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Abstract

Operative parameters of La Fuenfrı́a Hospital such as: hospitalized patients; daily admis-

sions and discharges were studies for the hospital as a whole, and for each hospital’s ser-

vice unit (henceforth called ‘services’). Conventional statistical analyzes and fractal

dimension analyzes were performed on daily In-Patient series. The sequence of daily

admissions and patients staying on each service were found to be a kind of random series

known as random walks (Rw), sequences where what happens next, depends on what hap-

pens now plus a random variable. Rw analyzed with parametric or nonparametric statistics

may simulate cycles and drifts which resemble seasonal variations or fake trends which

reduce the Hospital’s efficiency. Globally, inpatients Rw s in LFH, were found to be deter-

mined by the time elapsed between daily discharges and admissions. The factors determin-

ing LFH R were found to be the difference between daily admissions and discharges. The

discharges are replaced by admissions with some random delay and the random difference

determines LFH Rw s. These findings show that if the daily difference between admissions

and discharges is minimized, the number of inpatients would fluctuate less and the number

of unoccupied beds would be reduced, thus optimizing the Hospital service.

Introduction

The efficiency of a service provider institution depends largely on avoiding fluctuations

between active and inactive periods. This is true for hotels, airplanes companies, hospitals or

any manufacturing production lines. Control and predictability rationalize costs and inventory

expenses, this has long been known to proponents of total quality control management [1].

In general, hospitals are service institutions which receive a random queue of service

demanders (patients) whose admissions depends both on patient availability and on the hospi-

tal’s capacity to attend or admit a patient. In a hospital operating at full capacity a patient must

be discharged prior to the admission of a new patient. If a hospital is part of a network of hos-

pitals, the situation becomes even more complex, since it depends on the hospital’scommuni-

cation between the discharge and admission and discharge sections/systems, and that of

hospitals in the network which transfer patients to another hospital. In the latter situation

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0262815 January 27, 2022 1 / 30

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Rodrı́guez-Hernández AJ, Sevcik C (2022)

Hidden chaos factors inducing random walks

which reduce hospital operative efficiency. PLoS

ONE 17(1): e0262815. https://doi.org/10.1371/

journal.pone.0262815

Editor: Sandra C. Buttigieg, University of Malta

Faculty of Health Sciences, MALTA

Received: May 10, 2021

Accepted: January 5, 2022

Published: January 27, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0262815

Copyright: © 2022 Rodrı́guez-Hernández, Sevcik.

This is an open access article distributed under the

terms of the Creative Commons Attribution

License, which permits unrestricted use,

distribution, and reproduction in any medium,

provided the original author and source are

credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files. The Command panels data used in

this study are provided as Supporting information

https://orcid.org/0000-0003-3783-6541
https://doi.org/10.1371/journal.pone.0262815
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262815&domain=pdf&date_stamp=2022-01-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262815&domain=pdf&date_stamp=2022-01-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262815&domain=pdf&date_stamp=2022-01-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262815&domain=pdf&date_stamp=2022-01-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262815&domain=pdf&date_stamp=2022-01-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262815&domain=pdf&date_stamp=2022-01-27
https://doi.org/10.1371/journal.pone.0262815
https://doi.org/10.1371/journal.pone.0262815
https://doi.org/10.1371/journal.pone.0262815
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


transportation between hospitals may be another factor dependent on availability of means of

transport, or if this depends on the patient’s themselves, on whether those resources are avail-

able to the patient, immediately or with some sort of delay. All these factors conform a com-

plex set of circumstances that determine hospital efficacy, and introduce complex non

linearities in the system, and yet, to our knowledge, this non-linearities are never considered

when hospital efficiency is evaluated.

Non linear systems such as those described in the preceding paragraph, are poor candidates

for analysis with standard statistical means. This has been shown for may events such as earth-

quakes, weather, adult and fetal hearth beat, epidemics, highway traffic, stock market fluctua-

tions, machine failures and so on [2–10]. Still, the common practice to evaluate an detect

institutional efficiency (or lack of it) is generally limited to actuarial studies and certain

descriptive statistics loaded into administrative data bases. Thus, modifications are made to b

budgets, personnel hiring, firing, promotions, demotions, and even hospital closures, may be

based on these questionable analyzes. This paper describes the analysis of a real hospital, and

benefits from the development of a simple algorithm [11] to estimate the Hausdorff-Besicov-

itch [12, 13] dimension using a a kind of box-counting algorithm, to estimated fractal dimen-

sion, called with increasing frequency as “Sevcik’s dimension” [14–19]. Thus, from this paper

on, we will start calling “Sevcik’s fractal dimension”: Ds since this avoids some formal mathe-

matical confusions with the Hausdorff-Besicovitch dimension. [ ©2018 Google LLC All

rights reserved. GogScholar and the Google logo are registered trademarks of Google LLC.]

[20] lists 170 cases of fractal analysis, in many fields, up to November 2, 2021 [21] with this

[11] algorithm.

La Fuenfrı́a Hospital (LFH, Servicio Madrileño de Salud, SERMAS) is a public mid and

long term stay hospital [in the Madrid’s (Spain) Autonomous Region] (Comunidad Autónoma

de Madrd, in original Spanish) for chronic patients. Spain has a life expectancy of 83.61 years

(the 6th longest in the world), increasig at a rate of 0.210% per year) [22]. This fast growth

makes Spain a candidate to become the country with world’s longest life expectancy in the

near future.

In 2019, Spain had a population of 46,738,578 inhabitants, and 26.5% (� 12.2 million))

were above 60 years of age (calculated based on [22–25]). One would hence expect that hospi-

tals for chronic diseases would have a significant and constant demand. But, the curve of inpa-

tients when the curve of patients staying al the Hospital (called inpatients, abbreviated InP)

during the period under study (Fig 1A) fluctuated between being completely full followed by

periods with only� 52% occupancy (the hospital has 192 beds). Analyzed with classical

administrative and statistical tools, this behavior could be attributed to some type of service

demand, seasonal periodicity or, even worse, attributed to administrative deficiencies. Regard-

less, of the explanation is given, this behavior is undesirable, leading to reduced hospital effi-

ciency, increased costs, and thus, the the underlying cause must be identified and eliminated

as thoroughly as possible.

Here we use fractal analysis, Fourier transforms, spectral analysis, and conventional statis-

tics, to show that small hidden factors may indeed have a dramatic impact in reducing the hos-

pital’s operative efficiency. The purpose of this paper is to show that factors that are not usually

considered in hospital performance analysis may have a huge impact on hospital efficacy.

Methods

Statistical methods and spectral density (SD) calculation

Statistical methods. Medians and their 95% confidence interval (CI) were calculated

using the nonparametric Hodges and Lehman method [26]. Random distribution about the
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median (ŷ) was analyzed with the above and below runs (one or more data appearing as a

sequence above or below the median), following the methods of Mood [27] and Wilks [28, 29].

Gaussianity (also known as normality) was verified with the Jarque-Bera [30], the robustified

Jarque-Bera-Gel [31] and the Shapiro Wilk [32] tests. Linear regressions were carried out

using the Theil nonparametric method [26] and correlations were estimated using the Spear-

man rank correlation coefficient [26]. Sequences were compared with the nonparametric

Smirnov [33] test based on Kolmogorov statistics [34]. The procedures to generate random

sequences to verify the differences between their fractal dimension which were described else-

where [11, 35–37]

Fast Fourier Transforms (FFT) and calculating spectral density. FFT were calculated

with a C++ (using g++ version 5.4.0 20160609 with C++14 standards, www.gnu.org) imple-

menting the Cooley and Tukey algorithm [38], with Hamm windowed data [39]. Spectral den-

sities were then obtained from the real and imaginary components of the FFT [39].

Building the time series

Series were built for La Fuenfrı́a Hospital’s admissions, discharges (Dis) and hospitalized

patients, called “inpatients”, and shortened to InP in this paper. The Hospital depends on the

Public Health System Network [Servicio Madrileño de Salud (SERMAS)] of the Autonomous

Fig 1. Daily in-patients (InP) at La Fuenfrı́a Hospital from May 1 2014 and December 19 2017. Panels are: Panel

A- Number of inpatients (InP) at La Fuenfrı́a Hospital per day during the study duration; Panel B- Daily variations of

inpatients (DInP) at the Hospital’s [Δy in Eq (2)]; Panel C- Hospital’s daily stays (Panel A) probability density

function (pdf, the probability of observing a given mensurable or enumerable random event) for any number of

inpatients (InP) staying at the Hospital observed during the study period (•) [28], a Gauss line (N½y; s½y�) with the same

mean and variance (s[y]2) as the set of 1329 data points making the series in Panel A (y ¼ 149:2, s[y] = 24.4); Panel D-

Daily difference between admissions (Fig 2A) and discharges (Fig 2C) in the Hospital (DDiAd). Panel E- Random

walk Xi built for DDiAd (Panel D) using Eq (5), please note the extreme resemblance to the sequence of InP in Panel

A. In all cases abscissa is the number of days after May 1 2014. The largest negative or positive peaks are off scale

outliers.

https://doi.org/10.1371/journal.pone.0262815.g001
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Madrid Region, which, like most in Spanish autonomous regions, requires that all hospital

information in the area is stored into a central data base. In the mid-term stay hospital this

information is kept using a program called SELENE©. SELENE© is jointly developed by UTE

Siemens– INDRA [40]. SELENE© keeps data in a central database for SERMAS. Data were

retrieved from SELENE© as monthly spreadsheets for each kind of information, and were inte-

grated in a single file covering our entire period of study for each type of information.

To build the sequences for this study, we used data collected monthly as SELENE© Hospi-

tal’s spreadsheet files called “Cuadros de Mando” which we translate Command panels. In

them, information appears as daily data for La Fuenfrı́a Hospital from 5/1/2014 up to 12/31/

2014, then they run from January 1 to December 31 for years 2015 and 2016, and from 1/1/

2017 up to 12/19/2017.

Data was routinely hospital’s statistics, was not recorded purportedly for this study, and we

found transcription errors in the SELENE©-exported data base, which were dealt with as

follows:

• January 1st data corrections. An obvious error detected in the time series was that more than

900 admissions or discharges appeared for 1/1/2015 and 1/1/2016, which is impossible for a

hospital with 192 beds. The source of such errors appears to be a bug in the software used to

gather data which did not evaluate the first datum of the year correctly. Those points were

replaced by averaging December 31 of the previous year with January 2 of the current year,

respectively. This error affected 2 out of 1329 days, or� 0.16% of data.

• Missing data corrections. In Admissions (Adm) and Discharges (Dis) series we found a gap

without information from 5/29/2014 to 6/6/2014 (both inclusive), in daily in–patients. This

gap (9 out of 1329 days, or� 0.67% of data) was closed by filling the data on daily changes in
the sequences for the gap days with a same value calculated as

fyð6=6=2014Þ $ yð5=29=2014Þg ¼
yð6=7=2014Þ � yð5=28=2014Þ

9
; ð1Þ

where dates follow the “mm/dd/yyyy” style, and the double headed arrow at the left of Eq (1)

points at the limits of the gap to be filled. In Eq (1), as well as elsewhere in this paper, brack-

ets are used to indicate sets.

• Daily differences between Adm, Dis and InP. Once daily data admissions (DAdm), daily

discharges (DDis) and daily inpatients (DInP) sequences were built, new series were devel-

oped by subtracting from each daily value, the immediately preceding day’s similar datum. A

set of sequences of one-day differences

Dyt ¼
0 ) t ¼ 0

yt � yt� Dt ) t > 0

(

ð2Þ

with t = 0, 1, . . ., 1328 days, was built. In Eq (2) each t is a given day, and Δt = 1 is a one-day

time difference, in which the first day was arbitrarily taken as 0. The procedure was repeated

for admissions, discharges and stays, to obtain the corresponding daily differences sequences

for the three kinds of parameters shown in Fig 2A and 2B.
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Ethics statement, author’s conflicts of interests and privacy of the

information used in the study

No human or animal subjects were used in this study. Thus no animals were sacrificed. Nei-

ther personal nor animal pain or discomfort were induced at any point of the study.

In compliance with the European Data Protection Law [41] no patient’s personal or clinical

information is revealed in this paper. La Fuenfrı́a Hospital Ethics Committee approved this

study as indicated in a letter submitted to PLoS One.

Though it is the author’s interest always to improve the efficiency of LFH. The authors state

that they have no conflicts of interest or competing interests in the subject of this study.

Excluding personal or clinical patient information, everything stored in the SELENE sys-

tem, including the La Fuenfrı́a Hospital “Cuadros de Mando” which we translated here as

“Command panels”, are public information according to Spanish Law. All the original La

Fuenfrı́a Hospital “Cuadros de Mando” which we translate “Command panels” spreadsheets

cis be provided with this revised manuscript. There is also a short Readme text file explaining

some issues of the LFH data file. The Command panels, and a short Readme text file, used here

are provided to PLoS One, and are freely available to anyone interested in them.

Data availability and privacy of the information used in the study

All relevant data are within the manuscript and its S1 Data files. The Command panels data

used in this study are provided as S1 Data and are freely available. A short Readme text file is

also included, which explains the LFH data file.

Excluding personal or clinical patient information, everything stored in the SELENE sys-

tem, including the La Fuenfrı́a Hospital “Cuadros de Mando” which we translated here as

“Command panels”, are public information according to Spanish Law. All the original La

Fuenfrı́a Hospital “Cuadros de Mando” which we translate “Command panels” spreadsheets

cis be provided with this revised manuscript. The translated Command panels are provided to

PLoS One, and are freely available to anyone interested in them.

Fig 2. Sequences of daily admissions and daily discharges from La Fuenfrı́a Hospital. Panels are: A- Daily

admissions (Adm) sequence; B- Same as panel A, but scale modified to only to show data ⩾ 0; C- Daily discharge (Dis)

sequence; D- Same as panel C, but the scale is modified to only show data ⩾ 0. In all cases abscissa is days elapsed since

May 1 2014, Ordinate is number of daily admissions or discharges determined as indicated in Building the time series

in Methods. Negative peak represent transcription errors of the data made available for this study, perhaps positive

outliers could have the same origin, however this is harder to demonstrate.

https://doi.org/10.1371/journal.pone.0262815.g002
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LFH Command Panels also include names and ID codes of Hospital personnel for adminis-

trative purposes. Since these are also protected by Spanish and EU laws on personal informa-

tion privacy they were remove prom data posted in PLoS ONE.

Ethics statement and author’s conflicts of interests

No human or animal subjects were used in this study. Thus no animals were sacrificed. Nei-

ther personal nor animal pain or discomfort were induced at any point of the study.

In compliance with the European Data Protection Law [41] no patient’s personal or clinical

information is revealed in this paper. La Fuenfrı́a Hospital Ethics Committee approved this

study as indicated in a letter submitted to PLoS ONE.

Though it is the author’s interest always to improve the efficiency of LFH. The authors state

that they have no conflicts of interest or competing interests in the subject of this study.

Results

Analysis of runs above and below the median

During the period studied, the number of hospital in–patients were 150 (149–151) (median, ŷ,

and 95% CI, n = 1329 days) ranging (102 –- 187) patients, meaning that Hospital’s is 0.77

(0.53–0.77) (median, ŷ, and 95% CI). Let us consider a random variable y = f(t) such that f(t) is

independent from f(t − Δt) or from f(t + Δt) (where Δt is a short time lapse, ideally Δt! 0).

This is, a variable for which its present is independent from its past, and whose present does

not determine its future. Such variable produces a sequence of data which are uniformly dis-

tributed around their median ŷ. We say that a run occurs when one or more sequence points

fall above or below the median, this is easily grasped by looking at Fig 3. In Fig 3C there are 5

runs, and in Fig 3D there are 9 runs. Points that are equal to ŷ are not considered in the analy-

sis. Fig 3 presents four sets of monthly averages from the Function Recovery Uunit (FRU). Fig

3A, results from the total of inpatients (Adm) sequence (n = 22, nruns = 11, probability of ran-
dom run distribution about the median Prnd is� 0.15); Fig 3B, Total discharged patients’ (Dis)

sequence (n = 22, nruns = 8, Prnd� 0.04); Fig 3C, is the sum of lengths of stay (LoS) for all in–

patients (InP) in the Unit during each month (n = 23, nruns = 5, Prnd� 4.5 � 10−4); Fig 3D, is

a sequence of the average stay duration (Mean LoS) of each in–patient at the Unit (n = 23,

nruns = 10, Prnd� 0.13); Fig 3E, during de observation period the Function Recovery Unit

gained relevance and the number of beds were increased, panel shows the changes in beds at

the beginning in several months, as expected, the analysis of this sequence was found to be

non random (n = 23, nruns = 5, Prnd� 4.5 � 10−4), actually nruns may be just 3 in this case, but

the algorithm probably found tiny decimal differences between data Fig 3 an ŷ in one segment;

if nruns = 3, should n runs be 3 then Prnd� 4.5 � 10−4. Prnds are probabilities (obtained with the

Wald–Wolfovitz test) that the sequences are not randomly distributed about their medians. In

all cases abscissa is the month number during the study period (January 2016 = 1, November

2017 = 23). Out of these Prnd values the only one indicating a statistically significant non zero

number of runs, occurs for InP sequence in Fig 3C [42, 43]. The sequence non-randomness

the Fig 3C could have several reasons, one of them could be some kind of ‘periodicity’ (which

would be odd, since its period would be longer that 2 years), but it could also stem from some

kind of random walk. During the period studied, the Hospital’s in–patients were 150 (149–

151) (median, ŷ, and 95% CI) ranging (102–187) patients. If we consider a random variable

y = f(t) such that f(t) is independent from f(t − Δ t) or from f(t + Δt) (where Δt is a short time

lapse, ideally Δt! 0). In other words, a variable for which its present is independent from its

past, and whose present does not determines its future. Such variable produces a sequence of
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data which are uniformly distributed about their median ŷ. We say that run occurs when one

or more sequence points fall above or below the median, this is easily grasped by looking at Fig

3. In Fig 3C there are 5 runs, and in Fig 3D are 9 runs. Points that are equal to ŷ are not taken

into account in the analysis. Fig 3 presents four sets of monthly averages from the Function

Recovery Uunit (FRU). Fig 3A, results from the total of inpatients (Adm) sequence (n = 22,

nruns = 11, probability of random run distribution about the median Prnd is� 0.15); Fig 3B,

Total discharged patients’ (Dis) sequence (n = 22, nruns = 8, Prnd� 0.04); Fig 3C, is the sum of

lengths of stay (LoS) for all in–patients (InP) in the Unit during each month (n = 23, nruns = 5,

Prnd� 4.5 � 10−4); Fig 3D, is a sequence of the average stay duration (Mean LoS) of each in–

patient at the Unit (n = 23, nruns = 10, Prnd� 0.13); Fig 3E, along de observation period the

Function Recovery Unit gained relevance and the number of beds were increased, panel shows

the changes in beds at the benign in several months, as expected, the analysis of this sequence

was found to be non random (n = 23, nruns = 5, Prnd� 4.5 � 10−4), actually nruns may be just 3

in this case, the algorithm probably found very minor decimal differences between data Fig 3

an ŷ in one segment; if nruns = 3, should n runs be 3 then Prnd� 4.5 � 10−4. Ps are probabilities

(obtained with the Wald–Wolfovitz test) that the sequences are not randomly distributed

Fig 3. Four examples of runs around the median (ŷ) from La Fuenfrı́a’s Function Recovery Uunit. (FRU). A: Total

admissions (Adm) sequence (n = 22, nruns = 11, Prnd� 0.15); B, Total discharges (Dis) sequence (n = 22, nruns = 8, Prnd
� 0.04); C, is the sum of lengths of stay (LoS) for all in–patients (InP) in the Unit during each month (n = 23, nruns = 5,

Prnd� 4.5 � 10−4); D, is a sequence of the average stay duration (Mean LoS) of each in–patient at the Unit (n = 23, nruns
= 10, Prnd� 0.13); E, throughout the observation period the Function Recovery Unit gained relevance and the number

of beds were increased, the panel shows the changes in beds at the behind ib several months, as expenses, the analysis

of this senescence was found to be non random (n = 23, nrun = 5, Prnd� 4.5 � 10−4, actually n runs may be just in this

case, the algorithm probably found very minor decimal differences between data an x̂ in one segment; if n runs = 3,

should n runs be 3 than Prnd 4.5 � 10−4. Prnd s are probabilities (obtained with the Wald–Wolfovitz test) that the

sequences are randomly distributed about their medians. As indicated in the text of this communication Prnd stands for

probability of random distribution about the median. Fluctuations in E resulted from administrative decisions, thus a

low Prnd was to be expected. In all cases abscissa is time expressed as month number in the sequence, (January

2016 = 1, November 2017 = 23).

https://doi.org/10.1371/journal.pone.0262815.g003
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about their medians. Fluctuations in Fig 3E, resulted from administrative decisions, thus a

low Prnd, indicative of non randomness, was to be expected. In all cases abscissa is month

number in the study period (January 2016 = 1, November 2017 = 23). Out of these Prnd values

the only one indicating a statistically significant non zero number of runs, occurs for InP

sequence in Fig 3C [42, 43]. The non-randomness of sequence Fig 3C could have several rea-

sons, one of them is some kind of ‘periodicity’ (a strange one, since its period would be longer

that 2 years), but it could also stem from some kind of random walk determined by the uncer-

tainties in nj and LoSi, j [11, 37, 44]. It is difficult to prove, but the apparent ‘seasonality’ was

probably determined by the increase in Unit’s bed capacity depicted in panel Fig 3E. The fig-

ure illustrates that relatively simple sequences of random variables having unknown pdfs

such as nj and LoSi,j, may interact in strange manners to produce apparently less random

“simi-periodic” sequences such as Fig 3C. determined by the uncertainties in nj and LoSi, j
[11, 37, 44]. It is difficult to prove, but the apparent ‘seasonality’ was probably determined by

the increase in Unit’s bed capacity depicted in panel Fig 3E. The figure illustrates that rela-

tively simple sequences of random variables having unknown pdfs such as nj and LoSi,j, may

interact in strange manners to produce apparently less random “semi periodic” sequences

such as Fig 3C.

LaN Fuenfrı́a Hospital data statistical characteristics. Fig 2 presents sequences built in

the preceding Building the time series Subsection. Panels Fig 2A (Adm) and Fig 2C (Dis) are

sequences with a few negative, artefactual (see Building the time series Subsection, outliers.

Panels Fig 2B and 2D are the same data with the scale magnified to see the positive part and

better appreciate data detail when yt ⩾ 0.

Testing with the Jarque-Bera [30], the robustified Jarque-Bera-Gel [31] and the Shapiro-

Wilk [32] tests, we found that none of the data sequences collected during the study period

from La Fuenfrı́a Hospital, were Gaussian (also called normal) variables, (Probability of Gaus-

sianity, P� 10−6). InP sequences contained a large number of ties (points with same value).

In ti InP sequence every value is repeated

ntotal

InPmax � InPmin
¼

1329

187 � 102
≊ 16 times:

In the expression: InPmax, is InP’s maximum values; InPmin, is InP’s minimum values and

ntotal, is total number of points in the sequences. Given the narrow range there are only 187 −
102 = 85 possible different values among 1329 integer data in the series, they are not all equally

likely. Please notice that the number of ties increases as InPrange! 0, that is the more uniform

bed occupation gets, the larger the number of ties, in the InP sequence, will get. This is to be

expected when integers are sampled in a narrow range, under these conditions any statistical

test, parametric or not, must be taken with caution, since test power decreases wit ties. Tie cor-

rections were used for the nonparametric statistical procedures employed here [26]. Since the

Hospital has 192 beds, data indicate that the Hospital operates with some leeway, having an

occupancy ranging from 53.1 to 97.3%, with a 78.1% median.

With the data in the sequence of InP (shown in Fig 2A) and Eq (2) a curve of DInP at the

Hospital was built, this is shown in Fig 1B. The sequence in Fig 1D was obtained by subtracting

to each Adm the same day Dis. Fig 1D presents a sequence obtained by subtracting Dis—

Adm (DDiAd) to the Hospital.

A direct visual comparison between sequences in Fig 1B (DInP) and Fig 1D (DDiAd)

shows, that in spite of some differences, they are similar, and very different from the series

in Fig 1A (InP). Sequences in Fig 1B (DInP) and Fig 1D (DDiAd) compared with the

Smirnov test had the same distribution, that is, their distributions are statistically
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indistinguishable (Probability of identity P ⪅ 1, n = 1329, two tails). Yet, when Smirnov test

was used to compare sequences Fig 2A and 2C, admission (Adm) and discharges (Dis)

sequences were found to be highly statistically significantly different (Probability of identity

P� 10−6, n = 1329, two tails).

Empirical Hospital occupancy Probability Distribution Functions (PDF) [28] calculated

from these data is shown in Fig 4. Daily hospital occupancy data set was found to be not Gauss-

ian when tested with the Jarque-Bera [30], and subsequently with the robustified Jarque-Bera-

Gel [31] and the Shapiro Wilk [32] tests (P� 10−6, in the three cases). The perception of data

lacking Gaussianity becomes intuitive when very disperse data (dots) are observed around a

Gauss pdf line in the same panel. The Gauss pdf line (shown also as pdf, in Fig 1C) with the

same mean (y) and variance [s2(y)] as the set of 1329 data points forming the sequence in Fig

1A (y ¼ 149:2, s[y] = 24.4).

La Fuenfrı́a Hospital daily admissions and discharge variations sequences. Fig 4 con-

tains empirical PDF [45] calculated for inpatients (InP), admissions (Adn), discharges (Dis)

and difference between Adm and Dis: (DAdDis). It is important to note that Adm and Dis

were were logged daily as separated entries in Hospital’s Command Panels. Data in Fig 4 (espe-

cially the expansion presented in Fig 4C) indicates that daily DInP is distributed following the

same PDF as DAdDis, however Adm and Dis have different PDFs. The largest difference is

observed for probabilities of no admissions (blue line in Fig 4C) and no discharges occur (red

line in Fig 4C) in a given day (at zero value in the abscissa in Fig 4C), it is a day without admis-

sions 30% likely but a day without discharges is only 20% likely. When the abscissa is > 0, the

probability of daily admissions is surpassed by daily discharges. The largest difference between

the curve predicted determines the significance of the difference between two PDFs by using

the Smirnov test [33, 46] (based on Kolmogorov statistics [34]). Yet when analyzing at Fig 4C,

it is evident that this is not the only difference between the curves.

Fig 4. Empirical Probability Distribution Functions (PDF) [28] of daily admissions and stays at La Fuenfrı́a

Hospital from May 12014 to December 19 017. Panel A: Blue ine with& PDF of LFH in-patients (InP in Fig 1A);

Red line with ^, PDFs for daily differences in admissions (Adm) and discharges (Dis), called DDiAd in Fig 1D. Panel

B: Red line with ^ PDF of LFH daily Admissions in LFH (called Adm in Fig 2A); Red line with& PDF for LFH daily

Discharged Dis in Fig 2C). Panel C: Same as Paanel B, but with abscissa expanded to exclude outliers. In all cases

abscissa is the value ve aare interested in, and ordinate is the estimated accumulated probability from −1 up to the

abscissa value.

https://doi.org/10.1371/journal.pone.0262815.g004
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Daily fluctuations in stay duration and average stay duration in operative

units at La Fuenfrı́a Hospital

Random fractals. Two curves are particularly relevant for the analysis of sequences in

Figs 1 and 2, these are the, so called, white and Brownian noises [44]. In white noise every

point in the sequence is independent from the past, and does not determine the future of the

system. In brown noise, every point is dependent on the past and determines the future,

although in in unpredictable manners.

White noise properties. White noise is a sequence of independent random variables, no

value is predictable nor dependent on on any prior or posterior value in the sequence. White

noises have a fractal dimension Dh = 2 [11, 37, 44]. White noise curve looks very similar to

sequences in Fig 1B and 1D, the random variable producing each point may have diverse

PDFs, white noises are randomly distributed about 0, when N!1 white noise variables in a

sequence produce N
2
þ 1 runs [47]. When subject to Fourier transformation [48] white noises

have a constant spectrum for all frequencies between 0 and1, reminding white light which

contains all visible electromagnetic frequencies, leading to call this noise white.

Brownian noise properties. Brownian noise is also called Brown noise [49, 50], red noise or

random walk (Rw) [44]. For Brownian it noise always holds that

f ðxÞ ¼
0 if x ¼ 0 ða convention for th observation’s originÞ

f ðx � DxÞ þ uðm ¼ 0; s2Þ;

(

ð3Þ

where υ(μ = 0, σ2) is a random variable with mean μ = 0 and variance σ2. Variable υ may be a

uniform U[-1, 1] pdf, like

U½� 1; 1� ¼

0 if x < � 1

0:5 if � 1⩽ x⩽ 1

0 if x > 1:

8
>>><

>>>:

ð4Þ

Yet, very often the variable is a Gaussian (also called normal) of the kind N(0, σ2) having mean

μ = 0 and variance σ2 [11, 44]. Brown noise is a particular case of Markov chains [51], specially

important in the waiting time theory witch studies situations with repressed queues waiting to

receive some service [52, 53]. In layman’s terms, Brownian variables strictly depend on their

past, yet they are random, it is impossible to predict their future or estimate their past values.

Nonetheless, their current value depends on their past, and their future value depends on the

present.

Brown noise in hospital parameters is not unexpected, the admission of a patient depends

on bed availability, the number of beds depends on many criteria related to the public health

system. Availability also depends on demand, the disease suffered by patient occupying a bed,

the efficiency of doctors in the hospital, treatment availability and so on. Brownian noise is

characterized by wide and slow meandering, and has fractal dimension Dh = 1.5 [Eq (11)] and

so does Ds [Eq (14)] when N!1 [11, 44]. Brownian noise distributes around its median

(which is not necessarily 0) producing a variable number of runs� N
2
þ 1.

Fractal analysis theory of sequences studied. As shown in Methods and in Results, in

contrast with other methods to estimate the fractal dimension Dh, Eq (14) is extremely easy to

calculate and certainly converges towards Dh as N!1, although nobody knows how far

infinity is for certain [54], we all belie it is far away. Fractal series studied here have an extent

which is hard to classify. An N = 1329 points may be long or short depending on persons’s

point of view, it seems large for conventional statistics, yet is short when considered in the
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context of fractal analysis [37]. A Ds value deduced from a 1329 points series underestimates

sequence Dh significantly. There is four-step solution for this:

1. Generate a significant number of sequences with the characteristics of interest using Monte

Carlo [55] simulation.

2. Calculate their Ds and var(Ds) [Eqs (14) and (15)] [11].

3. Calculate the set of traces’ mean Ds and its variance including variance between simulated

traces as indicated in [11, 35–37].

4. Compare real and simulated sequences parameters using the Vysochanskij–Petunin

inequality (details Theorem 1 and in [35, 37]).

Fractal analysis of sequences from Hospital

Ruling out sources of errors in sequences. To analyze data in Table 2 we must consider

the transcription errors in the SELENE1 data base and how were they corrected for this study,

as indicated in Methods and the problem of ties mentioned in the La Fuenfrı́a Hospital data

statistical characteristics Sub-Subsection, also the narrow data rage determines further

underestimations of Dh.

A case random noises in seen in [37] where much longer sequences needed for Ds to con-

verge towards Dh, these sequences contain only decimal digits f0; 1; . . . ; 8; 9g 2 Z, not real

numbers f� 1 < x < þ1g 2 R. Empiric data on Tables 1 and 2, may differ from Ds of a cali-

bration white noise from a longer sequences.

Estimates of the fractal dimension. Ds values estimated for Hospital sequences in Figs 1

and 2 are given in Table 1. White noise standard set of 100 series with 1329 point s had an esti-

mated Ds = 1.5983 ± 0.0104 ½Ds � sðDsÞ�; whereas the Brown noise standard set of 100 series

with 1329 points had Ds = 1.2885 ± 0.0384 ½Ds � sðDsÞ�.

Table 1. Fractal dimension Ds estimated for La Fuenfrı́a Hospital sequences.

Sequence Ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var½Ds�

p

Admissions (Adm 1.49725 0.00356

Discharges (Dis Ds) 1.41904 0.00400

In Patients (InP 1.33806 0.00320

InP variation (DInP 1.56432 0.00302

Adm-Dis (DDiAd) 1.43369 0.00401

Xi Rw 1.33922 0.00382

Brownian noise§ 1.28855 0.03837

White noise§ 1.59825 0.01039

Dimension Ds calculated with Eq (14); sðdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðDsÞ

p
calculated with Eq, (15), for all sequences N = 1329. Labels

mean: InP, in patients at La Fuenfrı́a Hospital (Fig 1A); Adm, admissions to the Hospital (Fig 2A); Dis, discharges

from La Fuenfrı́a Hospital (Fig 2D); InP, daily sequence of inpatients (Fig 1A); DInP, InP daily variation (Fig 1B);

DDiAd, Adm-Dis (Fig 1D); Xi, Rw built for DDiAd curve in Fig 1E using Eq (5); Brownian noise, Brownian noise

calculated as indicated in the Results’ Random fractals Sub-Section and Eq (7). White noise, White noise calculated

as indicated under Random Fractals Subsubsection.
§ superscript, indicates that Ds is the average of M = 100 sequences with N = 1329 evaluated with Eq (9), total

variance was calculated with Eq (18).

https://doi.org/10.1371/journal.pone.0262815.t001
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Statistical comparison of Ds values appearing in Table 1. Ds values calculated or several

white and Brown noises, as well as for La Fuenfrı́a Hospital parameters discussed previously,

are summarized in Table 1, and P values to test statistical significance of differences between

them appear in Table 2. An asterisk indicates marginally significant P which could have been

more significant if we knew Ds’s and the Vysochanskij–Petunin inequality would not have been

necessary to test for significance [56, 57], we consider these cases of undecided significance.

In–patients sequence Ds (InP, Tables 1 and 2, and Fig 1A) is not statistically different from

from Brownian (P> 0.13). An asterisk indicates marginally significant P which could perhaps

have been more significant if the Vysochanskij–Petunin inequality use would not have been

necessary [56, 57] due to the, we consider this cases as of undecided significance.

An interesting case is the Rw Xi (Fig 1E) built for DDiAd (Fig 1D) using a recursive relation

Ξi ¼
0 ) i ¼ 1

DDiAdi þ Ξi� � 1 ) 2⩽ i⩽ 1328

(

ð5Þ

Please note the resemblance of sequence Xi (Fig 1D) and sequence in Fig 1A. Eyeball inspection

of these two series shows tiny differences, yet estimates of their fractal dimension presented in

Table 1 are not identical, Ds for InP sequences is 1.33806 ± 0.0032 ½Ds � sðDsÞ� calculated

with Eqs (14) and (15), respectively, and is 1.33922 ± 0.00382 for the Xi sequence (N = 1329 in

both cases).

Fig 1A and 1E are not identical, but yet their Ds values are statistically indistinguishable

using Vysochanskij–Petunin [See Eq (31). We have

DDs ¼ Ds;InP � Ds;Ξ ¼ 1:33922 � 1:3380≊ 1:16 � 10� 3

sðDDsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðDs;InPÞ þ s2ðDs;ΞÞ

q
≊ 5:5 � 10� 3

; l ¼
DDs

sðDDsÞ
≊ 0:209662 <

ffiffiffi
8

3

r

¼ 1:63299 . . .

 !
ð6Þ

Table 2. Statistical comparison between fractal dimensions (Ds) estimated for the sequences appearing in Table 1.

Dis Adm DInP Xi Bro§ Whi§

InP 2 � 10−3 4 � 10−4 2 � 10−4 1
6 ⩽P⩽ 1† 0.269 7 � 10−4

Dis . . . 2 � 10−3 5 � 10−4 2 � 10−4 0.039‡ 2 � 10−3

Adm . . . . . . 2 � 10−3 5 � 10−4 0.015‡ 0.0053‡

DInP . . . . . . . . . 2 � 10−4 9 � 10−3 ‡ 0.045‡

Xi . . . . . . . . . . . . 0.257 8 � 10−4

Bro § . . . . . . . . . . . . . . . 7 � 10−4

Statistic significances: calculated using Eq (29). Labels mean: InP, in patients at La Fuenfrı́a Hospital (Fig 1A); Adm, admissions to La Fuenfrı́a Hospital (Fig 2A); Dis,

discharges from La Fuenfrı́a Hospital (Fig 2D); InP, daily sequence of inpatients (Fig 1A); DInP, InP daily variation (Fig 1B); Xi Rw (Fig 1E) built using Eq (5); Bro,

Brownian noise calculated as indicated in the Random fractals Sub-subsection and Eq (7). Whi, White noise calculated as indicated in Sub-subsection the Random

fractals.
§: Ds is the average of M = 100 sequences with N = 1329 evaluated with Eq (14), total variance was calculated [11, 37];
‡, are values having borderline significance, but that could more significant if the pdf of data would have been known and the Vysochanskij–Petunin inequality use

would had not been necessary, we call them ‘undecided significance’.
†: Referred to Corollary 1 for Theorem 1.

https://doi.org/10.1371/journal.pone.0262815.t002
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which indicates that Theorem 1 does not hold to this case, and that Vysochanskij–Petunin

inequality, strictly, cannot be used to asses P(ΔDs). Yet by virtue of Corollary 1 Eq (32) indeed

P� 1

6
≊ 0:16 for Δ(Ds) = 0 occurs per chance: i.e., it is not statistically significant [42, 43, 58].

; The InP Rw fluctuations were a result of delays between daily Hospital’s discharges and
admissions.

Monte Carlo simulated sequences. White Gaussian noise in Fig 5A is a sequence of

fgi ¼ Nð0; 1Þgi¼1;2;...;104 and Fig 5C of fgi ¼ Nð0; 10� 4Þgi¼1;2;...;104 . Brownian noise in Fig 5B is

the result of

bi ¼
b1 ¼ 0

bi þ gi� 1 ) 2⩾ i⩾ 1329

(

ð7Þ

where bi is the ith point in Fig 5B and gi−1 is the (i − 1)th point in Fig 5A. The required random

normal variates of type N[0, 1] were generated as indicated in thin the Mathematical Appen-

dix. In contrast with the Gaussian white noise (Fig 5A and 5C), Brownian noise sequences

have slow and fast meanders and relatively long periods with trends to increase and/or to

decrease which are just local tendencies in the segment, generated as an example (Fig 5B and

5E), the segment did not indicate any periodicity. Segments such as the one in Fig 5B for 7 �

103 ⩽ x ⩽ 104 look very much like the InP curve at La Fuenfrı́a Hospital in Fig 1A which also

produces a false sensation of periodicity with a slight tendency to decrease, yet they are just

chaotic trends, in spite of the fact that the underlying random processes (Figs 1A and 5A and

5C) have no periodicities at all. A Rw expresses a system that is out of control, just like epidem-

ics [5, 11, 44], storms [2, 61–64] or earthquakes [65], which if described with statistical param-

eters based on a (short) periods of time leads to wrong conclusions.

Fig 5. Two sequences generated with Monte Carlo simulation using Eq (23) as described by Box and Muller [59,

60]. Panels are: Panel A, Gaussian white noise and; B: Gaussian Rw, a Rw generated using Eq (7) from data on pane A;

Panel C, Gaussian white noise and fgi ¼ Nð0; 10� 4Þgi¼1;2;...;104 ; D: Gaussian Rw, a Rw generated using Eq (7) from data

on pane C Abscissa and ordinate are arbitrary, Please notice [Ds ± s(Ds)] estimated with Eqs (14) and (15) are: Panel A,

1.66122 ± 7.60191 � 10−4; Panel B, 1.32692 ± 7.6926 � 10−4; Panel C, 1.6692 ± 7.64176 � 10−4; Panel D, 1.31723 ± 7.72806

� 10−4. Rw stands for random walk, more details in the communication text.

https://doi.org/10.1371/journal.pone.0262815.g005
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Power spectrum analyzes

A classic form to show function periodicities in time domain, is to transform this them into

frequency domain function, which is a sum of sines and cosines, using a fast Fourier transform

(FFT) [39, 48]. Transformed values for each frequency (f) are ‘complex numbers’ (C), cf com-

prised of two parts or components: one is sometimes referred to just the ‘real component af’

(R) and a, so called, ‘imaginary’ (I) component (bf

ffiffiffiffiffiffiffi
� 1
p

). A complex number (cf) is of the

form

cf ¼ af þ bf

ffiffiffiffiffiffiffi
� 1
p

¼ af þ bf ι)

cf 2 fCg

af ^ bf 2 fRg

bf ι 2 fIg;

8
>>><

>>>:

ð8Þ

where parentheses indicate sets of numbers, and 2 reads as “belongs to”. The ‘energy’,

expressed as either a steady curve’s nonzero curve values, or sharp increases or variations in

amplitude (such a as the peak in Fig 6B, something we could informally call its ‘weight’), con-

tributed by each frequency component to total signal energy in a fluctuating complex process

Fig 6. False periodicity analysis in Rws. Use of spectral density (cfj
). Panels are: Panel A- A perfectly periodic signal,

the sine trigonometric function zðxÞ ¼ sin x p

128

� �
; Panel B- cfj

of the sine function shown in panel A; Panel C- cfj
of

Gaussian white noise shown at Fig 5A; Panel D- cfj
of Brown Rw shown in Fig 5B; Panel E- cfj

pf daily inpatients

(InP) sequence which in appears in Fig 1A. Ordinate of panels B through E, is power dissipated at each frequency. The

sine function depicted dissipates all its energy at a single frequency observed at a single neat peak in its ψj (panel B).

sequence for the number of hospitalized patientsSDfj corresponds to a Gaussian Rw without any underlying periodicity.

All SD plots were filtered using a Hann window [39, 66]. The rapid oscillations observed at right of signals in panel B

to D are an artefact due to sampling discrete points in the signal for the Fourier transformation. Rw stands for random
walk, further details in the text.

https://doi.org/10.1371/journal.pone.0262815.g006
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is given by

ðψ f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

f þ b2
f

q
Þ 2 R ð9Þ

plotting ψf against f id called a spectral density plot, and it is areal number.

An intuitive manner to understand this, is to consider a perfect periodic signal such as a

trigonometric sine function like zðxÞ ¼ sin 2xp
T

� �
where π = 3.1415926. . . and T is a constant

(called the waveform’s period) with same units (meters, seconds, grams, volts, or else) as x. The

example is show in Fig 6A. Fig 6B, presents Fig 6A’s power spectrum consisting of a single

peak f ¼ 1

T frequency. Please notice that to calculate ψf the actual signal is sampled in Δx inter-

vals (equivalent to multiplying by something called a Dirac comb and the FFT also contains the

frequency components of the Dirac comb producing a burst of rapid vibrations in the right

half of each trace [39].

Fig 6C is a ψf spectrum of the Gaussian white noise shown in Fig 5A; ordinates of panels B

through E, in arbitrary units. In Fig 6C it is seen that all frequencies have the same ‘weight’,

i.e., all frequencies contributions are equal. Fig 6D is a Brown Rw ψf spectrum,; in double loga-

rithmic coordinates, the spectral density is a straight line which decays with a slope of 1

f 2. Fig 6E

is ψf of daily inpatients (InP) sequence shown in Fig 1A.

Although the simulated sequences in Fig 6 are 10000 points long and Hospital data are

only 1329 points long, there is an evident similarity between the Brownian noise ψf (Fig

6D), and ψf from the sequence of Hospital inpatients (Inp) between May 1 2013 and

December 19 2017 (Fig 6E). In both cases ψf are characteristic of a Brown Rw and none of

these ψfs has a peak which could indicate a predominant periodic component which could

suggest for any periodicity, despite of short lapses in the Brown Rws that could give this

impression.

Fig 6C is Gaussian white noise cfj
calculated for the signal in Fig 5A. In Fig 6C all frequen-

cies have the same ‘weights’, the contributions of al frequencies are equal, which leads to the

‘white’ name of this kind of noise. Fig 6D shows cfj
of the Brownian Rw in Fig 5B, one may

observe that in double logarithmic coordinates the spectral density follows a straight line

which decays with a slope of 1

f 2. Finally, also in Fig 6E, we show cfj
corresponding to daily hos-

pitalized patients sequence shown in Fig 1A. Except for that simulated sequences in Fig 6 are

104 points long and Hospital data are only 1329 points long, there is an evident similarity

between the Brownian noise cfj
, and that cfj

from the sequence of Hospital discharges between

May 1 2013 and December 19 2017. In both cases cfj
are characteristic of a Rw and none of

these cfj
has no peak which could suggest periodic components which could account for any peri-

odicity, despite short periods in the Rws that could give this impression.

Daily fluctuations in stay duration and average stay duration in operative

units at La Fuenfrı́a Hospital

The Hospital is divided into the following Clinical Operative Units (COU): RCPU, Relapsing

Chronic Patients Unit, this unit operated until May 2016 when its beds were transferred to the

CCU; Chronic Care Unit; PCU, Palliative Care Unit; FRU, Function Recovery Unit; TU,

Tuberculosis Unit and NTU, Neurorehabilitation Treatment Unit. Fig 7A presents data on

daily number of in–patients (InP) at each unit, and their average stay duration on Panel Fig

7B). Daily fluctuations of in–patients and average length of stays (LoS) for each COU calcu-

lated every day from January 1 2015 uo to December 12 201. Abscissas are days from January 1

2014, ordinates are in decimal logarithmic scale to better visualize some of sequence large
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outliers, which are particularly evident in Panel Fig 7B. Traces in Fig 7 seem to be a kind of

Rw. All have some outlying peaks, particularly RCPU and UTB, however, less prominent

peaks, occur in other COU too. It it is important to note that in this paper we sometimes refer

to products or quotients between random variables, this is the case of averages including num-

ber of patients and stay duration in each COU in Fig 7B. We know that our data are not Gauss-

ian, however even in the case of Gaussian values these averages, may be quotients of random

variables following a a “pathological” statistical distribution such as the Cauchy pdf (See the

Mathematical Appendix Subsection On Cauchy distributed variables).

Nonparametric statistical analysis of Hospital’s operative units sequences

shown in Fig 7

“If a sample is too small you can’t show that anything is statistically significant,

whereas if sample is too big, everything is statistically significant.”. . . “you are doomed to

significance.”

Norman and Steiner [72, pg. 24].

As said in Section sequences in Fig 7B include data such InP average patients’ stay duration in

each operative unit (Y). This number calculated as:

ϒ ¼
PNd

j¼1
ϒd;j

Nd

ð10Þ

where d represent a given period and j is the jth patient in the service, and Nd is the number of

patients in each service at day d. Thus, Yd are quotients unknown distribution random vari-

ables. As mentioned in the Mathematical Appendix, those quotients of random variables

have uncertain distributions, which in the case of Gaussian variables is the Cauchy pdf Eq (24)

discussed in the Mathematical Appendix. These quotients follow unknown pdfs when terms

in the ratio obey unknown pdfs. For these distributions sample mean (x) n and sample vari-

ance [s2(x)] are meaningless. Statistical sampling theory is based on the fact that x and s2(x)

converge towards the population mean (μ), and population variance [σ2]. Yet, μ and σ2 do not

exist for Cauchy and other, so called, “pathological distributions” for which x and s2(x) have

nowhere towards to converge to. Cauchy sample experimental estimates of x and s2(x) vary

Fig 7. Daily fluctuations of in-patients and average duration of stays for each Clinical Operative Unit recalculated

every day from January 1 2015 until December 12 2017. A- Number of in–patients (InP) at each Operative Unit. B-

Average stay duration at each Operating Unit [Yd defined as in Eq (10)]. Abscissas are days elapsed from January 1

2014, ordinates are in logarithmic scale to better visualize some of sequence features. Unit initials mean: RCPU,

Relapsing Chronic Patients Unit, this unit was suppressed on May 2016 and its beds were transferred to CCU; CCU,

Chronic Care Unit; PCU, Palliative Care Unit; FRU, Function Recovery Unit; TU, Tuberculosis Unit; NTU,

Neurrehabilitation Treatment Unit.

https://doi.org/10.1371/journal.pone.0262815.g007
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wildly, specially when sample sizes grow and large outlier values become very likely [73, 74].

Due to these only nonparametric descriptive analysis provides meaningful information on

sample localization and dispersion.

Caveat emptor: data samples from La Fuenfrı́a Hospital, except for those in Fig 3, are rather

large (986 ⩽ N ⩽ 1434). Under these circumstances small, but statistically significant changes,

which lack relevance or meaning in practice, may be detected, [70, 75, 76]. Table 3 contains

results where sequences in Fig 3 are subjects o a nonparametric Theil regression analysis [77].

As seen in Table 3, many of the hospital units sequences in Fig 6 seem to produce a small, but

highly statistically significant, correlation between the sequence under study and time. All the

time series in this figures are Rws (not shown), as was confirmed by their spectral density,

characteristic of Brownian noise, without any evidence of periodicity, and resembling those in

Fig 7D and 7E. As stated, in connection with the sequence in Fig 5B and 5D, Rws may some

times exhibit rather long, trends to increase or decrease, that are independent from any varia-

tion in factors determining the Rw. The pdf of Dyt ¼ yt � yt� Dt did not change in those peri-

ods. Due to these meanderings of time sequences, descriptive statistical parameters, even if

optimally chosen, like in Table 3 fail to provide meaningful information on Rws like Fig 6B

and some of the preceding figures.

Discussion and conclusions

Study purpose an empirical finding

At least during the study period, the La Fuenfrı́a Hospital operated, in median, at 76.8% of its

total capacity and fluctuated in what could be interpreted as slow periodic meanders (Fig 1A).

Yet, the daily admissions (Fig 1B) or discharges from LFH (Fig 1D) are random sequences

which show no periodicities whatsoever. Daily differences (Fig 1D) between patients admitted

Table 3. Nonparametric linear Theil [67–70] regression parameters of LFH clinical units’ time sequences expressed for each unit as in Fig 7.

Sequences α 100 � β ρS P N
InP

RCPU 12.8 (12.5, 13.0) −1.0 (−1.1, −0.9) −0.618 <10−6 986

CCU 67.9 (67.4, 68.4) −2.9 (−2.1, −1.9) −0.695 <10−6 1434

RCPU 18.3 (18.1, 18.4) −0.5 (−0.6, −0.5) −0.540 <10−6 1434

RFU 37.7 (37.1, 38.2) 1.9 (1.8, 2.1) 0.558 <10−6 1434

TB 6.6 (6.5, 6.8) −0.3 (−0.33, −0.26) −0.447 <10−6 1331

TNU 18.8 (18.5, 19.1) 0.5 (0.4, 0.6) 0.4231 <10−6 1434

ϒd

RCPU 16.1 (15.2, 16.9) 1.8 (1.5, 2.1) 0.343 <10−6 985

CCU 67.9 (67.4, 68.4) 0.1 (−0.09, 0.30) 0.002 0.96 1434

CPU 54.4 (53.5, 55.4) 0.6 (0.4, 0.9) 0.123 2�10−6 1434

RFU 59.6 (59.0, 60.2) −0.3 (−0.5, −0.2) −0.107 4�10−5 1434

TB 53.8 (51.6, 56.1) −0.9 (−1.3, −0.4) −0.181 <10−6 1331

TNU 84.1 (83.0, 85.3) −1.7 (−2.0, −1.4) −0.312 <10−6 1434

Sequence of InP: number of in-patients in the Unit. ϒd sequences are average stay duration at each Operating Unit [defined as in Fig 7 by Eq (10)]. Data presented as

medians and their 95% Confidence Interval (in parentheses), α regression line value when x = 0 (intercept), 100 � β straight line regression coefficient (slope, multiplied

by 100 to reduce Table width), ρS nonparametric Spearman’s [71] crenelation coefficient, P is the probability that each sequence comes from a population with ρS = 0,

usually called the probability that the correlation is not statistically significant, and N is the number of data pairs used for the linear regression analysis. HLF unit initials

mean: RCPU, Relapsing Chronic Patients Unit, this unit was suppressed on May 2016 and its beds were transferred to CCU; CCU, Chronic Care Unit; PCU, Palliative

Care Unit; FRU, Function Recovery Unit; TU, Tuberculosis Unit; NTU, Neurorehabilitation Treatment Unit.

https://doi.org/10.1371/journal.pone.0262815.t003
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(Fig 2B) and discharged (Fig 2D) from the Hospital were also random non periodic sequences.

It was somewhat surprising to find that the operating Hospital’s curve (Fig 1A)) could be

almost perfectly (Fig 1E) reproduced when daily differences between admitted and discharged

patients (Fig 1D) were added sequentially as indicated in the Random fractals Section’s Eq (3).

Meaning of lack of control of a process

Data on Figs 1A and 6E reflect that Hospital bed occupancy is described by a random fractal

function, the so called Brownian Rw. Just like Brownian Rw, bed occupancy fluctuates with

important periods of low occupancy.

The main characteristic of Brownian Rw. is that its complexity (reflected in its Ds) does not

change if the number of daily inpatients (DInP) increases or decreases, this is called self affin-

ity of the process [5, 44], it does not change with scaling DInP. This is shown by the Monte

Carlo simulated traces of Fig 5 where the Gaussian white noise fgi ¼ Nð0; 1Þgi¼1;2;...;104 in panel

Fig 5A looks very similar to the fgi ¼ Nð0; 10� 4Þgi¼1;2;...;104 white noise in panel Fig 5C, exp of

course for the ordinate scale; Something similar happens with the associated Brownian noises

in panels Fig 5B and 5D, which have similar complexities, but the fluctuations in Panel Fig 5B

are approximately 10 times wider in than in Panel Fig 5D.

Still, from a production efficiency view point if the differences (in Fig 5 ) are very important
since the fluctuation range of the Brownian Rw diminishes when gi! 0 and production of goods
or services increases as the system becomes more predictable (controlled), uniformly productive
and efficient.

At La Fuenfrı́a Hospital InP would fluctuate less if the lag between Adm and Dis! 0. Iden-

tifying a problem is the first step to be able to solve it. This means, making the Hospital more

efficient requires analyzing the factors that keep Adm and Dis out of synchrony.

Characteristics of La Fuenfrı́a Hospital [78]

Hospital La Fuenfrı́a (https://bit.ly/32FVmyf) is one of three medium and long stay SERMAS

hospitals in Madrid’s Autonomous Region (MAC) together with Virgen de la Poveda Hospital

and Guadarrama Hospital, under the Sanitary Chancellery (Consejería de Sanidad), LFH is in

Cercedilla Municipality at the north of Madrid Region, at 60 km from Madrid city. The MAC

comprises an area of of 8021.8 km2 and a population of 6.6 M.

The long stay duration are related to local norms and procedures to handle patients, it is

likely that in Spain the public health system has more leeway to tolerate longer stays than per-

haps other EU nations, especially when dealing with needy patients. Concurrently, LFH man-

ages many chronic cases, and it most important unit is FRU, responsible for recovering patients

with disabilities stemming from bone surgery (prothesis, fractures, etc.) and motor deficiencies

following cerebrovascular accidents (CVA or strokes). Thus perhaps it is to be expected that

stays at LFHa may be longer than at hospitals dealing under ambulatory treatment.

LFH is located in a pleasant rural area, Madrid’s Sierra de Guadarrama, convenient for its

goals, but distant from Madrid (population 3.3 M) city and MAC, in general. Patients are

referred from other SERMAS hospitals, thus, delays between LFH discharges and new patients

arrivals, are not surprising. The analyst of data in this paper (CS) was completely unaware of

this factors, but they popped out sharply from data analysis discussed here.

Classical statistical analysis of institutional efficiency

Descriptive statistics, using parametric (Gaussian) methods, is probably the the most common

manner used tools to gauge institutional efficiency. LFH SELENE©’ include command panels
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parameters that are ratios of random variables. These ratios have unknown statistical distribu-

tions which like, the Cauchy pdf, have no central moments, therefore mean or variances do

not exist, thus textbook recipes like

x ¼
PN

i¼1
xi

N
and=or s2ðxÞ ¼

PN
i¼1
ðxi � xÞ2

N � 1
;

for sample mean and variance, are, calculable, yet, absolutely meaningless [79–82] (See the sec-

tion on the Cauchy distribution in the Mathematical Appendix. For these kinds of random

samples the use of nonparametric statistical estimators such as medians and 95% CI must

always be preferred to x and s2ðxÞ which, are also, very sensitive to outliers and, as said, are

meaningless for Cauychyan variables. Furthermore, in the analysis of data extracted from LFH

command panels, no Gaussaian variables were found, further demanding the use of nonpara-

metric statistical methods.

Another example of the failure of statistics to productively help analyze aspects of LFH

operative efficiency, may be derived from Fig 7. The figure presents unit operation data are

Rws with large outliers. However, when these Rw were subjected to linear nonparametric

regressions (Table 3) apparent correlations with time appeared, with correlation coefficients

statistically distinct from zero, i.e., apparently highly unlikely to differ from zero per chance.

Large samples are a good way to discover statistically significant, but irrelevant, trends, which,

as shown here, may just be temporary tendencies of a random walk. Such correlations could

be used to create institutional (probably wrong) operation policies. Classical statistics is notori-

ously limited to study fractal processes [4, 5, 7, 35, 36, 44]. Therefor, of our findings regarding

statistical evaluation of LFH operational curves are neither new nor surprising. The novelty of

our findings relates to the commonality of statistical analyses and the lack of other analyzes

(fractal or else) to study institutional efficiency.

Several caveats should be considered:

1. This communication is centered on maximizing the use of hospital facilities as an indica-

tion of efficiency. Yet, it does not consider other criteria such as the patient’s welfare, degree

of recovery, speed of recovery, which are of fundamental importance, but also depend on

the efficient of hospital resources.

2. The main theoretical tool we use is fractal analysis, but to accurately estimate fractal dimen-

sion very long data series [11, 37, 83]. this limitation, as done here, may be overcome py the

use of sequences with known fractal dimensions as applied here and in previous studies [11,

37].

3. Spectral analysis confirmed the lack of periodicity in the InP time series.

4. Yet, the most important finding reported here is that that the wide fluctuations observed in

the inpatients (InP, Fig 1A) may be reconstructed with identical naked-eye and fractal

properties (Xi sequence in Fig 1E) by adding the daily differences in LFH patients admitted

and discharged (DDiAd, Fig 1D) using Eq (5). These are empirical finding result from any
mathematical theory or artifact.

Rw in La Fuenfrı́a Hospital operation curves

The most surprising finding in this study, is that curves representing in-patients, InP, and

ΔInP are random Markovian processes [51]. In a Markovian processes the past determines

what happens now, and what occurs now decides the future. If there were no random
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components in the sequence, known the present would allow to know past and future of the

system. Yet, since uncertainty separates one instant from the next, the whole system becomes

unpredictable. It dt drifts over time in ways that a naive observer can realize, one is driven to

believe that the system is predictable and determined.

If a present drift trend pleases us, we tend to believe that whatever we are doing is “correct”,

in the opposite case we would tend to believe that we are doing something “wrong”, even if in

reality we have no “merit” in the first case nor are we “guilty” in the second case. An examples

of this is seen at times from 0 to 6000 in Fig 5B. But after that time the Rw in Fig 5B which pro-

duces a false appearance of relative “stability”, even when at all those times it is exactly the

same system under the same fgi ¼ Nð0; 1Þgi¼1;2;...;104 Gaussian conditions as shown by the plot

in Fig 5A.

Caveats and recommendations

The contribution of our work

We know (both authors are trained MDs) that hospitals and medicine are complex systems,

yet our study shows that the waveform meandering between full and insufficient occupancy at

LFH may be perfectly, explained considering a single factor: admission and discharges are sys-

tematically and randomly out of phase. These random differences, small as they may be, con-

stitute the de determining factor at LFH: To the best of our knowledge nobody has previously

singled this small but important hidden factor. We know (both authors are trained Mds) that

hospitals and medicine are complex systems, yet our study shows that the waveform meander-

ing between full and insufficient occupancy at LFH may be, exactly, explained considering a
single factor: admission and discharges are systematically and randomly out of phase. This ran-

dom difference, is the determining factor at LFH: To the best of our knowledge nobody has

previously singled out this small but important hidden factor.

Detecting problem indicators

Descriptive statistics and common Command panels, are not enough to detect hidden admin-

istration problems with impact on hospital efficiency. Descriptive statistics limitations men-

tioned in in the prior Subsection Rw in La Fuenfrı́a Hospital operation curves open a

question on how to evaluate and optimize the operation and administration of La Fuenfrı́a

Hospital whose operation curves are Markovian random walks.

Random walk curve meanders reduce system efficiency. In a hospital performance case,

low occupation equals inefficient periods, for the following reasons:

1. The population demanding service, does not receive such service..

2. The cost of operating the hospital operation costs (infrastructure, salaries, etc.) are wasted

during periods of low occupancy

At la Fuenfrı́a Hospital occupation was as low as 45% (Fig 1A) of its capacity. As discussed

in the La Fuenfrı́a Hospital data statistical characteristics Sub-section oscillations between

full and partial occupation seem related to a daily lag between Admissions and Discharges. If

this lag is eliminated, fluctuations in occupancy would disappear should this lag be eliminated

fluctuations in occupancy would disappear.

During the study period, the mean number of LFH in-patients was InP ¼ 149:2 almost

identical to its median dInP ¼ 150:0, and ranged (102, 187). Since the hospital had 192

patient’s beds, thus the bed occupancy during the study period was x ¼ 77:7% and a median

of x̂ ¼ 78:2 ranging (53.1, 97.4)%. Thus over the observation period, on average 22% ranging
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(3, 47)% La Fuendrı́a Hospital beds were vacant, which means that a similar proportion of the

resources assigned to LFH was lost, and therefore this does not generate a lack of demand.

Can the problem be solved?

Our study indicates that LFH vacancies could be eliminated or greatly reduced if the daily dif-

ference Adm-Dis is nullified (see Meaning of lack of control Sub-section) of a process, Figs 2

and 5). Efficient service characterized by a Rw in time which may be increased by reducing

broad meanders of the walk (Fig 5). In the case of La Fuenfrı́a Hospital this study suggests that

the key factor for reducing efficiency is the daily difference between admissions and

discharges.

Nonetheless, the solution probably transcends the realms of La Fuenfrı́a Hospital. We have

no information on other SERMAS hospitals, yet the description, La Fuenfrı́a Hospital realms.

We have no information on other SERMAS hospitals, yet the description of LFH provided in

Introduction Section illustrates that LFH is interwoven in the SERMAS network, seems neces-

sary to consider current communications and required modifications within the network. The

easy aspect may be to improve communications between admission and discharge depart-

ments within LFH, although this may imply some changes to the internal computer network.

Thus, if the admissions department were to be given notice prior to the actual discharges, this

would enable the possibility to notify the SERMAS network that LFH will have space for a new

patient and ensure that the hospital is ready to occupy the space immediately when it actually

becomes available.

However, this immediate availability is also hindered by the large area that SERMAS covers,

the fact that there is a distance of 60 km from the city of Madrid (the largest set of SERMAS

patients), and even more from other areas in Madrid’s Autonomous Region. Factors such as

means and speed of transportation may be critical, institutional transportation within the SER-

MAS network is probably faster and easier to program, than solely relying on the patient’s and

its family’s resources and efficiency, for example. However, if the efficiency of SERMAS hospi-

tals is affected to the same extent as La Fuenfrı́a Hospital’s, it may be worthwhile to study the

system and to implement solutions between admission and discharges in SERMAS hospitals to

improve the system’s efficiency.

Appendices

Mathematical appendix

Calculating D, approximated fractal dimension of sequences. Classical (Euclidean)

geometry is useful to describe relatively simple forms such as straight lines, squares, circles,

cones, pyramids, etc. All these forms may be represented as a linear combination of an integer

number of orthogonal components called Euclidean dimensions. One- or two-dimensional

Euclidean spaces are subsets of our sensory tri-dimensional space. Yet, almost all natural

forms cannot be represented in terms of Euclidean geometry.

According to Mandelbrot [5, pg. 15 and Ch. 39]:

“A fractal is by definition a set for which the Hausdorff– Besicovitch dimension strictly

exceeds the topological dimension. Every set with a non-integer D is a fractal.”

The Hausdorff–Besicovitch dimension of a set in a metric space may be expressed as [5]:

Dh ¼ � lim
�!0

ln½Nð�Þ�
lnð�Þ

¼ � lim
�!0

log
�
½Nð�Þ� ð11Þ
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where N(�) is the number of open balls or radius � required to cover the set. In a metric space

given any point X, an open ball centered on X with radius �, is the set of all points x for which

distance between X and x is < �.

The term waveform is applied to the shape of a set, usually drawn as instant values of a peri-

odic quantity in time. Besides classical methods such as moment statistics and regression anal-

ysis, properties like Kolmogorov y Sinai entropy [84], apparent entropy [7, 85, 86] and fractal

[11] have been proposed to analyze waveforms. Fractal analysis may provide information on

spacial extent (tortuosity or capacity to extend in space) and on self-similarity (the property of

staying unchanged when measure scale changes) and self affinity [87]. In bidimensional spaces

waveforms are planar curves, which may have coordinates of different units or dimensions.

There is a simple algorithm to approximate fractal dimension of a curve [11]. To achieve

this, fractal dimension Ds is estimated for a set of N points from a set{xi, yi}i=0,1,2,. . .,N values

were the abscissa xi increases by a constant factor (Δx). The curve is transformed into a unit

square (a square with side length equal to 1) [11] as follows. A first transformation normalizes

every abscissa point as:

x�i ¼
xi

xmax � xmin
ð12Þ

where xis are the original abscissa values, xmax is the largest xi. A second transform normalizes

the ordinate as:

y�i ¼
yi � ymin

ymax � ymin
ð13Þ

where yi are the original ordinate values, and ymin and ymax are minimum and maximum yi,

respectively. The unit square may be seen as covered with a N � N grid of cells. N containing a

transformed curve point. A length L line may be divided into N(�) = L/(2 � �) segments of

mean length 2 � �, and covered with N radius � open balls. Fractal dimension is the approxi-

mated as Ds [11, Ecuation (6a)] as

Dh ¼ lim
N0!1

Ds ¼ 1þ
lnðLÞ � lnð2Þ
lnð2 � N 0Þ

� �

ð14Þ

where Dh is again the Hausdorff–Besicovitch dimension, N0 = N − 1, and L is the curve length

after embedding in the unit square. It is important to observe that Ds = Dh only at the limit
when N0 !1, for all other N0 values, Dh> Ds. Thus Dss obtained with same N0s are the only

fit to be compared. Ds uncertainty may be estimated through its variance [11]:

varðDsÞ ¼
N 0

L2 � lnð2 � N 0Þ2
XN

i¼1

ðDyi � DyÞ2

N 0
¼ s2 Dsð Þ

) s Dsð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 0

L2 � lnð2 � N 0Þ2
XN

i¼1

ðDyi � DyÞ2

N 0

s ð15Þ

where Δyi is segment i length, distance between points (xi−1, yi−1) and (xi, yi) of the transform

and Dy is those segments’ mean. Ds means and variances may be used to compare empiric Ds

values [35, Sections 5.2.1 and 5.2.4] [37] based on Vysochanskij–Petunin inequality [56, 57].

Generation of random sequences for calibration purposes. Monte Carlo simulation was

used to generate M = 100 traces of N = 1329 points each of white noise (see Random Fractals

Subsection) of white noise. White noises simulated were sequences of Gaussian variables of

type N(0, 1) [Eq (23)]. Estimated fractal dimension Ds was calculated for each simulated trace
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as indicated in Subsection, Ds [Eq (14)] and var(Ds) [Eq (15)]. Eq (15) intra sequence Ds vari-

ance, due to unit square–embedded waveform Δyi in each jth sequence. Each sequence is a

(short?) segment from an infinite sequence with same properties. Every sequence of length N
<1 generated as indicated may be used to produce a different approximation to Dh depend-

ing on where each is sample taken. To estimate Ds and its uncertainty means were calculated

for M simulated traces as

Ds ¼
XM

j¼1

Ds;j

M
: ð16Þ

The variance od Ds between curves (which may be visualized as random sets N points sampled

from an infinitely curve) for the M waveforms sets was determined as

varbðDsÞ ¼
XM

j¼1

ðDs;j � Ds;wÞ
2

M � 1
: ð17Þ

Then, total variance, vartðDs;wÞ, was determined as

vartðDs;wÞ ¼ varbðDsÞ þ varwðDsÞ ¼
XM

j¼1

varðDs;jÞ

M

" #

; ð18Þ

where varwðDsÞ is the average variance within traces and var(Ds,j) calculated with Eq (15).

Ds;b and vartðDsÞ were used to compare the difference in Ds from the empiric sequences

with Monte Carlo simulated sequences with known properties. In this manner it was possible

to decide if empiric sequences were white, brow, or other kind noise, spite of N<1 [11, 37].

Statistical significance of the differences was established using the Vysochanskij and Petunin

inequality (V-P, details in Theorem 1). V-P inequality allows comparing means of samples

coming from a population with unknown pdf as long as it is unimodal, and has a definite vari-
ance [56, 57, 88]. Due to the unknown pdf, the comparison using V-P inequality tends to

declare as not different to means that are weakly statistically significantly distinct (statistical

error of type II [28]), but is 1 � 4

9

� �
� 100 � 56% less likelier to produce type II errors than clas-

sical Tchebichev inequality [89], of which V-P inequality is a particular case. This means that

parameter differences declared significant with the V-P inequality, are more significant than

they appear. To compare the statistical significance of a difference between two Ds means [35,

Adaptwd from Eqs. (34) and (35)] it is required only that

P jDs;1 � Ds;2j ¼ 0
� �

¼ P jDDs ð1;2Þj ¼ 0
� �

�
2

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vartðDs;1Þ þ vartðDs;2Þ

q
ð19Þ

where the subindex t indicates total variance, and

P
DDs 1;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vartðDs1

Þ þ vartðDs;2Þ
q � x ¼

ffiffiffiffiffi
40

9

r

¼ 2:108 . . .

 !
2

6
4

3

7
5 � 0:05 ¼ a ð20Þ

where α is the largest probability we accept to declare a difference statistically significant. If D’s

pdf is known and Gaussian Eq (20) constant would not be x ¼
ffiffiffi
40

9

q
¼ 2:108 . . . as specified by

the V-P inequality, but ξ = 1.959. . .. This is true for any case where the pdf is known, thus we
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should write Eq (20) somewhat like x⪅
ffiffiffi
40

9

q
within the parentheses, but this is unnecessary

due to the demonstrated inequality [56, 57, 88].

Eqs (16) to (18) were also calculated for sets of M = 100 Brownian sequences with N = 1329

like

bðt þ DtÞ ¼ bðtÞ þ Nð0; 1Þ ð21Þ

and were used as standards to calculate the probability of significance between their estimated

Ds versus Ds calculates for and empirical distribution of interest. Their fractal dimension Dh,

when N!1 is 1.5. An example may be found in [37]. The N[0, 1] variable was generated as

indicated in Eq (23).

Generating uniform (rectangular) random variables. Uniform random variables of

U[0, 1] type were generated. Fundamental to all Monte Carlo simulations [90] is a good uni-

form (pseudo) random (PRNG) number generator. Data for all numerical simulations carried

out in this work were produced using random numbers (r) with continuous rectangular (uni-

form) distribution in the closed interval [0, 1] or U[0, 1]. All U[0, 1] [Eq (22)] were generated

using the 2002/2/10 initialization-improved 623-dimensionally evenly distributed [91] uni-

form pseudo random number generator MT19937 algorithm [92, 93]. The procedure used

makes exceedingly unlikely (P = 2−64� 5.4 � 10−20) that the same sequence, {ri}, of U[0, 1] is

used twice. Calculations were programmed in C++ using g++ version 5.4.0 20160609 with

C++14 standards, under Ubuntu GNU Linux version 18.4. For further details on random

number generator initializing see Sevcik [37].

Rectangular random variables fulfill the following property

U½a; b� ¼

0 ) x < a

k ¼
1

b � a
) a⩽ x⩽ b

0 ) x > b

8
>>>><

>>>>:

ð22Þ

with mean EðxÞ ¼ b� a
2

, x, k may be a real number [11] or an integer [11, 37].

Generating random normal deviates. Random normal variables of the ding N[μ, σ] = N
[0, 1] were generated with the Box and Muller [59, 94] algorithm

N½0; 1� ¼

sin½2pr1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2ln½r2�

p

cos½2pr1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2ln½r2�

p

8
>>><

>>>:

ð23Þ

where r1 and r2 are two uniformly distributed random variates of the kind U[0, 1.].

On Cauchy distributed variables. The Cauchy distribution is symmetric about its median

(location factor, m̂) and has a width (dispersion) factor (λ) and its pdf is

cðxÞ ¼
1

p
�

l

l
2
þ ðx � m̂Þ2

ð24Þ

and also has a PDF like

CðxÞ ¼
1

p
� arctan

x � m̂
l

� �

þ
1

2
ð25Þ

where arctan refers to the arc tangent trigonometric function. Cauchy pdf has no central
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moments [28, 81], and thus has no defined mean, variance, skewedness or kurtosis [75, 81,

95]. If conventional equations for sample y or s2(y) values are calculated, they will be seen to

vary wildly and wild variability increases with sample size. Cauchy–type data can be described

and compared only with nonparametric statistics. From Eq (25) it is possible to prove that a

95% CI of a Cauchyan variable is equivalent to� μ ± 12.706λ which gives a� 25.412λ span to

the 95% CI. A Cauchy random variable is prone to assume values very far away from its

median, outliers are very commonly observed as sample size increases [75, 81, 95].

The Vysochanskij-Petunin inequality [56, 57]. Theorem 1 (Vysochanskij-Petunin). : Let
X be a random variable with unimodal distribution, mean μ and finite, non-zero variance σ2.

Then, for any l >
ffiffi
8

3

q
¼ 1:63299 . . .

PðjX � mj � lsÞ �
4

9l
2
¼ �: ð26Þ

Using the inequality to calculate significance when l >
ffiffi
8

3

q

Theorem 1 holds even with heavily skewed distributions and puts bounds on how much of the

data is, or is not “in the middle”. Setting � = 0.05 then l ¼ �
ffiffiffi
80

9

q
� 2:981

� �
, for a two tailed

test. By virtue of Eq (26) no matter which unimodal distribution, no matter how skewed, there

will be<2.5% chance that a datum will belong to a population with mean μ and variance σ2 if

it lays farther than ±2.981σ from μ. Please note that if the probability distribution function of

data is Gaussian ±1.96σ suffices to reach the same confidence level. We introduced the � vari-

able in Eq (26) for the statistical argumentation that follows.

Let Ds;1 and s2(Ds,1) be the mean and variance estimated for the random variable Ds,1, and

Ds;2 and s2(Ds,2) be the mean and variance estimated for the random variable Ds,2 (linearly

independent from Ds,1), then

DDs;ð1;2Þ ¼ Ds;1 � Ds;2 ð27Þ

and the estimated variance of DDs;ð1;2Þ is

s2ðDDs;ð1;2ÞÞ ¼ s2ðDs;1Þ þ s2ðDs;2Þ: ð28Þ

By virtue of the V-P inequality [Eq (26)]

P
jDDs;ð1;2Þj

sðDDs;ð1;2ÞÞ
⩾

ffiffiffiffiffiffiffi
4

9l
2

r !

¼ P
2jDDs 1;2j

3sðDDs;ð1;2ÞÞ
⩽ l

 !

⩽ � ð29Þ

which means Eq (26) that

� ¼
2

3
DDs;ð1;2Þ

sðDDs;ð1;2ÞÞ

" # :
ð30Þ
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Therefore, there is� � probability that jDDs;ð1;2Þj 6¼ 0 due to random sampling variation,

and DDs;ð1;2Þ 6¼ 0 with a confidence level P� �. Thus:

P
jDDs;ð1;2Þj

sðDDs;ð1;2ÞÞ
�

ffiffiffiffiffi
40

9

r

� 2:108

 !" #

� � ð31Þ

for a test with only one tail, since in this case we are only interested with one alternative, that

jDDs;ð1;2Þj 6¼ 0. Again, when the probability distribution function is Gaussian, the value of λ for

the one tailed case, would be� 1.65 instead of the� 2.108 demanded by Eq (26).

Using the inequality to calculate significance when l⩽
ffiffi
8

3

q

Theorem 1 does not hold, but you can still get an answer using Eq (26) as shown in the follow-

ing Corollary 1 of the V-P inequality. We know propose and prove a corollary of Theorem 1:

Corollary 1. : If l⩽
ffiffi
8

3

q
then P is not known but is bound as

1

6
⩽ P⩽ 1 ð32Þ

Proof. As indicated by Eq (26), � ¼ 4

9l2 then if

l⩽
ffiffiffi
8

3

r

) �⩾ 4 � 3

9 � 8
¼

1

6
¼ 0:16 ¼ �th ð33Þ

then �th is the value of � at the threshold required for Theorem 1 to hold. When l⩽
ffiffi
8

3

q
the pre-

dicted value of � ⩾ �th, and since there is no limit to this inequality, it may happen that the esti-

mated � > 1, but there is no probability P> 1, by definition. Thus when l⩽
ffiffi
8

3

q
it follows that

� does not express a probability. But since if l⩽
ffiffi
8

3

q
Eq (33) gives the highest P value which

may be estimated with the V-P inequality is P ¼ 1

6
, P is undetermined but bound in the inter-

val:

; l⩽
ffiffiffi
3

8

r !

)
1

6
⩽ P⩽ 1

� �

: ð34Þ
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13. Hausdorff F. Dimension und äußeres Maß. Mathem Ann. 1918; 79:157–179. https://doi.org/10.1007/

BF01457179

14. Sharma N, Ghosh JK. Sevcik’s Fractal Based Dimensionality Reduction of Hyper-Spectral Remote

Sensing Data. Internat J Comp Sci Tech. 2013; 4:52–55.

15. Diao X, Dong Q, Yang Z, Li Y. Double-Threshold Cooperative Spectrum Sensing Algorithm Based on

Sevcik Fractal Dimension. Algorithms. 2017; 10:96. https://doi.org/10.3390/a10030096

16. Shi CT. Signal Pattern Recognition Based on Fractal Features and Machine Learning. Appl Sci. 2018;

8:1327. https://doi.org/10.3390/app8081327

17. Nepiklonov VB, Spiridonova ES, Maksimova MV. Fractal analysis of global model dynamics Earth’s

gravitational fieldle. Geodes Photo Sys. 2020; 64:380–390. https://doi.org/10.30533/0536-101X-2020-

64-4-380-390

18. Xue R, Liu J, Tang H. Two-Dimensional Jamming Recognition Algorithm Based on the Sevcik Fractal

Dimension and Energy Concentration Property for UAV Frequency Hopping Systems. Information.

2020; 11:520. https://doi.org/10.3390/info11110520

19. Kołodziej M, Majkowski A, Czop W, Tarnowski P, Rak RJ, Sawicki D. Fall Detection Using a Smart-

phone. In: 21st International Conference on Computational Problems of Electrical Engineering (CPEE).

Pińczów, Poland: IEEE; 2020. p. 1–4.

20. Anonnymous. Google Scholar; 2020. WikipediA, The Free Encyclopedia. Available from: https://bit.ly/

3khLkJE.

21. Anonnymous. Carlos Sevcik Academic Profile; 2020. GoogleScholar. Available from: https://bit.ly/

2U81I4T.

22. Macrotrends. Spain Life Expectancy 1950-2019; 2019. Macrotreends LLC. Available from: https://bit.ly/

2Ii1OV6.

PLOS ONE Improving hospital occupancy

PLOS ONE | https://doi.org/10.1371/journal.pone.0262815 January 27, 2022 27 / 30

https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
https://doi.org/10.1007/978-1-4757-2763-0_14
https://doi.org/10.1007/978-1-4757-2763-0_14
https://doi.org/10.1126/science.156.3775.636
http://www.ncbi.nlm.nih.gov/pubmed/17837158
https://doi.org/10.1016/S0167-5877(05)80011-X
https://doi.org/10.1016/S0167-5877(05)80011-X
https://doi.org/10.1007/BF01619355
http://www.ncbi.nlm.nih.gov/pubmed/1744678
https://bit.ly/36kAhKG
https://doi.org/10.1016/j.physa.2005.02.053
https://bit.ly/3eNqr8g
https://bit.ly/3eNqr8g
https://arxiv.org/abs/1003.5266
https://doi.org/10.1007/BF01454831
https://doi.org/10.1007/BF01457179
https://doi.org/10.1007/BF01457179
https://doi.org/10.3390/a10030096
https://doi.org/10.3390/app8081327
https://doi.org/10.30533/0536-101X-2020-64-4-380-390
https://doi.org/10.30533/0536-101X-2020-64-4-380-390
https://doi.org/10.3390/info11110520
https://bit.ly/3khLkJE
https://bit.ly/3khLkJE
https://bit.ly/2U81I4T
https://bit.ly/2U81I4T
https://bit.ly/2Ii1OV6
https://bit.ly/2Ii1OV6
https://doi.org/10.1371/journal.pone.0262815


23. Mathers CD, Stevens A, Boerma T, White RA, Tobias MI. Causes of international increases in older

age life expectancy. The Lancet. 2015; 385:540–548. https://doi.org/10.1016/S0140-6736(14)60569-9

PMID: 25468166

24. Anonnymous. Spain Population 2019; 2019. World Population Review. Available from: https://bit.ly/

356KBH1.

25. World Population Review. Life Expectancy by Country 2020; 2019. www.WorldPopulationReview.com.

Available from: https://bit.ly/3eEtqQg.

26. Hollander M, Wolfe DA. Nonparametric statistical procedures. 1st ed. New York: Wiley; 1973.

27. Mood AM. The Distribution Theory of Runs. Ann Mathem Stat. 1940; 11:367–392. https://doi.org/10.

1214/aoms/1177731825

28. Wilks SS. Mathematical Statistics. New York: Wiley; 1962.

29. Guttman I, Wilks SS, Hunter JS. Introductory engineering statistics. New York: Wiley; 1971.

30. Bera AK, Jarque CM. An efficient large-sample test for normality of observations and regression residu-

als; 1981.

31. Gel YR, Gastwirth JL. A robust modification of the Jarque–Bera test of normality. Econ Let. 2008;

99:30–32. https://doi.org/10.1016/j.econlet.2007.05.022

32. Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika. 1965;

52:591–611. https://doi.org/10.1093/biomet/52.3-4.591

33. Smirnov NV. Estimate of deviation between empirical distribution functions in two independent samples.

Bull Mathem Moscow Univ. 1939; 2:3–16.

34. Kolmogorov A. Sulla determinazione empirica di una legge di distribuzione. Inst Ital Attuari, Giorn.

1933; 4:83–91.

35. D’Suze G, Sevcik C. Scorpion Venom Complexity Fractal Analysis. Its Relevance for Comparing Ven-

oms. J Theoret Biol. 2010; 267:405–416. https://doi.org/10.1016/j.jtbi.2010.09.009 PMID: 20833185

36. D’Suze G, Sandoval M, Sevcik C. Characterizing Tityus discrepans scorpion venom from a fractal per-

spective: Venom complexity, effects of captivity, sexual dimorphism, differences among species. Toxi-

con. 2015; 108:62–72. https://doi.org/10.1016/j.toxicon.2015.09.034 PMID: 26415902

37. Sevcik C. Fractal analysis of Pi normality. Exper Mathem. 2018; 27:331–343. https://doi.org/10.1080/

10586458.2017.1279092

38. Cooley JW, Tukey JW. An Algorithm for the Machine Calculation of Complex Fourier Series. Mathem

Comput. 1965; 19:297–301. https://doi.org/10.1090/S0025-5718-1965-0178586-1

39. Blackman RB, Tukey JW. The Measurement of Power Spectra from the Point of View of Communica-

tions Engineering. New York, U.S.A.: Dover Publications Inc.; 1959.

40. llma0000. Descripción Funcional de SELENE; 2007. Available from: https://bit.ly/2JNxFh3.

41. Handbook on European data protection law 2018 edition. 20108th ed. Luxembourg: Publications Office

of the European Union: European Union Agency for Fundamental Rights and Council of Europe; 218.

Available from: https://bit.ly/3HOxUly.

42. Benjamin DJ, . . ., Johnson VE. Redefine statistical significance. Nature Human Behav. 2018; 2:6–10.

https://doi.org/10.1038/s41562-017-0189-z PMID: 30980045

43. Ioannidis JPA. The Proposal to Lower P Value Thresholds to 0.005. JAMA. 2018; 319:1429–1430.

https://doi.org/10.1001/jama.2017.18571 PMID: 29566133

44. Hastings HH, Sugihara G. Fractals. A User’s Guide for the Natural Sciences. Oxford: Oxford University

Press; 1993.

45. Anonnymous. Empirical distribution function; 2017. WikipediA, the Free Fncyclopedia. Available from:

https://bit.ly/2U5sQkX.

46. Smirnov NV. Tables for estimating the goodness of fit of empirical distributions. Ann Math Stat. 1948;

19:279–281. https://doi.org/10.1214/aoms/1177730256

47. Wald A, Wolfowitz J. On a Test Whether Two Samples are from the Same Population. Ann Math Statist.

1940; 11:147–162. https://doi.org/10.1214/aoms/1177731909

48. Welch PD. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on

Time Averaging Over Short, Modified Periodograms. IEEE Trans Audio Electr. 1967;AU-15:70–73.

https://doi.org/10.1109/TAU.1967.1161901

49. Brown R. XXVII. A brief account of microscopical observations made in the months of June, July and

August 1827, on the particles contained in the pollen of plants; and on the general existence of active

molecules in organic and inorganic bodies. Phil Mag. 1828; 4:161–173. https://doi.org/10.1080/

14786442808674769

PLOS ONE Improving hospital occupancy

PLOS ONE | https://doi.org/10.1371/journal.pone.0262815 January 27, 2022 28 / 30

https://doi.org/10.1016/S0140-6736(14)60569-9
http://www.ncbi.nlm.nih.gov/pubmed/25468166
https://bit.ly/356KBH1
https://bit.ly/356KBH1
http://www.WorldPopulationReview.com
https://bit.ly/3eEtqQg
https://doi.org/10.1214/aoms/1177731825
https://doi.org/10.1214/aoms/1177731825
https://doi.org/10.1016/j.econlet.2007.05.022
https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.1016/j.jtbi.2010.09.009
http://www.ncbi.nlm.nih.gov/pubmed/20833185
https://doi.org/10.1016/j.toxicon.2015.09.034
http://www.ncbi.nlm.nih.gov/pubmed/26415902
https://doi.org/10.1080/10586458.2017.1279092
https://doi.org/10.1080/10586458.2017.1279092
https://doi.org/10.1090/S0025-5718-1965-0178586-1
https://bit.ly/2JNxFh3
https://bit.ly/3HOxUly
https://doi.org/10.1038/s41562-017-0189-z
http://www.ncbi.nlm.nih.gov/pubmed/30980045
https://doi.org/10.1001/jama.2017.18571
http://www.ncbi.nlm.nih.gov/pubmed/29566133
https://bit.ly/2U5sQkX
https://doi.org/10.1214/aoms/1177730256
https://doi.org/10.1214/aoms/1177731909
https://doi.org/10.1109/TAU.1967.1161901
https://doi.org/10.1080/14786442808674769
https://doi.org/10.1080/14786442808674769
https://doi.org/10.1371/journal.pone.0262815


50. Brown R. XXIV. Additional remarks on active molecules. Phil Mag. 1829; 6:161–166. https://doi.org/10.

1080/14786442908675115

51. Rosenblatt M. Random Processes. Graduate Text in Mathematics. Springer-Verlag; 1974.

52. Bharucha-Reid AL. Elements of the theory of Markov processes and their aplications. McGraw Hill

Series in Probability and Statistics. New York, USA: McGraw Hill; 1960.

53. Ross S. Stochastic Processes. 2nd ed. Wyley Series in Probability and Statistics. New York: John

Wyley & Sons, Inc.; 1996.

54. Anonnymous. Infinity; 2020. WikipediA, The Free Encyclopedia. Available from: https://bit.ly/3ezk5sL.

55. Metropolis N. The beginninin gf the Monte Carlo method. Los Alarnos Sci Special Issue. 1987; p. 125–

130.

56. Petunin DFVYI. Justification of the 3σ rule for unimodal distributions. Theor Probab Math Stat. 1980;

21:25–36.

57. Vysochansky DF, Petunin YI. A remark on the paper ‘Justification of the 3σ rule for unimodal distribu-

tions’. Theor Probab Math Stat. 1983; 27:27–29.

58. Fisher RA. Statistical Methods for Research Workers. 12th ed. New York: Hafner Publishing Company

Inc.; 1954.

59. Box GEP, Muller ME. A note on the generation of random normal deviates. Ann Math Stat. 1958;

22:610–611. https://doi.org/10.1214/aoms/1177706645

60. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes. The Art of Scientific Com-

puting. 3rd ed. Cambridge, UK: Cambridge University Press; 2007.

61. Burt SD, Mansfield DA. The great storm of 15-16 October 1987. Weather. 1688; 43:90–110. https://doi.

org/10.1002/j.1477-8696.1988.tb03885.x

62. Loren AC, R S Bell R, Davies T, Shutts GI. Numerical forecast studies of the October 1987 storm over

southern England. Meteorol Mage. 1988; 117:118–130.

63. Jarraud M, Goas J, Deyts C. Prediction of an exceptional storm over France and southern England (15–

16 October 1987). Weath Forecas. 1989; 4:517–536. https://doi.org/10.1175/1520-0434(1989)004%

3C0517:POAESO%3E2.0.CO;2

64. Dunne J. Storm hits home of 1987 ‘blunder weather forecaster’ Michael Fish; 2013. Available from:

https://bit.ly/32l1PyJ.

65. Bhattacharya P, Chakrabarti BK, Samanta D. Fractal Models of Earthquake Dynamics; 2009. www.

arXiv.org, Cornell University, USA. Available from: https://bit.ly/2JNh2Ca.

66. Harris FJ. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc IEEE.

1978; 66:51–83. https://doi.org/10.1109/PROC.1978.10837

67. Theil H. A rank-invariant method of linear and polynomial regression analysis I. Proc Kon Ned Akad v

Wetensch. 1950; 53:386–392.

68. Theil H. A rank-invariant method of linear and polynomial regression analysis II. Proc Kon Ned Akad v

Wetensch. 1950; 53:521–525.

69. Theil H. A rank-invariant method of linear and polynomial regression analysis. III. Proc Kon Ned Akad v

Wetensch. 1950; 53:1897–1912.

70. Theil H. A rank-invariant method of linear and polynomial regression analysis. Parts: I, II and III. In: Raj

B, Koerts J, editors. Henri Theil’s Contributions to Economics and Econometrics. London: Kluwer Aca-

demic Publishers; 1992. p. 345–381.

71. Spearman C. The proof and measurement of association between two things. Am J Psychol. 1904;

15:72–101. https://doi.org/10.2307/1412159

72. Norman GR, Streiner DL. PDQ Statistics. vol. 1. 3rd ed. Shelton, CT: Peoples Medical Publishing

House; 1989.

73. Rothenberg TJ, Fisher FM, Tilanus CB. A Note on Estimation from a Cauchy Sample. J Ame Stat

Assoc. 1964; 59(306):460–463. https://doi.org/10.1080/01621459.1964.10482170

74. Fama EF, Roll R. Some Properties of Symmetric Stable Distributions. J Am Stat Assoc. 1968; 63:817–

836. https://doi.org/10.1080/01621459.1968.11009311

75. Lohninger H. Fundamentals of Statistics; 2012. www.statistics4u.com. Available from: https://bit.ly/

2U4kcDi.

76. Hojat M, Xu G. A Visitor’s Guide to Effect Sizes—Statistical Significance Versus Practical (Clinical)

Importance of Research Findings. Adv Health Sci Educ Theory Pract. 2004; 9:241–249. https://doi.org/

10.1023/B:AHSE.0000038173.00909.f6 PMID: 15316274

PLOS ONE Improving hospital occupancy

PLOS ONE | https://doi.org/10.1371/journal.pone.0262815 January 27, 2022 29 / 30

https://doi.org/10.1080/14786442908675115
https://doi.org/10.1080/14786442908675115
https://bit.ly/3ezk5sL
https://doi.org/10.1214/aoms/1177706645
https://doi.org/10.1002/j.1477-8696.1988.tb03885.x
https://doi.org/10.1002/j.1477-8696.1988.tb03885.x
https://doi.org/10.1175/1520-0434(1989)004%3C0517:POAESO%3E2.0.CO;2
https://doi.org/10.1175/1520-0434(1989)004%3C0517:POAESO%3E2.0.CO;2
https://bit.ly/32l1PyJ
https://www.arXiv.org
https://www.arXiv.org
https://bit.ly/2JNh2Ca
https://doi.org/10.1109/PROC.1978.10837
https://doi.org/10.2307/1412159
https://doi.org/10.1080/01621459.1964.10482170
https://doi.org/10.1080/01621459.1968.11009311
http://www.statistics4u.com
https://bit.ly/2U4kcDi
https://bit.ly/2U4kcDi
https://doi.org/10.1023/B:AHSE.0000038173.00909.f6
https://doi.org/10.1023/B:AHSE.0000038173.00909.f6
http://www.ncbi.nlm.nih.gov/pubmed/15316274
https://doi.org/10.1371/journal.pone.0262815


77. Streiner DL, Norman GR. Mine Is Bigger Than Yours. Measures of Effect Size in Research. Chest.

2012; 141:595–598. https://doi.org/10.1378/chest.11-2473 PMID: 22396560

78. Rodrı́guez-Hernández J. Normalización de procesos relativosal Área de Admisión del Hospital La
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