sequence-defined melt curves are generated with single-nucleotide

resolution in a closed-tube reaction [1,2]. HRM curve shape and

melting temperature are both related to sequence composition.

But can vary slightly due to differences in the final concentration of

DNA amplicon and buffer conditions. Nonetheless, its simplicity,

speed, low cost, ease of use, flexibility, and high sensitivity/

specificity make HRM an attractive genotyping tool with broad

potential clinical diagnostic and research applications, including

infectious diseases, oncology, inherited diseases, and epigenetics

[3–16]. Also almost all modern qPCR machines include high-

resolution melt functionality which is an automatic, single and

direct step after target amplification. Researchers including our

group have combined the use of broad-range PCR primers with

HRM to enable ‘‘fingerprinting’’ of diverse genetic sequence

heterogeneity. By amplifying three hypervariable regions within

the 16S rRNA gene using flanking conserved primers followed by

HRM, we were able to generate unique curve signatures from 58

bacterial species [17]. These curves were subsequently catalogued

as a reference library to identify species in blinded clinical samples

through curve matching. However, to enable the interrogation of

larger libraries of highly polymorphic genetic loci, enhanced and

automated methods to analyze HRM data for genotyping are still

needed.

Current methods of curve matching rely on either arbitrary

visual inspection, subtraction (difference) plot against a known

control sample, or via the use of a clustering function included in

the instrument software [5–14,18]. Unfortunately, these methods

are impractical for analysis of larger HRM data sets. A recent

meta analysis of 195 studies showed that while HRM is sensitive

there remains specificity issues as well as differences across

instruments and analysis algorithms [19]. Given that HRM is

highly sensitive to subtle variations in experimental conditions,

analysis of multiple curves often requires software parameter

adjustment to a low-sensitivity setting to ensure correct grouping of
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curves derived from identical sequences [19]. This sacrifices

discriminatory power.

Some commercially available HRM analysis software such as

ScreenClust [20], which is used for both variant detection [6,7]

and DNA methylation analysis [21], employs a principle

component analysis (PCA) [22] to cluster all the populations

together simultaneously. However, machine learning methods

such as linear kernel SVM can be used to determine hyperplane

on multidimensional space that optimally separates different

classes [23]. For example, the optimal hyperplane maximizes the

margin between vectors (i.e. melt curves) of each class. The SVM

uses input (slack) parameters to determine error tolerance. The

‘‘support’’ vectors are created from the training data to define the

hyperplane. The ability of SVM to obtain this maximum margin

hyperplane makes it very powerful in the case of low noise training

data, such as melt curves. Other frequently used classifying

algorithms are Naive Bayes, Linear Discriminant Analysis (LDA)

and k Nearest Neighbors (KNN) [24,25]. However, we show

herein that these methods are not as robust as the SVM we

developed.

Herein, we adopted the use of such a machine learning

algorithm based on a linear SVM to classify melt curves with

trained tolerance for variations in reaction conditions. We also

created an algorithm to identify the minimal set of conserved

primers flanking hypervariable regions capable of discriminating

all sequence variants in a given data set. As proof of concept, we

demonstrated in silico the ability of our approach to identify all

known 92 serotypes of Streptococcus pneumoniae based on their

predicted melt curves. We further verified our method experi-

mentally using a panel of synthetic DNA for various alleles of the

human RASSF1A gene.

Materials and Methods

Primers Selection
Our primer-finding algorithm, implemented with Python, was

developed to enable the selection of primer pairs among conserved

regions which flank variable regions that differentiate all desired

sequences. Sequences were first aligned using the multiple

sequence alignment tool Kalign [26] with default parameters.

Then, the aligned sequences were analyzed using Gblocks [27] to

find conserved regions as shown in Figure 1. The parameters used

were specific to align DNA sequences with 18 nucleotides

minimum block length, no gap/no mismatch allowed, and use

default values for remaining parameters. All combinations of

exact-matched 18-mer from two blocks within approximately 500

base pair length were initially chosen as primers, then the regions

between those primers were examined to determine how many

sequences could be discriminated by each primer set using

BLASTClust [28] with single nucleotide different sensitivity.

BLASTClust would cluster the input DNA sequences base on

the nucleotide similarity. The sequences would be grouped

together if they were identical. The melting temperature, GC

content of each primer site, and the number of GC differences

between primers were constrained while selecting a primer pair

[29]. The primer pair that could give the maximum number of

distinguishable sequences was selected. A new sequence set was

then created from the remaining indistinguishable sequences, and

the algorithm was applied again. In this study, the capsule

polysaccharide synthesis (cps) gene locus which are believed to

influence the antigenic diversity in the human immune system [30]

of 92 published serotypes of S. pneumoniae were used, including

90 serotypes from the Wellcome Trust and two recently disclosed

serotypes: 6C (GenBank accession code EF538714) and 6D

(accession code HM171374) [30–32].

Generating Predicted Melt Curves
We generated predicted melt curves from the optimized primer

sets using uMelt web application [33]. First, we used the computer

algorithm to find the list of all possible amplicons that could be

flanked by each primer set and then input all the amplicons into

uMelt batch mode. The parameters for uMelt were set as follow:

Temperature range 65uC–95uC with 0.5uC resolution and default

thermodynamic set as Unified-SantaLucia 1998. We simulated

data with the combination of monovalent cation [Mono+]: 47, 50,

and 53 mM and [Mg++]: 1.4, 1.5, and 1.6 mM with 0% of

dimethylsulfoxide for a total of 9 conditions applied to all

amplicons. The output temperature and fluorescence intensity

data from each sequence (Dataset S1–S7) was used for subsequent

SVM analysis.

Classification
Data Preprocessing. Pre-processing involves deriving a

feature vector from a melt curve. Every normalized melt curve

Figure 1. Gblocks output. The blue-highlight underneath represents the region that passes the criteria according to the parameters and this
region will be considered as a candidate to be a primer.
doi:10.1371/journal.pone.0109094.g001

Trainable HRM Machine Learning Classifier for Sequence Variants

PLOS ONE | www.plosone.org 2 October 2014 | Volume 9 | Issue 10 | e109094



is a plot of helicity values corresponding to various temperature

values, starting from helicity at 100% to helicity at 0%. We further

normalize the melt curves to give us exactly 300 helicity value

points between temperature values of 65 degrees and 95 degree

Celsius. If the number of helicity value points generated from melt

curve analysis is not 300, piecewise linear interpolation is used to

ensure exactly 300 points. Since what we intend to capture is the

variation in the helicity with temperature and not the exact values

of helicity, we need to have a method that would be oblivious to

changes in the melting points. Thus after having 300 points for

each input melt curve, we rotate all the curves such that helicity

values on the x axis and the temperature values become the

dependent variable plotted on the y axis. This data is then

interpolated to have 1000 temperature values between helicity

values of 100 and 0. This acts as a feature vector input to the

Machine Learning classifier. We developed our software using the

Matlab programming environment (Mathworks, Natik, MA).

Naive Bayes based classifier. This classifier is based on

Bayes theorem, which requires a large amount of estimated

samples needed for accurate classification. However, Naive Bayes

reduces the number of estimated parameters needed by using a

conditional independence assumption. Conditional independence

is defined as: if given variables A, B, and C. A and B are

conditionally independent given C, if

P(A\BDC)~P(ADC):P(BDC)

That is, if A and B are conditionally independent given C, then

B contains no information about A that is not contained in C.

The Naive Bayes formulates the prior probabilities of each of

the classifiers and based on the maximum likelihood estimate of

the test melt curve, computes the posterior probability of the test

curve belonging to each of the classes trained. We assume equal

priors for each class. The class with the maximum posterior

probability is assigned to the test curve.

k Nearest Neighbor based classifier (KNN). The KNN is

an instance based classifier based on the similarity of each

neighbor in data space using a distance metric [34]. For example,

every melt curve was classified in the same class as k (pre-

determined) neighboring melt curves from the training dataset

based on the Euclidean distance between two data points. The

number of neighboring melt curves were varied from k = 1 to k = 7

and the results show that the best performance for the classifier

was k = 1. This analysis is shown in Figure 2A.

Principal component analysis (PCA) - Linear

Discriminant Analysis (LDA) based classifier. This hybrid

algorithm involves application of PCA to reduce the dimension-

ality of the data with subsequent application of LDA to classify the

data. The LDA suffers from curse of dimensionality because the

pooled covariance of the training data of melt curves was not

positive semidefinite and failed. To overcome this problem, we

used the PCA algorithm. PCA is a linear dimensionality reduction

algorithm that maximizes the variance of lower dimensional data

and was used prior to LDA. In order for LDA to run, the within

class covariance matrix for the training data must be invertible i.e.

full rank. Since the input data of melting curves is a sparse dataset

with a large number of training points, a dimensionality reduction

technique is required to reduce the number of points in training

sample. Here, in this case, using PCA, we reduced the

dimensionality of the training and test data and then applied the

LDA on this reduced dimensional data set for classification. The

PCA-LDA algorithm was tested for dimensionality reduction to

one through seven different eigenvectors and the best results were

achieved using six eigenvectors and shown in Figure 2B.

Support Vector Machine based classifier. Herein, we

used a one vs. one ensemble of linear kernel SVM with Least

Squares optimization. The SVM was trained with two groups of

feature vectors. At each data point location, i, which represents a

melt curve in a 1000-dimensional feature space, the melt curve

was represented by a vector x. With this terminology we assigned a

label, y, which uses the values of 21 and +1, to represent the melt

curve type, to every possible feature vector x. By a statistical

sampling of respective feature vectors along with their labels, the

SVM method derived a detection rule by taking a pairwise

similarity index between these samples k(x,x9) and computing the

solution to the following set of equations:

max
a

X
i

ai{
1

2

X
i,j

aiajyiyjk ~xxi,~xxj

� � !

Subject to: ai§0 , i~1,2,:::,n

X
i

aiyi~0

Here, the vector ~aa corresponds to the hyperplane such that

1= ~aak k2 represents the margin of the hyperplane, based on the l2-

norm. It is known that if the matrix of values k(x,x9) is positive

semidefinite then the solution implicitly corresponds to a linear

separation rule in higher dimensional space and that the distance

between this linear boundary and the nearest sample points is

maximized by the support feature vectors defined by constraints in

the above equations [35].

Moreover, to test and validate the SVM margins, we used the

leave-one-out cross validation (LOOCV) error of the detection

rule:

sign
X

i

aiyik ~xxi,~xxð Þzb

 !

Here, b is the scalar bias term, which ensures that the

hyperplane is not forced to go through the zero [23].

SVM Training: Our ensemble classifier consisted of

N| N{1ð Þð Þ=2 SVM feature vectors described above. Where

N refers to the number of classes (e.g. 92 serotypes) the input data

is grouped into. The classifier for an N class input is developed as

follows: for each of the different sequences, we generated feature

vectors, Si where i = {1,2,3,…,92} as explained in the pre-

processing step. Next, we trained an SVM to distinguish every

Si against every Sj for i = {1,2,3,…,92} and j = {1,2,3,…,92}

giving ensemble of 92|91ð Þ=2 trained SVM that works as a single

unit for classification.

Decision-making: In each binary testing of the SVM, all 18

curves (9 curves from each serotype) were used. The decision

making was based on the scoring scheme shown in Figure 3. Here

Ci,j denotes the classifier that classifies i against j where

i = {1,2,3,…,92} and j = {1,2,3,…,92} - i. The value of Ci,j is

one when the curve is classified as i and zero when the curve is

classified as j. The number of ones in every row i of Figure 3

indicates how many times the curve was recognized as i. The row

with the highest score is the serotype that the melt curve is

Trainable HRM Machine Learning Classifier for Sequence Variants
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classified as. For example, let an unknown sample be 1. If the

number of ones in 1st row = 87 and the number of ones in 2nd,…,

92nd row are less than 87. Then, the unknown sample would be

classified as serotype 1.

Creation of Different Melting Profiles from Synthetic DNA
Different melt curve profiles were created by using RASS1FA

synthetic DNA. First, six 95-bp DNA templates, as shown in

Table 1, were synthesized by two-step fusion PCR described by

Lo et al, 2009 [36] to have 10 ‘TG’ or ‘CG’ sites at different

positions. Each DNA template was created by four 35-nt primers,

which have 15-nt complementary region for each primer pair. In

the first round of fusion PCR, 1 mmol/L of forward and 1 mmol/L

of reverse primers of each half of the sequence were annealed

together in 25 ml of PCR reaction mix which contains 1.25 unit of

Taq polymerase, 1X PCR buffer, and 1 mM deoxynucleoside

triphosphates (dNTPs) (Invitrogen Life technologies, Carlsbad,

CA). For the second round of fusion PCR, two reaction products

from the first round (25 ml each) were mixed together with

Figure 2. Classification results with varied parameters. A) The KNN classifiers were tested by varying number of neighbors, k from 1 to 7. The
plot shows average accuracy for each k. k = 1 and k = 2 resulted in the best performance. B) PCA-LDA classification result with varied number of
eigenvectors. Our PCA-LDA classifiers were tested for dimensionality reduction varied from one through seven different eigenvectors. The plot shows
the highest accuracy when using six eigenvectors.
doi:10.1371/journal.pone.0109094.g002

Figure 3. Illustration of the ensemble binary classifiers. Each classifier would be used to differentiate two classes and the score will be count
for each serotype. In a SVM classifier, each class consists of 9 melt curves from 9 different conditions. The result will be based on the serotype that
returns the highest score.
doi:10.1371/journal.pone.0109094.g003
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additional of 1.25 units of Taq polymerase added. The reaction

cycle of both fusion PCRs consisted of 98uC for 1 minute, down to

60uC at the rate of 21uC/3 seconds, 60uC for 2 minutes, down to

43uC at the rate of 21uC/10 seconds, 43uC for 1 minute, up to

60uC at the rate of +1uC/DT sec (DT: the temperature difference

compared to 43uC, for example, if the temperature is increasing

from 51uC to 52uC, the rate will be +1uC/9 seconds [52243 = 9],

and 10 minutes for final extension at 60uC. The 20-fold diluted

amplicons will be subsequently used for melt curve analysis by

performing quantitative SYBR green-based PCR. The 25 ml-final

volume PCR reaction contains 2 ml of the diluted amplicon, 1X

Advanced SYBR Green Supermix (2X stock, Bio-Rad), and 400

nmol/L of each forward and reverse primers, which are 35-nt at

the beginning and the end of each sequence respectively. The

PCR program consisted of 95uC for 2 minutes, followed by 40

cycles of 95uC for 15 seconds, 60uC for 15 seconds, and 72uC for

45 seconds with another cycle for the melting step: 95uC for 15

seconds and ramping from 60uC to 95uC with ramping rate

0.2uC/sec. The melting profiles were obtained from a Bio-Rad

iCycler real-time PCR machine after endpoint PCR product

detection. To compensate slight well-to-well variations across the

plate, we utilized the fluorescent level outside the amplicon melting

region to calculate background for each well separately. Then, we

performed exponential background subtraction and normalization

the melt curves between 0% and 100% according to the method

published elsewhere [37].

Results

Least primer-set selection for Streptococcus pneumoniae
To test our curve classification algorithm in silico for a model

application, we set out to identify all the different serotypes of S.
pneumoniae by PCR amplifying the capsule polysaccharide

synthesis (cps) gene locus for subsequent HRM analysis. Epide-

miologic surveillance of pneumococcal serotype distribution is

important for assessing vaccine effectiveness and monitoring

emergence of non-vaccine strains [38]. Due to PCR constraint

[29], we sought for the minimum set of conserved primer pairs

capable of amplifying all 92 known serotypes of S. pneumoniae,

with each primer pair flanking regions of high sequence variability

for serotype discrimination. Since none of the existing primer-

finding programs available take into consideration our primer

design constraints, we developed our own primer selection

algorithm. As a result, we identified a set of seven conserved

primer pairs (Table 2) capable of discriminating of all the 92

serotypes by their amplicon sequences in silico.

Generating training data: simulated melt curves
To train our melt curve classifier, amplicon sequences (Dataset

S8) derived from the seven primer pairs in Table 2 were used to

calculate theoretical melt curves with the web-based tool uMelt

[33]. The resulting curves depend on required inputs of several

PCR conditions, specifically ion concentrations, for the theoretical

calculation. In order to mimic run-to-run variations in experi-

mental conditions and considering reported intrinsic variability of

1–2% [39,40] across different reactions and different days, we

produced theoretical melt data for multiple conditions, ranging up

to 5% above and below the commonly used salt concentrations

(50 mM for monovalent ions such as Sodium and Potassium and

1.5 mM for Magnesium), giving us a total of 9 conditions for

training our classifier. An example of simulated experimental

variations in melt curves of serotype 1 derived from the first primer

pair is shown in Figure 4.

In silico validation of melt curve classifier for
streptococcus pneumoniae serotyping

To test the accuracy of the classifier, we performed Leave one

out Cross Validation (LOOCV) which can predict the identity of a

melt curve under one condition using a machine learning classifier

trained on all the other remaining curves from all other conditions.

We compared the results for our SVM with Naive Bayes, KNN

and a newly developed PCA-LDA based classifier. We had to

develop the PCA-LDA classifier because LDA alone did not work

in classifying the curves. The PCA was followed by LDA to insure

that the within class covariance matrix for the training data was

invertible. The top six eigenvectors from the PCA results were

selected for LDA classification. The KNN parameter was k = 1 for

the number of neighbors as described above. Our results

demonstrated that by iteratively testing each condition in this

mode, the SVM based classifier resulted in an average accuracy of

99.9% as compared to 98.55% using PCA-LDA, 73.91% using

Naive Bayes and the lowest 72.10% using KNN (Figure 5).

It was observed that the SVM based classifier yielded maximum

accuracy. To further validate our findings, we performed two-fold

(2-fold), three-fold (3-fold) and four-fold (4-fold) cross validation

(CV). In general, k-fold CV involves splitting set of genotype

specific melt data into k bins where the classifier is trained on data

from k-1 bins and tested on the remaining bin iteratively for all

Table 1. List of target DNA sequences.

Seq No. %Methylation # of ‘CG’ Nucleotide sequence

1 100 10 59GGGTTCGTTTTGTGGTTTCGTTCGGTTCGCGTTTGTTAGCGTTTAAAG-
TTAGCGAAGTACGGGTTTAATCGGGTTATGTCGGGGGAGTTTGAGTT-39

2 80 8 59GGGTTCGTTTTGTGGTTTCGTTCGGTTCGTGTTTGTTAGTGTTT-
AAAGTTAGCGAAGTACGGGTTTAATCGGGTTATGTCGGGGGAGTTTGAGTT-39

3 60 6 59GGGTTCGTTTTGTGGTTTCGTTTGGTTTGTGTTTGTTAGTGTTTAAAGTTAGC-
GAAGTACGGGTTTAATCGGGTTATGTCGGGGGAGTTTGAGTT-39

4 40 4 59GGGTTCGTTTTGTGGTTTCGTTTGGTTTGTGTTTGTTAGTGTTTAAAGTTAGT-
GAAGTATGGGTTTAATCGGGTTATGTCGGGGGAGTTTGAGTT-39

5 20 2 59GGGTTCGTTTTGTGGTTTCGTTTGGTTTGTGTTTGTTAGTGTTTAAAGTTAG-
TGAAGTATGGGTTTAATTGGGTTATGTTGGGGGAGTTTGAGT-39

6 0 0 59GGGTTTGTTTTGTGGTTTTGTTTGGTTTGTGTTTGTTAGTGTTTAAAGTTAG-
TGAAGTATGGGTTTAATTGGGTTATGTTGGGGGAGTTTGAGTT-39

doi:10.1371/journal.pone.0109094.t001
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possible combinations. All N-fold CV results were highly

significant with an above 99.6% average accuracy. The average

accuracy for each of the nine buffer conditions was defined as the

mean of accuracies of all the N-fold CV tests on each buffer

condition. For example, the average accuracy for condition 5 in a

3-fold CV would be obtained by averaging the accuracy CV

results performed on all combinations that contain condition 5 in

the test set. In case of 2-fold CV, we trained with 5 conditions and

tested on the remaining 4 conditions. Detailed results for the

average accuracy with 95% confidence interval for all the

conditions are included in Table 3. The 95% confidence interval

was calculated using the Clopper-Pearson method for calculating

the exact binomial confidence interval to avoid the boundary issue

[41]. Note that the accuracy drops for extreme conditions, which

may be due to the fact that our model was not trained on such

extremes prior to testing them. Interestingly, we found that

training on only one condition and testing on the rest of the

condition gave a much lower accuracy (41.4%) compared to the

high accuracy (99.9%) from using all eight conditions. We also

tested the classifier on newer conditions, i.e. other than original 9

conditions mentioned above. To perform this, we randomly chose

two conditions within the considered extremes of the data, for

example, 49 mM monovalent ions (Na+ and K+), 1.6 mM

Magnesium and 52 mM monovalent ions, 1.5 mM Magnesium.

The SVM classifier was able to correctly predict the serotype of all

92 samples in both of these conditions. More melt curves were also

generated with higher temperature resolution settings (0.25uC) and

tested with the SVM classifier trained on lower temperature

resolution (0.50uC) curves. In this case, 91 out of 92 samples were

predicted accurately, which gives 98.9% success rate.

In vitro classification validation: synthetic DNA of
RASSF1A

To validate our method experimentally, we synthesized six

different 95-bp DNA templates of the RASSF1A gene promoter

sequences simulating bisulfite treated DNA containing six different

methylation levels by fusion PCR, as described in a previous study

[36]. Each of the sequences included different numbers of relevant

‘TG’ or ‘CG’ sites and gave a distinct melting profile. Four

datasets were obtained across two duplicate experiments. Fluo-

rescence intensities showing melt profiles of the six sequences

versus temperature are plotted in Figure 6. In data preprocessing,

the data was interpolated (see methods section for details) and the

resolution was increased 20 fold. We used this data set to

demonstrate our SVM classification model by utilizing the leave-

one out cross-validation method. Only three datasets were

required to train the classification model before the model could

identify all six methylated genotypes with 100% accuracy.

Discussion

We developed a novel method for broad-based classification of

melt curves based on a one-versus-one ensemble SVM algorithm

with a linear kernel. This enabled 97-100% identification accuracy

of melt curves in the data set. The SVM outperformed three

different classification methods, Naive Bayes, PCA followed by

LDA and k Nearest Neighbors. Only the newly developed PCA-

LDA method and SVM yielded high accuracy. However, the

PCA-LDA model could be challenging since it requires a two-step

procedure and the method is dependent on the eigenvectors

selected from PCA to run with LDA. In addition, at 95%

confidence interval, SVM (99.9, [95.85, 100]) performs better than

PCA-LDA (98.55, [93.62, 100]) in LOOCV. The SVM classifi-

cation model incorporates a machine learning algorithm that

Table 2. List of 7 primer pairs used to differentiate 92 serotypes of S. pneumonia.

Reaction No. Forward Primer (59-39) Reverse Primer (59-39)

Accumulative
number of
differentiated
serotypes

Simulated Melt
curves shown in

1 GCAGTTTGTTGGACTGAC TGGTACATAGGCATCACG 41 Dataset S1

2 ATCGCTTGGGCTTTTGCG ATAGCCGCATCAATCACG 58 Dataset S2

3 TGGGATGCTTTCTGTGTG CGCAAGCAGCTAAAAGCA 75 Dataset S3

4 ACCCTAGCTCAAGAAGTC ACGATGACGAGCGACTTT 84 Dataset S4

5 CCTCCATATATGCAACAGGC CCTGCCTGCAAGTCTTGA 87 Dataset S5

6 TCGGAGCCAATGGGTTGA GTTAGCGGCTTGAGTTTG 90 Dataset S6

7 CAGAGGATGCTCTCGTCA GGTAGTGGATCGGGATTG 92 Dataset S7

doi:10.1371/journal.pone.0109094.t002

Figure 4. Predicted melt curves of serotype 1 with the first
primer set across 9 different conditions. The predicted melt curve
were generated using uMelt with 9 different conditions, which are all
combinations between [Na+ K+]: 47 mM, 50 mM, and 53 mM and
[Mg2+]: 1.4 mM, 1.5 mM, and 1.6 mM.
doi:10.1371/journal.pone.0109094.g004
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learns the unique characteristics of each melt curve by training

multiple times with curves generated under slightly varying

conditions. This training method not only enhanced the robustness

and tolerance of the model against experimental variability but

also increased the accuracy of identification as we concluded from

k-fold cross validation test results, i.e. the more data used to train

our model, the higher the accuracy achieved.

In infectious disease applications, reliable HRM curve classifi-

cation would enable sequence typing of microbial organisms with

considerable practical utility [17,42]. To do so, HRM should be

capable of resolving a significant number of sequence variant

alleles within a genetic locus. We have developed a primer design

algorithm which can generate the minimal set of PCR primers

flanking hypervariable segments needed to discriminate all the

input sequences of a target gene. It takes into account multiple

amplicons which give multiple melting sites and optimal amplicon

lengths to enhance the discriminatory power. Subsequent SVM-

based analysis of unknown curves derived from these primer sets

against a large data set of known controls would then allow for

sequence, or microbial, identification. We demonstrated in silico
the potential for genetic serotyping of Streptococcus pneumonia
based melt curves. Using 7 primer pairs, we can achieve 99.9%

accuracy in serotype identification based on predicted melt curves.

Compared to the Quellung method, which is an antibody-based

biochemical reaction against the bacterial capsule currently used

as laboratory gold standard for S. pneumoniae serotyping, our

approach provides an opportunity for a more simple, rapid, and

cost-effective analysis. Alternatively, the next-generation sequenc-

ing would be a sensitive and specific detection method but it comes

with errors in base calling, sequence alignment and assembly of

sequence data [43]. It is time-consuming and involves multi-step

process.

We also demonstrated experimentally that our approach could

be used for epigenetic research applications. Typically, epigenetic

analysis of DNA methylation patterns uses sodium bisulfite

treatment to convert unmethylated cytosines to uracils while

methylated cytosines remain unchanged. This leads to differences

in sequence GC content and thus different melting profiles after

PCR amplification. We experimentally validated our sequence

classification method by using synthetic RASSF1A promoter

sequences simulating six different methylation levels, which our

SVM could automatically identify with 100% accuracy in the

presence of both inter-assay and intra-assay variations.

Some foreseeable limitations of this method exist. For example,

here we only tested homogeneous samples, but the ensemble melt

curve of a mixed population could be challenging to resolve.

However, we have demonstrated previously that digital PCR [44–

47] integrated with HRM [48] allows for the separation of

individual target DNA from heterogeneous samples by diluting

them across many reactions. This generates individually identifi-

able melt curves for each genotype present. To further improve

the accuracy of the training model, we anticipate that including

Figure 5. Accuracy of different classifiers under different conditions. Horizontal axis shows the different Na+, K+ and Mg2+ concentrations
respectively that were used to generate the predict curves. Vertical axis shows accuracy in %age. Different curves labeled with different legends
represent the performance of different classifiers.
doi:10.1371/journal.pone.0109094.g005
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temperature calibrator probes with additional curve normalization

would be beneficial [48,49]. Likewise, in addition to reporting the

final scores from multiple classifiers, the algorithm can incorporate

classification scores/confidences from each binary classifier to

enhance the model decision efficacy. Also, the primer finding

algorithm can be further developed to enable the user to

purposefully engineer groups of identical or distinguishable melt

curves according to their specific detection needs.

We have introduced a novel approach for HRM curve

identification using SVM to enable highly accurate and automated

identification of melt curves based on comparison to an extensive

reference library. By allowing the model to learn the unique shape

of each melt curve, subtle experimental variations were tolerated

without loss in discrimination accuracy. As a result, our method

provides a powerful tool with broad applicability in microbiology,

epigenetics, as well as other types of HRM studies.
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