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ABSTRACT Stenotrophomonas maltophilia is a multidrug-resistant nosocomial pathogen
that can cause life-threatening infections among immunocompromised populations. This
report presents the complete 74,962-bp genome of S. maltophilia podophage Paxi, an
N4-like phage sharing 85.3% nucleotide similarity to S. maltophilia podophage Pokken.

S tenotrophomonas maltophilia is an environmentally ubiquitous and commensal
bacterium, and it has also emerged as a nosocomial pathogen capable of causing

life-threatening infections, especially among immunocompromised individuals (1).
Treatment of this pathogen can be difficult as some strains are multidrug resistant (1,
2). To explore alternative strategies for controlling this pathogen, we report here the
isolation and genome sequencing of S. maltophilia phage Paxi.

Phage Paxi was isolated from a pond water sample collected in September 2019 in
Madisonville, TX (global positioning system [GPS] coordinates, 30.972534, 295.846840),
using S. maltophilia ATCC 17807 as the propagation host. The host was aerobically cul-
tured in tryptone nutrient broth or agar (0.5% tryptone, 0.25% yeast extract, 0.1% glucose,
0.85% NaCl, wt/vol) at 30°C, and phage propagation was performed using the soft agar
overlay method (3). The genomic DNA of Paxi was purified using a modified Promega
Wizard DNA cleanup kit protocol as previously described (4). DNA libraries were prepared
as 300-bp inserts using a Swift 2S Turbo kit and sequenced on an Illumina MiSeq instru-
ment with paired-end 150-bp reads using v2 300-cycle chemistry. A total of 159,286 raw
reads were quality controlled using FastQC (www.bioinformatics.babraham.ac.uk/projects/
fastqc) and FASTX-Toolkit v0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/) to yield 84,373
trimmed reads, from which a contig was assembled with 80-fold coverage using SPAdes
v3.5.0 (5). Closure of the contig ends was accomplished by Sanger sequencing the PCR
product, amplifying the end regions using the primers 59-ATGGAGCCGGAGAGATCCTT-39
(forward) and 59-ACTTCATCAAGCGTGTCGGT-39 (reverse). The CPT Galaxy-Apollo phage
annotation platform (https://cpt.tamu.edu/galaxy-pub) was utilized for genome annotation
(6–8). Structural annotation was performed using Glimmer v3 and MetaGeneAnnotator
v1.0, and tRNA genes were detected using ARAGORN v2.36 and tRNAScan-SE v2.0 (9–12).
Gene function was predicted using InterProScan v5.48, BLAST v2.9.0 against the NCBI non-
redundant and UniProtKB Swiss-Prot databases, TMHMM v2.0, HHpred, and LipoP v1.0
(13–18). The genome-wide DNA sequence similarity to other phages was calculated using
ProgressiveMauve v2.4 (19). All tools were run with default settings.

Phage Paxi was determined to have a podovirus-like morphology (Fig. 1) by viewing
samples negatively stained with 2% (wt/vol) uranyl acetate via transmission electron
microscopy at the Texas A&M Microscopy and Imaging Center. Paxi has a complete ge-
nome sequence of 74,962 bp with a GC content of 54.6%, which is lower than its host’s
average of 66.4% (2). A total of 89 protein-coding genes and 5 tRNA genes were pre-
dicted, yielding a coding density of 92.0%. A total of 25 protein-coding genes were
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assigned putative functions, including a lysis cassette consisting of a class II holin, a
SAR endolysin, and a two-component spanin with embedded gene architecture.
Genome-wide DNA sequence similarity based on ProgressiveMauve revealed that
Paxi is 85.3% similar to Stenotrophomonas phage Pokken (GenBank accession number
NC_049463.1) (20), and BLASTp (E value, ,0.001) showed that 81 out of 89 proteins of
Paxi are similar to those of Pokken. Like Pokken, Paxi demonstrates similarity to
Enterobacteria phage N4 (NC_008720.1), sharing 43 similar proteins (BLASTp; E value,
,0.001) such as virion RNA polymerase (NCBI protein accession number YP_950528.1)
and an SAR endolysin N-acetylmuramidase (YP_950539.1). Paxi was predicted by
PhageTerm to contain 538-bp direct terminal repeats.

Data availability. The genome sequence for Paxi was deposited in GenBank under
accession number MZ326856. The associated BioProject, SRA, and BioSample accession
numbers are PRJNA222858, SRR14095256, and SAMN18509291, respectively.
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