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ABSTRACT

Essential genes refer to genes that are required
by an organism to survive under specific condi-
tions. Studies of the minimal-gene-set for bacte-
ria have elucidated fundamental cellular processes
that sustain life. The past five years have seen
a significant progress in identifying human essen-
tial genes, primarily due to the successful use of
CRISPR/Cas9 in various types of human cells. DEG
15, a new release of the Database of Essential
Genes (www.essentialgene.org), has provided ma-
jor advancements, compared to DEG 10. Specifically,
the number of eukaryotic essential genes has in-
creased by more than fourfold, and that of prokary-
otic ones has more than doubled. Of note, the hu-
man essential-gene number has increased by more
than tenfold. Moreover, we have developed built-in
analysis modules by which users can perform var-
ious analyses, such as essential-gene distributions
between bacterial leading and lagging strands, sub-
cellular localization distribution, enrichment anal-
ysis of gene ontology and KEGG pathways, and
generation of Venn diagrams to compare and con-
trast gene sets between experiments. Additionally,
the database offers customizable BLAST tools for
performing species- and experiment-specific BLAST
searches. Therefore, DEG comprehensively har-
bors updated human-curated essential-gene records
among prokaryotes and eukaryotes with built-in tools
to enhance essential-gene analysis.

INTRODUCTION

Essential genes refer to genes required for a cell or an or-
ganism to survive under certain conditions (1,2). The re-

search on the determination of essential genes has attracted
significant attention in the past decade, due to its theo-
retical implications and practical uses. Studies of genome-
wide gene essentiality screenings have elucidated fundamen-
tal cellular processes that sustain life (2). We created DEG,
a Database of Essential Genes in 2003 (3), a time when the
genome-scale gene essentiality screening was still not avail-
able. The development of DEG parallels with the devel-
opment of the essential-gene field. Significant progress has
been made in performing genome-wide essentiality screen-
ings among diverse species, primarily due to technological
developments. We subsequently published DEG 5, which
included essential genes of both bacteria and eukaryotes
(4), and DEG 10, which included both protein-coding genes
and non-coding genomic elements (5). Since 2014, when
DEG 10 was published (5), significant progress has been
made mainly owing to the invention of CRISPR/Cas9 (6,7)
and the widespread use of Tn-seq (8,9). To accommodate
the progress in essential-gene studies, we created DEG 15,
which, compared to DEG 10, provides two major updates:

1. The number of essential-gene entries has significantly
increased. Specifically, compared to DEG 10, the num-
ber of eukaryotic essential genes has increased by more
than fourfold, and that of prokaryotic ones has more
than doubled. Of note, the human essential-gene num-
ber has increased by more than ten-fold. Figure 1 shows
the number of essential gene records in different versions
of DEG, as well as the methods used to determine the
gene essentiality. It is shown that the increase in prokary-
otic records and eukaryotic records are mainly due to the
widespread use of Tn-seq and CRISPR/Cas9, respec-
tively (Figure 1).

2. We have developed built-in analysis modules by which
users can perform various analyses, such as essential-
gene distributions between bacterial leading and lagging
strands, sub-cellular localization distribution, gene on-

*To whom correspondence should be addressed. Tel: +1 313 577 0027; Fax: +1 313 577 5218; Email: rzhang@med.wayne.edu
Correspondence may also be addressed to Feng Gao. Tel: +86 22 2740 2987; Fax: +86 22 2740 2697; Email: fgao@tju.edu.cn

C© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0003-2714-8817
http://orcid.org/0000-0002-2782-3811
http://orcid.org/0000-0002-9563-3841
http://orcid.org/0000-0003-3844-9527
http://www.essentialgene.org


D678 Nucleic Acids Research, 2021, Vol. 49, Database issue

Figure 1. The development of DEG. The number of essential-gene records
for (A) prokaryotes and (B) eukaryotes in DEG with different versions. The
stacked bars show the number of records according to the experimental
methods.

tology and KEGG pathway enrichment analysis, and
generation of Venn diagrams to compare and contrast
gene sets between experiments.

DETERMINATION OF ESSENTIAL GENES IN HU-
MANS

Genome-wide essentiality screenings have elucidated the
molecular underpinnings of many biological processes in
prokaryotes. However, limited knowledge has been gained
regarding essential genes in human cells. Large-scale gene
essentiality screenings across human cell types can reveal
genes that encode factors for regulating tissue-specific cel-
lular processes, and such screenings in cancer cells can dis-
close factors that determine cancer phenotypes, thus re-
vealing important targets for cancer therapies. However,
genome-wide inactivation of genes in human cells and the
analysis of lethal phenotypes have been hampered by tech-
nical barriers.

One of the major breakthroughs in biotechnology has
been the invention of CRISPR/Cas9 (CRISPR-associated
RNA-guided endonuclease Cas9), which is a simple yet
powerful tool for editing genomes (6,7). Cas9, an endonu-
clease, can be guided to specific locations within complex
genomes by a guide RNA (gRNA). Cas9-mediated gene

editing is simple and scalable, enabling the examination of
gene functions at the systems level. Because of the ease
and efficient targeting, CRISPR/Cas9 is described as being
analogous to the ‘search’ function in a modern word pro-
cessor (10). The invention of CRISPR/Cas9 has revolution-
ized the biological research in many fields, with essentiality
screenings in human cells being no exception.

In 2015, three papers were published simultaneously re-
porting the genome-wide identification of essential genes
among diverse human cell types (11–13). Wang et al. used
the CRISPR-based approaches in analyzing multiple cell
lines, and found tumor-specific dependencies on particu-
lar genes. The core-essential genes among these cell lines
are enriched for genes with evolutionarily conserved path-
ways, with high expression levels, and with few detrimen-
tal polymorphisms in the human population (11). Analysis
by Blomen et al. revealed a synthetic lethality map in hu-
man cells (12). Hart et al. used CRISPR-based approaches
to screen for fitness genes among five cell lines, and con-
sequently discovered 1580 human core fitness genes, and
context-dependent fitness genes, that is, genes conferring
pathway-specific genetic vulnerabilities in cancer cells (13).

The technology of CRISPR can be used on various cell
types. Mair et al. used the CRISPR system to catalogue es-
sential genes that are indispensable for human pluripotent
stem cell fitness (14). Lu et al. determined genes essential for
podocyte cytoskeletons based on single-cell RNA sequenc-
ing (15). Wang et al. used CRISPR in identifying essen-
tial oncogenes for hepatocellular carcinoma tumor growth
(16). Arroyo et al. used a CRISPR-based screen and conse-
quently identified essential genes for oxidative phosphory-
lation (17).

There is a major difference between cell-specific and
organism-specific gene essentiality. That is, essential gene
sets for human cells can be significantly different from those
for human development. CRISPR technology, despite be-
ing powerful, cannot be used as a reverse genetics approach
in humans for gene essentiality studies. Nevertheless, exome
sequencing, another recent breakthrough, enables the iden-
tification of human essential genes in vivo (18).

Exome sequencing is considerably less expensive than
whole-genome sequencing, and most Mendelian diseases
are caused by genetic variations in protein-coding regions
(exomes). The Exome Aggregation Consortium (ExAC) re-
ported the exome sequences of 60 706 individuals, and the
genetic diversity represents an average of one variant of ev-
ery 8 bases of the exomes. Thus these variations are anal-
ogous to a genome-wide mutagenesis screening conducted
in nature, similar to a transposon mutagenesis screening
performed in the lab. Strikingly, 3230 genes contain near-
complete depletion of protein-truncating variants, repre-
senting candidate human organism-level essential genes
(18). Therefore, the number of essential gene in humans in
DEG 15 has increased by >10-fold, primarily due to the use
of CRISPR and exome sequencing technology (Table 1).

THE WIDESPREAD USE OF Tn-seq

Tn-seq technology has been successfully used in identify-
ing essential genes in a large number of bacteria, and it has
also been used in archaea and even a eukaryote. In com-
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Table 1. Contents of DEG 15

Domain of
life Organism

No. of essential genomic
elements Method Saturated Reference Notea

Coding Noncoding

Acinetobacter baumannii
ATCC 17978

453 59 INSeq Yes (24)

Acinetobacter baumannii
ATCC 17978

157 1 INSeq Yes (24) In the mouse lung

Acinetobacter baylyi 499 Single-gene
knockout

Yes (57) Minimal medium

Aggregatibacter
actinomycetemcomitans

59 Tn-seqb Yes (58) For coinfection with
sympatric and allopatric
microbes

Agrobacterium fabrum str.
C58

361 11 Tn-seq Yes (25)

Bacillus subtilis 261 2 Single-gene
knockout

Yes (59)

Bacteria Bacillus thuringiensis BMB171 516 Tn-seq Yes (60)
Bacteroides fragilis 550 Tn-seq Yes (61)
Bacteroides thetaiotaomicron 325 INSeq Yes (21)
Bifidobacterium breve 453 TraDIS Yes (62)
Brevundimonas subvibrioides 448 Tn-seq Yes (25)
Brevundimonas subvibrioides
ATCC 15264

412 35 Tn-seq Yes (25)

Burkholderia cenocepacia
J2315

383 TraDIS Yes (63)

Burkholderia cenocepacia
K56–2

508 Tn-seq Yes (64)

Burkholderia pseudomallei
K96243

505 TraDIS Yes (65)

Burkholderia thailandensis 406 Tn-seq Yes (66)
Campylobacter jejuni 233 Tn-seq Yes (67)
Campylobacter jejuni subsp.
jejuni 81–176

384 Tn-seq Yes (68)

Campylobacter jejuni subsp.
jejuni NCTC 11168

166 Tn-seq Yes (68)

Caulobacter crescentus 480 532 Tn-seq Yes (69)
Escherichia coli 620 Genetic

footprinting
Yes (70)

Escherichia coli 303 Single-gene
knockout

Yes (71)

Escherichia coli 379 CRISPR Yes (72)
Escherichia coli O157:H7 1265 37 Tn-seq Yes (26)
Escherichia coli ST131 strain
EC958

315 TraDIS Yes (73)

Francisella novicida 396 Tn-seq Yes (74)
Francisella tularensis Schu S4 453 TraDIS Yes (75)
Haemophilus influenzae 667 Genetic

footprinting
Yes (76)

Helicobacter pylori 344 MATT Yes (77)
Mycobacterium avium subsp.
hominissuis strain MAC109

230 Tn-seq Yes (78)

Mycobacterium tuberculosis 614 TraSH Yes (79)
Mycobacterium tuberculosis 774 Tn-seq Yes (80)
Mycobacterium tuberculosis 742 35 Tn-seq Yes (27)
Mycobacterium tuberculosis 461 Tn-seq Yes (81)
Mycobacterium tuberculosis 601 Tn-seq Yes (82)
Mycoplasma genitalium 382 Tn-seq Yes (19,83)
Mycoplasma pneumoniae 342 34 Tn-seq Yes (28)
Mycoplasma pulmonis 321 Tn-seq Yes (84)
Neisseria gonorrhoeae MS11 751 Tn-seq Yes (85)
Porphyromonas gingivalis 463 Tn-seq Yes (86)
Porphyromonas gingivalis
ATCC 33277

281 Tn-seq Yes (87)

Providencia stuartii strain
BE2467

496 25 Tn-seq Yes (88)

Pseudomonas aeruginosa 335 TraSH Yes (89)
Pseudomonas aeruginosa 117 Tn-seq Yes (23)
Pseudomonas aeruginosa 321 Tn-seq Yes (90)
Pseudomonas aeruginosa
PAO1

336 Tn-seq Yes (91)

Pseudomonas aeruginosa
PAO1

551 Tn-seq Yes (92)
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Table 1. Continued

Domain of
life Organism

No. of essential genomic
elements Method Saturated Reference Notea

Coding Noncoding

Ralstonia solanacearum
GMI1000

465 Tn-seq Yes (93)

Rhodobacter sphaeroides 493 Tn-seq Yes (94)
Rhodopseudomonas palustris
CGA009

522 Tn-seq Yes (95)

Salmonella enterica
Typhimurium

306 15 TraDIS Yes (29)

Salmonella entericaserovar
Typhi

356 TraDIS Yes (20)

Salmonella entericaserovar
Typhi Ty2

358 24 TraDIS Yes (29)

Salmonella entericaserovar
Typhimurium

105 Tn-seq Yes (96)

Salmonella entericaserovar
Typhimurium SL1344

353 23 TraDIS Yes (29)

Salmonella typhimurium 490 Insertion-
duplication

Yes (97)

Shewanella oneidensis 403 Transposon
mutagenesis

Yes (98)

Sphingomonas wittichii 579 32 Tn-seq Yes (30)
Staphylococcus aureus 302 Antisense RNA No (99,100)
Staphylococcus aureus 351 TMDH Yes (101)
Staphylococcus aureus subsp.
aureus MRSA252

295 Tn-seq Yes (102)

Staphylococcus aureus subsp.
aureus MSSA476

305 Tn-seq Yes (102)

Staphylococcus aureus subsp.
aureus MW2

256 Tn-seq Yes (102)

Staphylococcus aureus subsp.
aureus NCTC 8325

288 Tn-seq Yes (102)

Staphylococcus aureus subsp.
aureus USA300 TCH1516

295 Tn-seq Yes (102)

Streptococcus agalactiae A909 317 Tn-seq Yes (103)
Streptococcus mutans UA159 197 6 Tn-seq Yes (104)
Streptococcus pneumoniae 113 Insertion-

duplication
No (105)

Streptococcus pneumoniae 133 allelic
replacement
mutagenesis

No (106)

Streptococcus pneumoniae 72 Tn-seq Yes (31)
Streptococcus pyogenes
MGAS5448

227 Tn-seq Yes (107)

Streptococcus pyogenes
NZ131

241 Tn-seq Yes (107)

Streptococcus sanguinis 218 Single-gene
knockout

Yes (108)

Streptococcus suis 361 Tn-seq Yes (109)
Synechococcus elongatus PCC
7942

682 34 Tn-seq Yes (110)

Vibrio cholerae 789 Tn-seq Yes (111)
Vibrio cholerae C6706 343 Tn-seq Yes (112)
Vibrio vulnificus 316 Tn-seq Yes (113)

Archaea Methanococcus maripaludis 519 Tn-seq Yes (32)
Sulfolobus islandicus M.16.4 441 Tn-seq Yes (33)

Eukaryotes Arabidopsis thaliana 358 Single-gene
knockout

No (54)

Aspergillus fumigatus 35 Conditional
promoter

replacement

No (114)

Bombyx mori 1006 CRISPR Yes (115)
Caenorhabditis elegans 44 Genetic

mapping
No (116)

Caenorhabditis elegans 294 RNA
interference

No (56)

Danio rerio 315 Insertional
mutagenesis

No (117)

Drosophila melanogaster 376 P-element
insertion

No (118)
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Table 1. Continued

Domain of
life Organism

No. of essential genomic
elements Method Saturated Reference Notea

Coding Noncoding

Homo sapiens 2452 OMIM
annotationc

No (119)

Homo sapiens 1562 CRISPR Yes (14) Stem cells
Homo sapiens 1593 CRISPR Yes (14) HAP1 cells
Homo sapiens 1690 CRISPR Yes (120) Core essential genes among 17

cell lines
Homo sapiens 3230 Exome

sequencing
Yes (18)

Homo sapiens 2054 CRISPR Yes (12) KBM7 cells
Homo sapiens 2181 CRISPR Yes (12) HAP1 cells
Homo sapiens 1878 CRISPR Yes (11) KBM7 cells
Homo sapiens 1660 CRISPR Yes (11) K562 cells
Homo sapiens 1630 CRISPR Yes (11) Jiyoye cells
Homo sapiens 1461 CRISPR Yes (11) Raji cells
Homo sapiens 1196 CRISPR Yes (13) A375 cells
Homo sapiens 1892 CRISPR Yes (13) DLD1 cells
Homo sapiens 2196 CRISPR Yes (13) GBM cells
Homo sapiens 2073 CRISPR Yes (13) HCT116 cells
Homo sapiens 386 shRNA Yes (13) HCT116 cells
Homo sapiens 1696 CRISPR Yes (13) HeLa cells
Homo sapiens 2038 CRISPR Yes (13) RPE1 cells
Homo sapiens 92 Functional

genomics
No (15) Podocytes

Homo sapiens 79 CRISPR Yes (16) Hepatocellular carcinoma
Homo sapiens 191 CRISPR Yes (17) K562 cells
Komagataella phaffii GS115 753 Tn-seq Yes (121)
Mus musculus 435 Single-gene

knockout
No (53) Embryonic lethality

Mus musculus 1933 Single-gene
knockout

No (52) Preweaning lethality

Mus musculus 2136 MGI
annotationd

No (122)

Plasmodium falciparum 2680 transposon
mutagenesis

Yes (34)

Saccharomyces cerevisiae 1110 Single-gene
knockout

Yes (123) Six conditions including
minimal medium

Schizosaccharomyces pombe 1260 Single-gene
knockout

Yes (124) Rich medium

aBacteria were cultured in rich media, unless otherwise indicated.
bTn-seq is a method that performs saturated transposon mutagenesis followed by parallel sequencing to determine the transposon integration sites. Tn-seq has many variants
under different names, such as insertion sequencing (INSeq), Transposon Directed Insertion Sequencing (TraDIS), high-throughput insertion tracking by deep sequencing
(HITS), transposon sequencing, Microarray tracking of transposon mutants (MATT), Transposon site hybridization (TraSH), transposon mutagenesis followed by Sanger
sequencing, transposon mutagenesis followed by genetic footprinting, transposon-site hybridization, Transposon-Mediated Differential Hybridisation (TMDH).
cOMIM: Online Mendelian Inheritance in Man (125).
dMGI: Mouse Genome Informatics (126).

parison to the single gene knockout method, Tn-seq is less
time-consuming and labor-intensive, because of the parallel
nature in mutagenesis and insertion site determination. The
invention of the Tn-seq method can date back to a study
in which Venter and coworkers performed Sanger sequenc-
ing to determine transposon insertion sites (19) in 1999. In
2009, two technologies, high-density transposon-mediated
mutagenesis and high-throughput sequencing, were mature,
creating conditions that enabled Tn-seq to be invented (9).
Many variants of Tn-seq were proposed, such as TraDIS
(20), INSeq (21), HITS (22) and Tn-seq Circle (23). Here,
we refer to these methods collectively as Tn-seq since they
all involve transposon mutagenesis and sequencing.

Tn-seq has been widely used in identifying essential genes
in bacteria. Figure 1A shows that since 2009, when DEG
5 was published (4), most bacterial essential genes have

been determined by Tn-seq, and the proportion of essen-
tial genes that are determined by Tn-seq has been increas-
ing ever since. This is not surprising given the powerfulness,
ease of use, and the efficiency of Tn-seq in performing es-
sentiality screening. Another advantage of Tn-seq is that it
identifies not only essential protein-coding genes, but also
non-coding genomic elements. For instance, by using Tn-
seq, a large number of non-coding genomic elements have
been determined in Acinetobacter baumannii (24), Brevundi-
monas subvibrioides (25), Escherichia coli O157:H7 (26),
Mycobacterium tuberculosis (27), Mycoplasma pneumonia
(28), Salmonella entericaserovar Typhimurium (29), Sphin-
gomonas wittichii (30) and Streptococcus pneumonia (31).

In addition, Tn-seq has been used to determine essential
genes in species other than bacteria. The methanogenic ar-
chaeon Methanococcus maripaludis S2 is an obligate anaer-
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Figure 2. Screenshots of some analysis modules in DEG 15. (A) Distribution of essential genes between leading and lagging strands and (B) distribution
of sub-cellular localizations of essential genes in the Bacillus subtilis genome. (C) A Venn diagram showing the intersection and the union between two
datasets (GBM and HeLa cells). The diagrams are clickable to show a list of genes with detailed information.

obic prokaryote that lives in oxygen-free environments.
Sarmiento et al. used the Tn-seq method and identified 526
essential genes required for growth in rich medium, repre-
senting the first genome-wide gene essentiality screening in
archaea (32). The second essentiality screening in archaea
was conducted in Sulfolobus islandicus, and some archaea
specific essential genes were identified (33). Moreover, Tn-
seq was also used in identifying essential genes in a eukary-
ote. Severe malaria is caused by the apicomplexan parasite
Plasmodium falciparum, a unicellular protozoan parasite of
humans, and 680 genes were identified as essential for opti-
mal growth of this parasite (34). Because of the widespread
use of Tn-seq, the number of prokaryotic essential genes in
DEG 15 has more than doubled compared to that of DEG
10 (Figure 1A).

ANALYSIS MODULES

To facilitate the use of DEG, we developed a set of analysis
modules in the current release. Essential genes are preferen-
tially situated in the leading strand, rather than the lagging
strand (35), mainly because of the decreased mutagenesis
pressure resulting from the head-on collisions of transcrip-
tion and replication machineries in the leading strand (36).
We obtained replication origins and determined leading vs.
lagging strands using the DoriC database (37,38). Users can
examine essential gene distributions between leading and
lagging strands, and clicking the pie graph will display a list
of genes in leading or lagging strands (Figure 2A).

Sub-cellular localization and operon information were
obtained from the PSORTb v3.0 tool and the DOOR
database, respectively (39,40). Clicking a species name,
e.g. Bacillus subtilis, will display sub-cellular localization

distributions of essential genes, and detailed gene informa-
tion can be further examined by clicking on a particular cell
compartment (Figure 2B). Other information includes or-
thologous groups, EC number (41), KEGG pathway (42)
and GO (43), as determined by eggNOG-mapper (44).
Users can analyze the GO distributions, and enriched GO
terms powered by GOATOOLs (45), and enriched KEGG
pathways, obtained using clusterProfiler package in R lan-
guage (46). The analysis results, including strand bias distri-
bution, sub-cellular distribution, and enrichment analysis
of GO and KEGG pathways, are visualized with ECharts
(47).

To analyze human essential genes, we developed a tool by
which users can compare and contrast the essential gene sets
between experiments, generate Venn diagrams to visualize
the comparison, and obtain unions and intersections for the
two gene sets by clicking the corresponding graph (Figure
2C). Furthermore, DEG 15 continues to provide customiz-
able BLAST tools that allow users to perform species- and
experiment-specific searches for a single gene, a list of genes,
annotated or un-annotated genomes.

FUTURE PERSPECTIVE

The identification of essential genes in both prokaryotes
and eukaryotes has attracted significant attention over the
past decade, largely because of the practical implications
of these studies (2). Bacterial essential genes are attractive
drug targets, as inhibiting these genes can suppress bacte-
rial survival (48). Interest on essentiality screenings has also
been boosted by synthetic biology, which aims to make an
artificial self-sustainable living cell (49). The minimal gene
set of a bacterium is considered a chassis for further addi-
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tion of other parts with desirable traits. An increasing num-
ber of essentiality screens are being performed in a context-
specific manner. For instance, essential genes for cancer cells
can reveal cancer-specific cellular processes, which are tar-
gets for cancer drugs (50). Determination of essential genes
of A. baumannii revealed genes required for its infection
and survival in the lung (24). Moreover, another impor-
tant direction is the prediction of gene essentiality using
bioinformatic approaches, e.g., based on metabolic models
(51). Therefore, because of the theoretical implications of
the minimal-gene-set concept and its practical uses, it is ex-
pected that the essential gene identifications will continue
to be further advanced.

Reverse genetics will continue to be indispensable for
pinpointing gene functions. It is expected that single-gene
knockout projects for the model organisms, such as mice
(52,53) and Arabidopsis thaliana (54), will soon be com-
pleted. Multiple ways to manipulate gene expression are
available, such as those based on TetR/Pip-OFF repress-
ible promoter system (55) and RNA interference (56). From
the aspect of technology, this is a golden era for essential-
gene research, because of the availability of Tn-seq and
CRISPR/Cas9. The two technologies enable the gene es-
sentiality screenings in a wide range of cell types and species
under diverse conditions. Therefore, we anticipate that the
increase in the number of essential genes for many cell
types under various conditions will be accelerated in the fu-
ture. Therefore, we will continue to update DEG with high-
quality human-curated data in a timely manner to keep pace
with this rapidly developing field.
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