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Abstract

Individual variation in susceptibility and exposure is subject to selection by natural infection, ac-
celerating the acquisition of immunity, and reducing herd immunity thresholds and epidemic final
sizes. This is a manifestation of a wider population phenomenon known as "frailty variation".
Despite theoretical understanding, public health policies continue to be guided by mathematical
models that leave out considerable variation and as a result inflate projected disease burdens and
overestimate the impact of interventions. Here we focus on trajectories of the coronavirus disease
(COVID-19) pandemic in England and Scotland until November 2021. We fit models to series
of daily deaths and infer relevant epidemiological parameters, including coefficients of variation
and effects of non-pharmaceutical interventions which we find in agreement with independent
empirical estimates based on contact surveys. Our estimates are robust to whether the analysed
data series encompass one or two pandemic waves and enable projections compatible with sub-
sequent dynamics. We conclude that vaccination programmes may have contributed modestly
to the acquisition of herd immunity in populations with high levels of pre-existing naturally ac-
quired immunity, while being critical to protect vulnerable individuals from severe outcomes as
the virus becomes endemic.

Keywords: Frailty variation, Individual variation, Selection within cohorts, Epidemic model,
Herd immunity threshold, COVID-19

∗Corresponding author

Preprint submitted to Elsevier February 14, 2022

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 14, 2022. ; https://doi.org/10.1101/2020.04.27.20081893doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.27.20081893
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction

Almost 100 years ago, Kermack and McKendrick [Kermack and McKendrick 1927] published
a general and flexible model to study epidemics and fitted particular versions to observed epi-
demics [Kermack and McKendrick 1927, McKendrick 1939]. Already back then they alerted for
the simplifying assumption “that all infected persons are equivalent, and that all susceptible
persons are equally liable to acquire infection” [McKendrick 1939]. In their fittings they adjust
not only transmission parameters but also the size of the susceptible and exposed populations
at epidemic onset. Susceptible and exposed population sizes needed to be adjusted so their
homogeneous models could fit the data.

Thirty years later, [Gart 1968] admited that “it is difficult to define exactly the size of the
population of susceptible hosts. In this instance the difficulty is associated with the heteroge-
neous nature of the population”. The author divided the population in two groups, depending on
their history of infection, and allowed much greater susceptibility in the group with no history.
This did not seem sufficient to provide good fit to observed epidemics as the author adds “we
assume that the first group is a homogeneous group of susceptibles, while the second is actually
a mixture of immune and susceptible individuals”. In [Gart 1971] the author extended the model
to several susceptibility groups, and, more than a decade later, [Ball 1985] compared a model
with several susceptibility groups to the homogeneous version and described how homogeneity
assumptions increase epidemic size. [Coutinho et al. 1999] expanded the formalisms to also ac-
count for individual variation in incubation period and recovery but concluded that “at present
practical applications might be difficult”. [Pastor-Satorras and Vespignani 2001] developed re-
lated formalisms to describe epidemics on contact networks.

Meanwhile, frailty variation had been formalised in demography [Vaupel et al. 1979] and
introduced in practical survival analysis [Hougaard 1984, Aalen 1988] and non-communicable
disease epidemiology to improve model fits and interpretation (for a review see [Aalen et al. 2015]
and references therein).

On the experimental side, [Dwyer et al. 1997] measured nonlinear relationships between trans-
mission and densities of susceptible hosts, implying that the bilinear term in the classical
susceptible-infected-recovered (SIR) model may not be appropriate. The authors attributed the
nonlinearity in transmission to heterogeneity in host susceptibility to infection which they esti-
mated from the shapes of dose-response curves. [Finkenstädt and Grenfell 2000] fitted a model
with nonlinear relationships between transmission and density of susceptible hosts to an ob-
served epidemic and estimated the exponent, which they interpreting as heterogeneity in mixing.
[Novozhilov 2008] derived the expressions for the exponents from explicit gamma distributions
of susceptibility and [Montalbán et al. 2020] provided a more tractable derivation that applies
exactly to heterogeneity in susceptibility and approximately to heterogeneity in exposure to
infection.

Here we build on this history and analyse the coronavirus disease (COVID-19) pandemic,
caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with frailty vari-
ation models. The study is focused on England and Scotland, where the infection was first
detected in early 2020, with major waves of the disease occurring in the spring of the same year
and in the autumn-winter season of 2020-2021.

We use susceptible-exposed-infected-recovered (SEIR) models [Diekmann et al. 2013] incor-
porating continuous distributions of individual susceptibility or exposure to infection [Ball 1985,
Pastor-Satorras and Vespignani 2001, Novozhilov 2008, Katriel 2012, Gomes 2020]. We then use
Bayesian inference to estimate model parameters by fitting series of deaths while accounting
for, and estimating the magnitude of, the combined effects of non-pharmaceutical interventions
(NPIs), voluntary behavioural change, seasonality, viral evolution, and any other factors which
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might have contributed to time dependency in transmission potential. We estimate basic repro-
duction numbers (R0) consistent with early literature [Flaxman et al. 2020, Hilton et al. 2020,
Kwok et al. 2020] and coefficients of variation in agreement with direct measurements based on
contact-pattern studies [Mossong et al. 2008, Hens et al. 2009, Willem et al. 2012]. We show
that individual variation in susceptibility or exposure to infection can significantly affect basic
metrics, such as the herd immunity thresholds (HIT), as well as model projections and assessment
of intervention impacts.

2. Mathematical models

The basic compartmental SEIR model [Diekmann et al. 2013] describing the transmission
dynamics of SARS-CoV-2 is represented diagrammatically in Fig. 1. The model accounts for
individual variation in susceptibility or exposure to infection.

S(x) E(x) I(x) R(x)
xl d (1-f) g

Figure 1: Susceptible-exposed-infected-recovered (SEIR) model representing the transmission dynamics of SARS-
CoV-2 in a heterogeneous host population. Individual susceptibility or exposure to infection is denoted by x.

2.1. Individual variation in susceptibility to infection
Let x denote the individual susceptibility to infection in relation to the mean, which we de-

scribe by a continuous distribution q(x) with mean
∫
xq(x)dx = 1 parametrised by a coefficient of

variation (CV), ν =
√∫

(x− 1)2q(x)dx. Susceptible individuals, S(x), become exposed at a rate
that depends on their susceptibility, x, and on the average force of infection, λ, which accounts for
the total number of infectious individuals in the population over time. Upon exposure, suscepti-
ble individuals enter an incubation phase, E(x), during which they gradually become infectious
[Wei et al. 2020, To et al. 2020, Arons et al. 2020, He et al. 2020]. The average infectiousness in
this phase is made to be half that in the following state (ρ = 0.5), to which individuals progress
within an average of 5.5 days (δ = 1/5.5 per day) [McAloon et al. 2020, Lauer et al. 2020].
The fully infectious state is denoted by I(x). Infected individuals eventually become nonin-
fectious, on average approximately 4 days after becoming fully infectious (γ = 1/4 per day)
[Nishiura et al. 2020, Li et al. 2020]. A small fraction, φ(x), die due to COVID-19 while the
remaining majority recover into R(x) where they are noninfectious and resistant to reinfection
due to acquired immunity. The model is formalised mathematically by the infinite system of
ordinary differential equations (ODEs):

dS(x)

dt
= −λ x S(x), (1)

dE(x)

dt
= λ x S(x)− δ E(x), (2)

dI(x)

dt
= δ E(x)− γ I(x), (3)

dR(x)

dt
= (1− φ(x)) γ I(x). (4)
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The average force of infection upon susceptible individuals in a population of size N and
transmission coefficient β is defined by

λ =
β

N

∫
(ρE(x) + I(x)) dx. (5)

An epidemic is simulated by introducing a small seed of infectious individuals in a susceptible
population. Initial growth of infected densities is near exponential but decelerates as individuals
are removed from the susceptible pool by infection and immunity. With variation in susceptibility,
highly susceptible individuals tend to be infected earlier, leaving behind a residual pool of lower
mean susceptibility. This selective depletion intensifies the deceleration of epidemic growth and
gives an efficient head start to the acquisition of population immunity. Eventually the epidemic
will subside and the HIT, defining the percentage of the population that needs to be immune
to reverse epidemic growth and prevent future waves, is lower when variation in susceptibility is
higher.

The basic reproduction number, defined as the number of infections caused by an average
infected individual in a totally susceptible population, is written for system (1)-(4) with force of
infection (5) as

R0 = β

(
ρ

δ
+

1

γ

)
. (6)

This is an indicator of early transmissibility but its use quickly becomes cumbersome. Several
factors, such as NPIs, adaptive changes in human behaviour, seasonality and viral evolution,
affect R0 in a time-dependent manner. We denote the resulting quantity by Rc(t) = c(t) · R0,
where c(t) > 0 describes the basic risk of infection at time t in relation to baseline.

In the estimation of Rc(t) we assume a stylised profile for c(t) as illustrated in Fig. 2: T0
is time when R0 begins to show decrease due to behavioural change or seasonality; L1 is the
period of maximal transmission reduction due to a first lockdown in spring 2020 (48 days in
England, from 26 March to 12 May; and 66 days in Scotland, from 24 March to 28 May) and
c1 ≤ 1 is the value of Rc(t) during L1 in relation to the initial R0; T1 (> T0) is the day first
lockdown begins (transmission is allowed to decrease linearly between T0 and T1). After L1,
contact restrictions are gradually relaxed and we allow transmission to begin a linear increase
such that c(t) reaches the baseline (c(t) = 1) in T2 days, which may or may not be within
the range of this study. Changes in non-behavioural factors that affect transmission (such as
seasonality or viral evolution) are inseparable from contact changes in this framework and are
also accounted for by c(t).

The model will be used to analyse COVID-19 deaths recorded over approximately one year.
Mathematically the time-dependent c(t) is constructed as

c0(t) =


1, if 0 < t ≤ T0;
1− (1− c1) · t−T0

T1−T0
, if T0 < t ≤ T1;

c1, if T1 < t ≤ T1 + L1;
1− (1− c1) · T1+L1+T2−t

T2
, otherwise.

(7)

Second and third lockdowns in the autumn and winter are implemented more simply as a further
reduction in transmission (by a factor c2) over the stipulated time periods. Specifically,

c(t) =

 c2 · c0(t), if t ∈ [5 November 2020, 1 December 2020];
or t from 5 January 2021 onwards;

c0(t), otherwise.
(8)
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Figure 2: Schematic illustration of the factor c(t), representing the combined effects of NPIs, adaptive behavioural
changes, seasonality and viral evolution on the reproduction number. L1, L2 and L3 represent the known durations
(and timings) of first, second and third lockdowns, respectively, as imposed by governments. The gray area
illustrates the time period included in our analyses, with a note that the third set of restrictions was still in place
when the data fitting period ended. T0 is the number of days in the series prior to gradual contact reductions early
in the pandemic (estimated). T1 (> T0) is the day first lockdown begins (informed by data). T2 is the number
of days for the ramp of increasing transmission after first lockdown to return to baseline c(t) = 1 (technically,
this is estimated and used to define the slope of the linear increase rather than to imply that it will continue to
follow the trend beyond the study period). Whether c(t) is allowed to increase beyond baseline (solid) or not
(dashed) does not affect our results as we consistently find the factor to remain below baseline throughout the
study period.

A finite version of system (1)-(4) with variable susceptibility force of infection (5) can be
derived exactly, taking a previously obtained form when individual susceptibility is gamma dis-
tributed [Novozhilov 2008, Montalbán et al. 2020]:

d S

dt
= −β (ρ E+ I)

(
S

N

)1+ν2

, (9)

d E

dt
= β (ρ E+ I)

(
S

N

)1+ν2

− δ E, (10)

d I

dt
= δ E− γI, (11)

d R

dt
= (1− φ) γ I. (12)

Notice that individuals leave compartment I at a rate γ but only a fraction 1− φ recovers from
infection. The remaining fraction, φ, die due to COVID-19, η days after leaving compartment I.
We refer to φ as the infection fatality ratio (IFR).

Had R0 remained constant throughout study duration, the effective reproduction number
would have been R0 (S/N)

1+ν2

as in [Montalbán et al. 2020]. More typical, however, is for R0 to
vary with seasonal effects [Nickbakhsh et al. 2020, Kissler et al. 2020, Bacaër and Gomes 2009]
and viral evolution [PHE 2021] leading to an effective reproduction number modified as

Reff(t) = Rc(t)

(
S

N

)1+ν2

. (13)

Here, nevertheless, we present HIT estimates elicited by natural infection in reference to the
original R0, as derived in [Montalbán et al. 2020]

H = 1−
(

1

R0

) 1
1+ν2

, (14)
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highlighting that these refer to the SARS-CoV-2 of early 2020; higher thresholds will be ex-
pected for more transmissible variants. Once reliable estimates become available for evolving
transmissibility, HIT estimates can be updated.

As infection spreads, the susceptible compartment, S, is depleted and recovered individuals
populate compartment R where they are protected by acquired immunity. In reality, they even-
tually lose that protection as immunity wanes or is evaded by new viral variants. In addition,
the population slowly renews itself through all-cause death of individuals with various levels of
acquired immunity and birth of new susceptibles. These processes are omitted in this version of
the model given our purpose to analyse data reported over a 1-year period when the frequency of
reinfection has been relatively low in our study setting [Hall et al. 2021] and population renewal
considered negligible. Supplementary Material (Section S1) we formulate an extended model
with reinfection and conduct some sensitivity analyses.

2.2. Individual variation in exposure to infection
In a directly transmitted infectious disease, such as COVID-19, variation in exposure to infec-

tion is primarily governed by patterns of connectivity among individuals. We incorporate this in
system (1)-(4) assuming that individuals mix at random [Pastor-Satorras and Vespignani 2001,
Miller et al. 2012]. In a related study we developed an assortative mixing version of the model
[Aguas et al. 2020]. With random mixing and heterogeneous connectivity, the force of infection
is written

λ =
β

N

∫
x (ρE(x) + I(x)) dx∫

xq(x) dx
. (15)

The basic reproduction number is

R0 =
(
1 + ν2

)
β

(
ρ

δ
+

1

γ

)
, (16)

and Rc(t) = c(t) · R0 as above.
Model (1)-(4) with variable exposure force of infection (15) can also be reduced to a finite

system of ODEs when individual connectivity is gamma distributed, although, in contrast with
variable susceptibility, the derivation is approximate in this case [Montalbán et al. 2020]:

d S

dt
= −

(
1 + ν2

)
β (ρ E+ I)

(
S

N

)1+2ν2

, (17)

d E

dt
=

(
1 + ν2

)
β (ρ E+ I)

(
S

N

)1+2ν2

− δ E, (18)

d I

dt
= δ E− γ I, (19)

d R

dt
= (1− φ) γ I. (20)

The effective reproduction number is

Reff(t) = Rc(t)

(
S

N

)1+2ν2

, (21)

and the natural HIT

H = 1−
(

1

R0

) 1
1+2ν2

. (22)
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Notice that formulas (14) and (22) refer to herd immunity by natural infection and do not
apply to herd immunity induced by vaccines (unless vaccination programmes were designed to
mimic the selection exerted by natural infection which is not generally the case [Fine et al. 2011]).
For a random vaccination programme, the HIT induced by the vaccine would be HV = [1/(1−
σV )]·(1−1/R0), where σV is the susceptibility of a vaccinated individual relative to unvaccinated.
As a corollary, the HIT can only be reached by random vaccination if the vaccines in use are
more than 1−1/R0 efficacious against infection. For example, achieving the random vaccination
HIT requires a vaccine that is at least 67% efficacious if R0 = 3, and 80% efficacious if R0 = 5,
assuming 100% coverage. With lower coverage the demand on vaccine efficacy increases. This
paper addresses primarily the natural HIT (H).

3. Data

We used publicly available epidemiological data from the UK coronavirus dashboard describ-
ing the unfolding of the SARS-CoV-2 epidemic [https://coronavirus.data.gov.uk/] to estimate
relevant transmission parameters for the larger nations: England (56 million population) and
Scotland (5.5 million). Spefically, we extracted datasets containing daily deaths (deaths within
28 days of positive test by date of death), {(k, yk)}n−1

k=0 , where k = 0 is the day when the cumu-
lative rolling average of death numbers exceeded 5 · 10−8 of the population in both nations (10
March 2020). We also extracted from the same source data on the population considered fully
vaccinated (two doses) at the time of this study.

Model outputs would then be fitted to the raw series of daily deaths between 10 March
2020 and 1 February 2021 (329 days in total) or 1 July 2020 (114 days) adopting an IFR of
φ = 0.9% [Ward et al. 2021, Chen et al. 2021] throughout the fitted period. [Birrel et al. 2021]
estimate that the IFR fluctuated between about 0.3% and 1.3% prior to vaccination, with a
tendency to be low when infection spreads generally in the community and high when spread is
predominantly in care homes and hospitals [McKeigue et al. 2021]. We assumed constant IFR
but conducted analyses of sensitivity to its value (see Supplementary Material (Section S2) for
results on φ = 0.7% and φ = 1.1%).

Initial conditions were set by solving the linear system of ODEs obtained by neglecting
depletion of susceptibles in (9)-(12) (i.e., dE/dt = β(ρE+I)−δE, dI/dt = δE−γI, dR/dt = (1−φ)γI)
for an early R0 = 2 [Li et al. 2020, Kissler et al. 2020], to find approximate relationships between
variables (conditioning this on higher early transmission potential, such as R0 = 3, does not
significantly change the results but leads to worse fits due to mismatch with early death counts).
These approximations concerning the very early days of the epidemic enabled us to constrain the
initial conditions as I(−η) = y0/0.002, E(−η) = I(−η)/0.136 and S(−η) = N − E(−η) − I(−η),
where η is the excess duration of a fatal infection relative to non-fatal, and y0 is the number
of deaths in the first day of the study. These numerical values are in the order of I(−η) ≈
y0/φ[1 − exp(−γ)] and E(−η) ≈ I(−η)/[1 − exp(−δ)], which is expected early in the pandemic
given the rates of progression from I to death and from E to I, respectively.

4. Model fitting and parameter estimation

In order to preserve identifiability, we made six main simplifying assumptions: (i) reinfec-
tion is negligible (see Section S1 for sensitivity analysis to reinfection); (ii) the IFR is constant
throughout the fitted period (see Section S2 for sensitivity analysis to IFR) but lower due to
vaccination in discussion of projections; (iii) vaccine effects are negligible during the fitted pe-
riod, which in Section 5.1 ends 1 February 2021 (less than 1% fully vaccinated in the UK) and
in Section 5.2 ends 1 July 2020 (no vaccines in use), but represented in projections beyond this

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 14, 2022. ; https://doi.org/10.1101/2020.04.27.20081893doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.27.20081893
http://creativecommons.org/licenses/by-nc-nd/4.0/


phase as appropriate (see also Section 5.6); (iv) natural (seasonality, viral evolution and adap-
tive behavioural change) and interventional (NPI) modulators of the reproduction number are
encapsulated in a single time varying parameter c(t) as illustrated in Fig. 2; (v) second and third
lockdowns impact c(t) by the same factor; (vi) excess transmission from critically ill stages is
negligible.

Parameter estimation was performed with software MATLAB (MathWorks, Natick, MA)
using the PESTO (Parameter EStimation TOolbox) package [Stapor et al. 2018]. We assumed
that numbers of SARS-CoV-2 infections are Poisson distributed.

We tried to reproduce the dynamics of COVID-19 deaths by estimating the set of parameters
θ that maximises the log-likelihood (LL) of observing the daily numbers of reported deaths Y :

LL(θ|Y ENG) = −
n−1∑
k=0

ỹENG(k, θ) +
n−1∑
k=0

yENG(k) ln(ỹENG(k, θ))−
n−1∑
k=0

ln(yENG(k)!), (23)

LL(θ|Y SCT ) = −
n−1∑
k=0

ỹSCT (k, θ) +
n−1∑
k=0

ySCT (k) ln(ỹSCT (k, θ))−
n−1∑
k=0

ln(ySCT (k)!), (24)

LL(θ|Y ) = LL(θ|Y ENG) + LL(θ|Y SCT ), (25)

in which ỹENG(k, θ) = φγ IENG(k − η, θ) and ỹSCT (k, θ) = φγ ISCT (k − η, θ) are the model
output numbers of COVID-19 deaths at day k in England and Scotland for the set of parameters
θ, Y ENG = {(k, yENGk )}n−1

k=0 and Y SCT = {(k, ySCTk )}n−1
k=0 are the numbers of daily reported

deaths, and n is the total number of days included in the analysis.
The set of parameters to be estimated is

θ = {c1, c2, η, ν, TE0 , TS0 , TE2 , TS2 ,RE0 ,RS0 }, (26)

when fitting longer time series (Section 5.1) and

θ = {c1, η, ν, TE0 , TS0 ,RE0 ,RS0 }, (27)

in fittings to shorter versions (Section 5.2).
To ensure that the estimated maximum is a global maximum, we performed 50 multi-start

optimisations with initialisation parameters sampled from a Latin-Hypercube. The combination
of parameters resulting in the maximal LL were used as a starting point for 100, 000 Markov
chain Monte-Carlo (MCMC) iterations. From the resulting posterior distributions, we extracted
the median estimates for each parameter and the respective 95% credible intervals. We used
uniformly distributed priors with wide ranges.

We applied the outlined fitting procedure using both heterogeneity models (specifically in-
dividual variation in susceptibility and individual variation in exposure to infection) as well as
a homogeneity model (obtained by setting the coefficient of variation to zero (ν = 0) in either
model). The Akaike information criterion (AIC) was applied to select best fitting models.

5. Results

5.1. Estimated parameters and herd immunity thresholds
Variable susceptibility, variable connectivity and homogeneous models were fitted to series

of COVID-19 deaths reported in England and Scotland until 1 February 2021. The fits are
shown in Figs. 3, 4 and 5 (black solid curves; fitted data points in green), and the estimated
parameters in Table 1. Maximum LL are also displayed, as well as AIC scores for model selection.
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We conclude that variable susceptibility and variable connectivity models are better supported
by the data than the homogeneous model (lowest AIC in bold), as found in related studies
[Aguas et al. 2020, Colombo et al. 2020]. Variable connectivity is slightly better supported in
this case, although the reality most likely combines the two forms of heterogeneity.

Note that while we report CV in all fits, our method is not purposed to estimate levels of
heterogeneity solely in susceptibility or connectivity as a goal. Because the two forms of hetero-
geneity have similar effects on epidemic trajectories, separating relative contributions would pose
an identifiability problem that our approach cannot address. Each heterogeneity model we con-
sider assumes that there is no heterogeneity of the other kind. From fitting these two extremes,
however, we conclude that they are equally able to fit data and have similar consequences for
metrics of interest and projections. Hence a decomposition is not necessary for our purposes.

Given the estimated values for R0 and CV (ν) we derive the natural HIT through formulas
(14) or (22) as appropriate, obtaining H in the range 25 − 27% in England, and 26 − 29% in
Scotland. With the homogeneous model, the inferences would be considerably higher, H = 63%
in England and in the range 66− 67% in Scotland, as in early expectations [Kwok et al. 2020].

We then prolong model trajectories (dashed curves) for another 4 months (until 1 June 2021)
to begin comparisons with data beyond fitted period (red). All models project more deaths than
observed, as expected given that UK initiated a mass vaccination programme in late 2020 which
would have started impacting the epidemic by February 2021. With reduced models adopted here,
implementation of vaccination is not straightforward but in Supplementary Material we replicate
the fits with explicit gamma distributions (Section S1) and simulate a crude approximation to
the UK vaccination programme (Figs. S1, S2 and S3). In Section 5.6, we focus on England and
implement vaccination in more detail according to data on fully vaccinated people in the nation.

A relevant question at the time of these results was whether achieved population immunity
had been enough to prevent an exit wave as contact restrictions were lifted from 8 March 2021
onwards culminating with the removal of most restrictions from 19 July 2021 (especially in
England where this was dubbed “Freedom Day”). To assess how each of the models might answer
this question we plotted the cumulative number of estimated infections (blue) to determine the
percentage of the population infected by June 2021. We find that both nations remain below the
natural herd immunity threshold H (Scotland more than England). Hence, without vaccination,
an exit wave might have been expected. To visualise its magnitude we include separate panels
on the right where the model is run for approximately 12 months, using as initial conditions the
end conditions from left panels and Rc(t) = R0. Here this is done crudely but in Section S1 we
explore a range of vaccination scenarios and in Section 5.6 we refine the projections in the case of
England (the same could be done for Scotland). It is striking that heterogeneous models project
exit waves one order of magnitude lower (or less) than when homogeneity is assumed, a feature
that we explore more thoroughly in section 5.6.

In Supplementary Material we also show that these results are robust to including reinfection
(with a risk of 0.1 relative to the average risk of first infection [Hall et al. 2021]) (Section S2),
arriving at similar HITs, and changing IFR (to 0.7% or 1.0%) (Section S3). This agrees with the
expectation that assuming a lower IFR results in higher HIT, and a higher IFR results in lower
HIT. Less intuitive is that when we fit the models with a different IFR, all parameters readjust
and exit waves appear relatively conserved (perhaps slightly slower with lower IFR (higher HIT)
and higher with higher IFR (lower HIT), illustrating the fragility of taking HITs out of context).
Similar conserveness is noticed when reinfection is included. Model selection by AIC continues
to favour heterogeneous models by large in all scenarios.
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Table 1: Model parameters estimated by Bayesian inference based on daily deaths until 1 February 2021 (with
reduced models). Model selection based on maximum log-likelihood (LL) and Akaike information criterion (AIC).
Best fitting models have lower AIC scores (bold). Infection fatality ratio, φ = 0.9%. Herd immunity threshold (H)
calculated from R0 and CV using formulas (14) or (22), as appropriate. T0 and T2 parameterise linear reduction
and increase in transmissibility, respectively, before and after first lockdown (larger T ⇔ lower slope; Fig. 2).

Heterogeneous susceptibility Heterogeneous connectivity Homogeneous
Median 95% CI Median 95% CI Median 95% CI

Common parameters
c1

a 0.2968 (0.2958, 0.2988) 0.2993 (0.2976, 0.3015) 0.2751 (0.2740, 0.2772)
c2

b 0.5761 (0.5731, 0.5843) 0.6601 (0.6535, 0.6661) 0.4803 (0.4776, 0.4869)
η c 12 {12} 12 {12} 9 {9, 10}
ν d 1.475 (1.470, 1.487) 1.120 (1.111, 1.145) 0 −

England
T0 3.616 (3.480, 3.759) 0.6549 (0.3925, 0.8821) 7.595 (6.955, 7.771)
T2 283.5 (282.4, 286.0) 302.2 (295.8, 303.9) 416.1 (408.9, 418.3)
R0 2.709 (2.701, 2.716) 2.807 (2.781, 2.827) 2.691 (2.683, 2.701)
H 26.94% (26.62%, 27.10%) 25.48% (24.61%, 25.89%) 62.84% (62.72%, 62.98%)

Scotland
T0 10.10 (9.854, 10.72) 6.934 (6.460, 7.508) 11.78 (11.36, 12.58)
T2 360.8 (359.0, 364.4) 399.9 (390.2, 406.3) 540.0 (524.9, 546.9)
R0 2.874 (2.856, 2.912) 2.981 (2.948, 3.053) 2.978 (2.954, 2.995)
H 28.29% (27.88%, 28.69%) 26.75% (25.81%, 27.52%) 66.41% (66.14%, 66.61%)

Model selection
LL −3707 −3684 −5893
AIC 7434 7387 11805

atransmissibility reduction due to lockdown 1,
btransmissibility reduction due to lockdowns 2 and 3,
cdifference between mean-time-to-death and mean-time-to-recovery (sampled from a continuous interval and

reduced to the nearest integer before entering the model),
dcoefficient of variation (CV).
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Figure 3: SARS-CoV-2 transmission in England and Scotland with individual variation in suscep-
tibility to infection. Susceptibility factors implemented as gamma distributions (reduced model (9)-(12)).
Modelled trajectories of COVID-19 deaths (black) and cumulative percentage infected (blue). Dots are data
for daily reported deaths: fitted (green); out-of-sample (red). Basic reproduction numbers under control (Rc)
displayed in shallow panels underneath the main plots. Left panels represent fitted segments as solid curves and
projected scenarios as dashed. Right panels prolong those projections further in time assuming Rc(t) = R0. Input
parameters: progression from E to I (δ = 1/5.5 per day); recovery (γ = 1/4 per day); relative infectiousness
between E and I stages (ρ = 0.5); and IFR (φ = 0.9%). Initial basic reproduction numbers, coefficients of varia-
tion and control parameters estimated by Bayesian inference (estimates in Table 1). Fitted curves represent best
fitting trajectories and shades are 95% credible intervals generated from 10, 000 posterior samples.
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Figure 4: SARS-CoV-2 transmission in England and Scotland with individual variation in exposure
to infection. Connectivity factors implemented as gamma distributions (reduced model (17)-(20)). Modelled
trajectories of COVID-19 deaths (black) and cumulative percentage infected (blue). Dots are data for daily re-
ported deaths: fitted (green); out-of-sample (red). Basic reproduction numbers under control (Rc) displayed in
shallow panels underneath the main plots. Left panels represent fitted segments as solid curves and projected
scenarios as dashed. Right panels prolong those projections further in time assuming Rc(t) = R0. Input param-
eters: progression from E to I (δ = 1/5.5 per day); recovery (γ = 1/4 per day); relative infectiousness between
E and I stages (ρ = 0.5); and IFR (φ = 0.9%). Initial basic reproduction numbers, coefficients of variation and
control parameters estimated by Bayesian inference (estimates in Table 1). Fitted curves represent best fitting
trajectories and shades are 95% credible intervals generated from 10, 000 posterior samples.
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Figure 5: SARS-CoV-2 transmission in England and Scotland assuming homogeneity. Reduced model
(9)-(12) or (17)-(20) with ν = 0. Modelled trajectories of COVID-19 deaths (black) and cumulative percentage
infected (blue). Dots are data for daily reported deaths: fitted (green); out-of-sample (red). Basic reproduction
numbers under control (Rc) displayed in shallow panels underneath the main plots. Left panels represent fitted
segments as solid curves and projected scenarios as dashed. Right panels prolong those projections further in
time assuming Rc(t) = R0. Input parameters: progression from E to I (δ = 1/5.5 per day); recovery (γ = 1/4 per
day); relative infectiousness between E and I stages (ρ = 0.5); and IFR (φ = 0.9%). Initial basic reproduction
numbers and control parameters estimated by Bayesian inference (estimates in Table 1). Fitted curves represent
best fitting trajectories and shades are 95% credible intervals generated from 10, 000 posterior samples.
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5.2. Parameter estimation early in the pandemic
In a pandemic it is important to estimate model parameters early when data series are short.

To test suitability of our methods for such task, we apply fitting procedures to series of COVID-19
deaths in England and Scotland until 1 July 2020, as Europe was recovering from the first wave.
As an initial exploration we perform the fittings as in Section 5.1, estimating all parameters in (26)
except c2 which had no effect prior to November 2020. The results, displayed in Supplementary
Material (Section S4), provide similar estimates to those obtained with longer series in Section
5.1 except for parameter T2 that determines the slope of contact reactivation following lifting
of first lockdown. This preliminary analysis suggests T2 to be very high (or equivalently, slope
of contact reactivation close to zero), presumably due to absence of detectable effects of lifting
restrictions in such short timeframe. Technically, the estimation of T2 becomes unsuitable in this
framework since as T2 → ∞ so does uncertainty about its value. One way to circumvent this
problem could be to reparameterise contact reactivation in terms of slope rather than time to
reach baseline c(t) = 1. Meanwhile, here we present two scenarios by constraining T2 (Fig. 6).
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Figure 6: Schematic illustration of the factor c(t), representing the effect of NPIs and adaptive behavioural
changes on transmission. L1 represents the known duration (and timing) of the first lockdown as imposed by
governments. T0 is the number of days in the series prior to the gradual contact reductions early in the pandemic
(estimated). T1 (> T0) is the day the first lockdown begins (informed by data). T2 is the number of days for the
ramp of increasing transmission after first lockdown to return to baseline c(t) = 1 and determines the slope that
distinguishes the two panels: (a) T2 →∞; (b) T2 = 120 days.

Informed by preliminary analysis in Section S4, we first run a scenario where c(t) remains
strictly horizontal until end of fitting period (T2 → ∞, Fig. 7). This assumption appears
to align with stringency index, a composite measure based on government response indicators
(school closures, workplace closures, travel bans, etc) developed by Oxford Covid-19 Government
Response Tracker (OxCGRT) [Hale et al. 2020] (blue in Rc panels, scaled to match lower and
higher bounds in our stylised profiles). Support for heterogeneous models is again very signifi-
cant according to AIC scores, and optimal parameter values result in similar HITs to when T2
was estimated: H = 34% (95% CI, 25 − 57%) for heterogeneous models; and H = 70% (95%
CI, 68 − 71%) for homogeneous. Compare Tables 2 (T2 → ∞) and S5 (T2 estimated). Second,
we run a scenario with finite T2 to inform how estimated parameters might respond to assump-
tions about contact reactivation. Assuming T2 = 120 days (crudely motivated by mobility data
[Google 2020], blue dots in Fig. 8), we find that support for heterogeneous models persists but
estimated coefficients of variation become larger, reflecting in lower HITs (H = 15% (95% CI,
12− 17%), Table 3). In absence of further information we might have expected true parameter
values to be somewhere between these two scenarios. This is supported by results on longer
COVID-19 series in Section 5.1 (H in the range 25− 29%, Table 1), which is inside, but towards
the low end, of the range motivated by stringency index.
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Table 2: Model parameters estimated by Bayesian inference based on daily deaths until 1 July 2020, assuming
constant Rc(t) from first lockdown onwards (i.e., T2 → ∞). Model selection based on maximum log-likelihood
(LL) and Akaike information criterion (AIC). Best fitting models have lower AIC scores (bold). Infection fatality
ratio, φ = 0.9%. Herd immunity threshold (H) calculated from R0 and CV using formulas (14) or (22), as
appropriate. T0 and T2 parameterise linear reduction and increase in transmissibility, respectively, before and
after first lockdown (larger T ⇔ lower slope; Fig. 6).

Heterogeneous susceptibility Heterogeneous connectivity Homogeneous
Median 95% CI Median 95% CI Median 95% CI

Common parameters
c1

a 0.2471 (0.2286, 0.2647) 0.2466 (0.2288, 0.2641) 0.2267 (0.2164, 0.2370)
η b 15 {15} 15 {15} 15 {15}
ν c 1.382 (0.6952, 1.762) 0.9684 (0.5005, 1.241) 0 −

England
T0 −14.28 (−14.97,−12.40) −14.31 (−14.97,−12.48) −12.75 (−14.77,−10.62)
R0 3.424 (3.285, 3.486) 3.426 (3.291, 3.485) 3.314 (3.163, 3.477)
H 34.48% (25.15%, 56.91%) 34.83% (25.32%, 56.47%) 69.83% (68.38%, 71.24%)

Scotland
T0 −2.506 (−4.053,−2.021) −2.511 (−4.072,−2.020) −2.547 (−4.613,−2.020)
R0 3.365 (3.311, 3.460) 3.366 (3.313, 3.458) 3.370 (3.304, 3.505)
H 34.09% (25.30%, 56.69%) 34.43% (25.45%, 56.24%) 70.32% (69.73%, 71.47%)

Model selection
LL −1120 −1131 −3380
AIC 2254 2277 6772

atransmissibility reduction due to lockdown 1,
bdifference between mean-time-to-death and mean-time-to-recovery (sampled from a continuous interval and

reduced to the nearest integer before entering the model),
ccoefficient of variation (CV).
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Table 3: Model parameters estimated by Bayesian inference based on daily deaths until 1 July 2020, assuming
that after first lockdown Rc(t) begins a gradual return to the baseline R0 at a fixed rate (corresponding to T2 = 120
days in this case). Model selection based on maximum log-likelihood (LL) and Akaike information criterion (AIC).
Best fitting models have lower AIC scores (bold). Infection fatality ratio, φ = 0.9%. Herd immunity threshold (H)
calculated from R0 and CV using formulas (14) or (22), as appropriate. T0 and T2 parameterise linear reduction
and increase in transmissibility, respectively, before and after first lockdown (larger T ⇔ lower slope; Fig. 6).

Heterogeneous susceptibility Heterogeneous connectivity Homogeneous
Median 95% CI Median 95% CI Median 95% CI

Common parameters
c1

a 0.3133 (0.2989, 0.3277) 0.3182 (0.3002, 0.3419) 0.2358 (0.2291, 0.2419)
η b 15 {15} 15 {13, 14, 15} 17 {17}
ν c 2.521 (2.369, 2.653) 1.822 (1.681, 2.011) 0 −

England
T0 −14.79 (−14.991,−13.922) −14.815 (−14.994,−13.952) −11.51 (−13.00,−10.17)
R0 3.438 (3.380, 3.470) 3.451 (3.383, 3.533) 3.017 (2.940, 3.109)
H 15.46% (14.06%, 17.15%) 14.97% (12.55%, 17.29%) 66.85% (65.99%, 67.84%)

Scotland
T0 −2.253 (−3.033,−2.010) −2.229 (−2.930,−2.007) −4.407 (−5.651,−4.017)
R0 3.308 (3.263, 3.358) 3.319 (3.268, 3.388) 3.234 (3.194, 3.302)
H 15.01% (13.68%, 16.74%) 14.53% (12.22%, 16.77%) 69.08% (68.69%, 69.71%)

Model selection
LL −951.7 −960.5 −3308
AIC 1917 1935 6627

atransmissibility reduction due to lockdown 1,
bdifference between mean-time-to-death and mean-time-to-recovery (sampled from a continuous interval and

reduced to the nearest integer before entering the model),
ccoefficient of variation (CV).
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Figure 7: Model fitting to first wave of the SARS-CoV-2 pandemic assuming T2 → ∞. Modelled
trajectories of COVID-19 deaths (black) and cumulative percentage infected (blue). Green dots are data for daily
reported deaths. Basic reproduction numbers under control (Rc) displayed in shallow panels underneath the main
plots. Government stringency indices [Hale et al. 2020] traced in blue. Input parameters: progression from E to
I (δ = 1/5.5 per day); recovery (γ = 1/4 per day); relative infectiousness between E and I stages (ρ = 0.5); and
IFR (φ = 0.9%). Initial basic reproduction numbers, coefficients of variation and control parameters estimated
by Bayesian inference (estimates in Table 2). Fitted curves represent best fitting trajectories and shades are 95%
credible intervals generated from 10, 000 posterior samples. (a) Individual variation in susceptibility to infection
(model (9)-(12)). (b) Individual variation in exposure to infection ((17)-(20)). (c) Homogeneous susceptibility
and exposure (either model with ν = 0).
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Figure 8: Model fitting to first wave of the SARS-CoV-2 pandemic assuming T2 = 120 days. Modelled
trajectories of COVID-19 deaths (black) and cumulative percentage infected (blue). Green dots are data for daily
reported deaths. Basic reproduction numbers under control (Rc) displayed in shallow panels underneath the main
plots. Blue dots represent UK Google mobility index [Google 2020]. Input parameters: progression from E to I
(δ = 1/5.5 per day); recovery (γ = 1/4 per day); relative infectiousness between E and I stages (ρ = 0.5); and
IFR (φ = 0.9%). Initial basic reproduction numbers, coefficients of variation and control parameters estimated
by Bayesian inference (estimates in Table 3). Fitted curves represent best fitting trajectories and shades are 95%
credible intervals generated from 10, 000 posterior samples. (a) Individual variation in susceptibility to infection
(model (9)-(12)). (b) Individual variation in exposure to infection ((17)-(20)). (c) Homogeneous susceptibility
and exposure (either model with ν = 0).
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5.3. Using government response indicators
In this section we use the stringency index, which tracks the strictness of government policies

that restricted people’s behaviour during the COVID-19 pandemic [Hale et al. 2020], as a main
factor capable to modify transmission over time. In Fig. 9 we show stringency indices for England
(red) and Scotland (blue), both scaled to be 1 in February 2020 and to match an illustrative
c1 = 0.2 during lockdown 1. We refer to this scaled time-dependent index as u(t).

Figure 9: Government stringency index. To facilitate visual comparisons, raw indices [Hale et al. 2020] were
scaled so they would both be 1 in February 2020 and 0.2 during lockdown 1. The resulting time-dependent u(t)
are shown for England (blue) and Scotland (green).

Here we replicate model fittings to series of COVID-19 deaths until 1 February 2021 using
u(t) to help determine the overall profile c(t). We assume that until the 1 July 2020 (end of series
fitted in Section 5.2) the profile c(t) is entirely determined by u(t). From then on we include a
multiplicative factor that increases linearly from 1 to reach some value w by the last day of the
fitted series. Parameters c1 and w are estimated. In the case of Scotland this was not sufficient
to allow acceptable fits. Looking at Fig. 9 we notice that the stringency index for Scotland shows
no signal for the second lockdown which happened mostly throughout November 2020 (visible in
the stringency index for England). Both death series, however, show a clear reversal in epidemic
growth around that time. Presumably restrictions imposed by the government in England might
have affected Scotland due to mobility across the border and behavioural influences. To enable
fittings to the two nations we modify the Scottish stringency to resemble the English from the 1
July 2020 onwards. The results are provided in Fig. 10 and Table 4.

The quality of these fits is not as good as when we used a stylised transmission modifier c(t)
in Section 5.1, presumably because it does not account as flexibility for behavioural factors other
than those resulting from government restrictions. Nevertheless the results remain consistent
also in this scenario. Using the stringency index as outlined in this section the heterogeneous
models are again better supported by the data according to AIC, and we estimate H in the range
27− 31% in England and 31− 36% in Scotland for heterogeneous models, while 58% is obtained
for England and 65% for Scotland when homogeneity is assumed.

Overall this analysis suggests that in the eventuality of future pandemics our models, with
more or less stylised mitigations, can be used consistently at differently stages as the epidemic
unfolds. This study of England and Scotland demonstrates that although applications will always
benefit from knowledge of time-dependent effects on transmission, considerable progress can be
made by model-based inference before detailed measurements of such factors are available. It
is also possible for sensibly designed stylised models to perform better than those constrained
by incomplete information. Inferences should be subsequently tested, however, and assumptions
improved as more data becomes available.
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Table 4: Model parameters estimated by Bayesian inference with transmission constrained by a government
stringency index [Hale et al. 2020]. Model selection based on maximum log-likelihood (LL) and Akaike informa-
tion criterion (AIC). Best fitting models have lower AIC scores (bold). Infection fatality ratio, φ = 0.9%. Herd
immunity threshold (H) calculated from R0 and CV using formulas (14) or (22), as appropriate. w accounts for
increases in transmission since the end of lockdown 1 due to factors other than government response.

Heterogeneous susceptibility Heterogeneous connectivity Homogeneous
Median 95% CI Median 95% CI Median 95% CI

Common parameters
c1

a 0.2808 (0.2806, 0.2814) 0.2626 (0.2624, 0.2634) 0.2345 (0.2343, 0.2346)
η b 17 {17} 16 {16} 16 {16}
ν c 1.314 (1.309, 1.320) 0.8298 (0.8272, 0.8447) 0 −

England
w 2.430 (2.427, 2.434) 2.339 (2.338, 2.345) 2.096 (2.094, 2.096)
R0 2.336 (2.334, 2.337) 2.398 (2.398, 2.400) 2.356 (2.354, 2.358)
H 26.74% (26.58%, 26.87%) 30.78% (30.25%, 30.90%) 57.56% (57.52%, 57.59%)

Scotland
w 1.575 (1.571, 1.578) 1.540 (1.540, 1.542) 1.430 (1.429, 1.437)
R0 2.750 (2.748, 2.753) 2.821 (2.820, 2.833) 2.878 (2.876, 2.879)
H 31.00% (30.83%, 31.15%) 35.36% (34.76%, 35.58%) 65.26% (65.23%, 65.27%)

Model selection
LL −5801 −5788 −6220
AIC 11616 11589 12452

atransmissibility reduction due to lockdown 1,
bdifference between mean-time-to-death and mean-time-to-recovery (sampled from a continuous interval and

reduced to the nearest integer before entering the model),
ccoefficient of variation (CV).
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Figure 10: SARS-CoV-2 transmission constrained by government stringency index. (a) individual
variation in susceptibility to infection; (b) individual variation in exposure to infection; (c) assuming homogeneity.
Modelled trajectories of COVID-19 deaths (black) and cumulative percentage infected (blue). Green dots are data
for daily reported deaths. Basic reproduction numbers modified by the stringency index [Hale et al. 2020] (Rc)
displayed in shallow panels underneath the main plots. Input parameters: progression from E to I (δ = 1/5.5 per
day); recovery (γ = 1/4 per day); relative infectiousness between E and I stages (ρ = 0.5); and IFR (φ = 0.9%).
Initial basic reproduction numbers, coefficients of variation and control parameters estimated by Bayesian inference
(estimates in Table 4). Fitted curves represent best fitting trajectories and shades are 95% credible intervals
generated from 10, 000 posterior samples.

At this stage, our parameter inferences can be confronted with several types of empirical
estimates. First, the basic reproduction numbers estimated here (in the order of R0 = 3) align
with those from numerous independent studies (e.g., [Flaxman et al. 2020, Hilton et al. 2020,
Kwok et al. 2020]). Second, the transmission reduction due to first lockdown, 70 − 80% (i.e.,
c1 between 0.2 and 0.3) is in agreement with direct contact measurements [Jarvis et al. 2020].
Third, the estimated time from detectable infection to death (1/γ + η, between 10 and 20 days)
agrees with [Verity et al. 2020, Wood 2021], more so when heterogeneity models are used. Forth,
our time-dependent transmission profiles, c(t) (parameterised by T0 and T2), align well with the
stringency index [Hale et al. 2020] and might align even better with some hybrid indicator com-
bining government measures with voluntary adaptive behavioural changes (captured by mobility
patterns tracked by Google). Finally, the coefficient of variation (ν), the main novelty of this
study, is assessed in a dedicated section (Section 5.4).

5.4. Coefficients of variation from empirical studies
5.4.1. Contact surveys

Contact patterns provide one of the easiest sources of heterogeneity to study directly. One
approach is to use large-scale diary experiments to collect self-reported logs of close or physical
contact from study participants. In this section we show data from several of these contact-
pattern studies, listed in Table 5. In Fig. 11 we show gamma-fits for the contact distribution of
each study on a log scale, along with the CV for each empirical distribution. In Supplementary
Material we show that lognormal distributions provide considerable worse fits (Fig. S15).
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Figure 11: Gamma fits for the included contact surveys. For each dataset in Table 5, we plot the empirical
distribution and report its CV, as well as the best-fit gamma distribution.
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Table 5: Contact pattern studies used in this review.

Dataset citation
1 2008_Mossong_BE [Mossong et al. 2008]
2 2008_Mossong_EU [Mossong et al. 2008]
3 2008_Mossong_IT [Mossong et al. 2008]
4 2008_Mossong_LU [Mossong et al. 2008]
5 2008_Mossong_NL [Mossong et al. 2008]
6 2008_Mossong_OT [Mossong et al. 2008]
7 2008_Mossong_PL [Mossong et al. 2008]
8 2008_Mossong_PT [Mossong et al. 2008]
9 2008_Mossong_UK [Mossong et al. 2008]
10 2009_Hens_BELGIUM [Hens et al. 2009]
11 2010_Willem_BELGIUM [Willem et al. 2012]
12 2011_Horby_Vietnam [Horby et al. 2011]
13 2015_Beraud_France [Béraud et al. 2015]
14 2015_Grijalva_Peru [Grijalva et al. 2015]
15 2016_Litvinova_Russia [Litvinova et al. 2019]
16 2017_Leung_HongKong [Leung et al. 2017]
17 2017_Melegaro_Zimbabwe [Melegaro et al. 2017]
18 2019_Zhang_China [Zhang et al. 2020]
19 2020_Mahikul_Thailand [Mahikul et al. 2020]
20 2015_Dodd_ZambiaAndSA [Dodd et al. 2015]

Irrespective of fits, the empirically measured contact distributions reveal CV between 0.7 and
1.5 (depending on study and setting; mean 0.9, standard deviation 0.2).

In addition to the magnitude of individual variation in connectivity, the time scale of that
variation is another important determinant for the effect of selection in accelerating the acqui-
sition of population immunity [Tkachenko et al. 2021]. The referenced studies typically report
contact patterns for individuals over a very short (e.g., 1-day) period which is insufficient for
assessing persistence of the measured variation. One of the studies [Hens et al. 2009] made an
extra step and measured contact patterns for each individual on two different days (one weekday
and one weekend day). In Fig. 12, we show fits for contact patterns by these two days individu-
ally, and for the average. The CV for the contact heterogeneity that persists over the two days
is approximately 1.1 (in contrast with the larger 1.4 or 1.6 for each day alone).

For a heterogeneous model of an epidemic unfolding over a timescale of years, local dynamics
are driven by assumptions about heterogeneity in short-term (e.g., week-long) averages in contact
patterns, while global dynamics depend on assumptions about persistence of heterogeneity in
those short-term averages over the timescale of the simulation. However, these long-term averages
are frequently not evaluated directly by contact diary experiments.

One way to estimate persistent contact heterogeneity from below is to bin contact data by
age groups, assuming for example that heterogeneity in contact patterns which persists in con-
tact data after binning in 5-year age groups represents population-level heterogeneity in contact
patterns that is persistent on multi-year time scales. Of course, this approach only captures het-
erogeneity mediated by age; i.e., it would only capture the full extent of heterogeneity in contact
patterns if there was no within-age-group persistent variation in contact patterns. As such we
should expect age-binned contact data to underestimate the level of persistent heterogeneity in
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Figure 12: Persistence of contact heterogeneity. For this dataset, contact distributions are available for
two different diary days for each participant. When averaging over these two separate diary days, the contact
distribution CV is 17− 28% lower.

contact patterns [Britton et al. 2020], perhaps quite substantially. In Fig. 13 we show the effect
on CV of binning the data from the studies in Table 5 in 1- and 10-year age groups, respectively.
Generally, binning by larger periods tends to reduce heterogeneity more, although 1-year bin-
ning is sufficient to bring the results of all studies to values below our model-based inference of
persistent heterogeneity based on epidemic trajectories (CV = 1.1 for England and Scotland, as
in Table 1, heterogeneous connectivity). When CV is artificially reduced by averaging processes
such as these, models based on the resulting age-structured matrices are likely to overestimate
the size of epidemics.
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Figure 13: The effect of binning by age. Each linked pair represents one contact dataset; the height of the
red dot shows the CV of the contact distribution when ages are binned in 1 year buckets, while the height of the
blue dot shows the CV of the contact distribution when binned in 10 year buckets.
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5.4.2. Contact tracing
Contact-tracing data can also be used to describe heterogeneity in transmission by measuring

directly the number of secondary cases attributed to each infected individual. Distributions of
individual infectivity can then be characterised as in [Lloyd-Smith et al. 2005] who have analysed
several pathogens including SARS-CoV-1. The authors found the measured distributions to be
highly skewed around R0, with a CV of approximately 2.6 for SARS-CoV-1. [Adam et al. 2020]
conducted one of the earlier such studies for SARS-CoV-2 (there are now many more but a
review of this literature is beyond the scope of this work). The authors estimate parameters that
correspond to a CV around 2.1. These studies traditionally assume a negative binomial model
and parameterise the resulting distributions by a dispersion parameter k. From that we derived
the corresponding CVs as the square root of the variance (calculated as Rc(1 + Rc/k)) divided
by the mean Rc.

Estimates of CV obtained from contact-tracing data are larger (roughly twice) those result-
ing from contact surveys (Section 5.4.1, Fig. S12), presumably because they capture variation
in infectiousness as well as connectivity and, without further information, the two causes are
inseparable.

5.5. Herd immunity thresholds and epidemic sizes
Fig. 14 shows the expected downward trends in the natural herd immunity threshold H for

SARS-CoV-2 as coefficients of variation of the gamma distribution increase (formulas (14) and
(22)) considering an approximate basic reproduction number of R0 = 3 (black and grey curves).
Final sizes of the corresponding unmitigated epidemics (R∗) are shown in blue. In contrast with
H, the final size R∗ cannot be derived explicitly but can be formulated implicitly as

(1− R∗)ν
2

(ν2 R0 R∗ + 1) = 1 (28)

for the variable susceptibility model (9)-(12),

(1− R∗)2ν
2

(2ν2 R0 R∗ + 1) = 1 (29)

for variable connectivity (17)-(20), and

(1− R∗) exp(R0 R∗) = 1 (30)

for the homogeneous scenario [Diekmann et al. 2013].
Our inferences for CV from fittings to COVID-19 daily deaths until 1 February 2021 (Table

1) are marked as vertical grey lines. We use dark tones for heterogeneous susceptibility and light
tones for heterogeneous connectivity.

We searched the literature and found no quantitative estimates of individual variation in
susceptibility to infections although the evidence of its existence is documented [Carr et al. 2016].
Studies that quantify variation in connectivity are more prolific, as reviewed in Section 5.4 and
marked by the vertical coloured lines in Fig. 14. Two types of studies were found: contact
surveys (solid orange); and contact tracing (dashed red for SARS-CoV-1, and dashed orange for
SARS-CoV-2). Our estimates (light grey) lie between those from these two study types.

The natural HIT resulting from our study (Section 5.1) can be visualised at the intersection
between grey vertical lines and grey HIT curves. In both cases we obtain H ≈ 25 − 27%
in England, and H ≈ 26 − 29% in Scotland, suggesting conserveness across the two models
(variable susceptibility and variable connectivity). A combined formulation should result in
intermediate CV estimates (currently 1.5 with variable susceptibility only, and 1.1 with variable
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Figure 14: Herd immunity threshold and epidemic final size with gamma distributed susceptibility
and exposure to infection. Curves generated using models (9)-(11) (dark tones) and (17)-(19) (light tones)
with approximate R0 = 3: herd immunity threshold given by (14) and (22) (black and grey, respectively);
final size of unmitigated epidemics given implicitly by (28) and (29) (blue). Vertical lines indicate coefficients
of individual variation from the literature and this study: susceptibility to SARS-CoV-2 (black) (England and
Scotland 1.48, this study Table 1); connectivity for SARS-CoV-2 (grey) (England and Scotland 1.12, this study
Table 1); connectivity (solid orange) (mean 0.93, standard deviation 0.19, as reviewed in Section 5.4.1); infectivity
for SARS-CoV-2 (dashed orange) (Hong Kong 2.09 [Adam et al. 2020]); infectivity for SARS-CoV-1 (dashed red)
(Singapore 2.62, Beijing 2.64 [Lloyd-Smith et al. 2005]).
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connectivity) but similar HIT. We also find that once sufficient selection has occurred in the
pandemic, our inferences become robust over different time scales (until 1 February 2021, to
capture first and second waves, or until 1 July 2020, to capture the first pandemic wave only)
contrasting with results from [Tkachenko et al. 2021] on the effects of time scales of individual
variation on COVID-19 dynamics.

To explore sensitivity to the type of distribution we show equivalent plots to Fig. 14 with
lognormal distributions in Supplementary Material (Section S5, Fig. S16). The curves for
variable connectivity remain almost unaltered while the decline with increased CV becomes less
steep for variable susceptibility.

5.6. Interpretation and counterfactuals
For over a century, mathematical epidemiologists have realised that individual variation in

susceptibility and exposure to infection were key to determine the shape of epidemic curves.
Models that underrepresent these forms of variation tend to overpredict epidemic sizes and
consequently inflate the effects attributed to control measures. Fig. 15(a) depicts the epidemic
curves that might have resulted from letting the COVID-19 pandemic run unmitigated in England
(results for Scotland would be similar). Using parameters estimated in this study (Section
5.1), the homogeneous model (black) would have predicted almost half million deaths in total
(460,000), while accounting for individual variation in susceptibility (red) would have brought
these estimates down to less than a half (225,000) (individual variation in exposure leading to a
similar result). The maximum number of deaths in a single day would have been around 16,000
by the homogeneous model and 6,000 when variability was considered. The figure also includes
the real data for England (green dots), where the number of deaths in a single day has peaked at
slightly over 1,200 in January 2021, a reduction attributed to adaptive behavioural changes and
NPIs (but see [Wood 2021]). Although, in either case, it seems unimaginable that one would let
a pandemic like this go unmitigated, the scenario appears more than twice as dramatic when
individual variation is neglected.

Moving down Fig. 15, panel (b) simulates what would have happened according to both
models with the first lockdown implemented (as it did in the spring 2020), but not the second
and third (in the autumn-winter 2020-2021). In this scenario, the homogeneous model would
have predicted around 320,000 deaths over an 8-month period around the peak (September 2020
- April 2021), while individual variation in susceptibility would have brought this projection
down to around 135,000. The number of predicted COVID-19 deaths in a single day would
have been around 4,800 by the homogeneous model and 1,800 when individual variation was
considered. The gap between homogeneous and heterogeneous models appear to widen as the
pandemic progresses but, more strikingly, the heterogeneous model (with first lockdown but
without second and third) is not far from the real data (which included lockdowns 2 and 3).

Fig. 15(c) simulates all three lockdowns as estimated in Section 5.1, but without vaccines.
The third lockdown is assumed to last until 7 March 2021, after which we let the controlled basic
reproduction number Rc initiate a linear increase towards normalcy (here assumed to reach the
original R0 by 19 July 2021), when most restrictions were removed in England (but see further
discussion below in regards to increased transmission due to viral evolution). In the absence of
vaccination, a large exit wave would have been expected under the homogeneous model but only
a shallow hump is apparent when individual variation is considered.

Finally, the effects of vaccination are explored in the bottom panel (Fig. 15(d)). We simulate
a vaccination programme according to the proportion v(t) of the population fully vaccinated each
day (two doses was the standard full vaccination schedule at the time) as recorded in England
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(blue):

dS(x)

dt
= −λ x S(x)− v(t) S(x), (31)

dE(x)

dt
= λ x S(x)− δ E(x)− v(t) E(x), (32)

dI(x)

dt
= δ E(x)− γ I(x)− v(t) I(x), (33)

dR(x)

dt
= (1− φ) γ I(x)− v(t) R(x), (34)

dSv(x)

dt
= v(t) S(x)− (1− ξ) λ x Sv(x), (35)

dEv(x)

dt
= v(t) E(x) + (1− ξ) λ x Sv(x)− δ Ev(x), (36)

dIv(x)

dt
= v(t) I(x) + δ Ev(x)− γ Iv(x), (37)

dRv(x)

dt
= v(t) R(x) + (1− (1− ζ) φ) γ Iv(x), (38)

with force of infection

λ =
β

N

∫
[ρ(E(x) + Ev(x)) + I(x) + Iv(x)] dx. (39)

The vaccine is assumed to confer either ξ = 30% (solid curves) or ξ = 70% (dashed) pro-
tection against infection and 1 − (1 − ξ) · (1 − ζ) = 90% against death [Voysey et al. 2020,
Bernal et al. 2021, Sheikh et al. 2021]. The implementation of a programme with these charac-
teristics would have reduced the size of the third waves as visualised by comparing Figs. 15(c)
and 15(d). According to the homogeneous model the third wave would have nevertheless re-
mained large (black), while under heterogeneity the vaccination programme would have brought
model trajectories (red) to the level of the data (green).

To better assess the dynamics governed by the heterogeneous model see Fig. 16(a),(b). We
separate the scenarios of 30% and 70% vaccine efficacy against infection in two panels. We
also allow Rc to reach a value different from baseline after restrictions are lifted on the 19 July
2021. In each vaccine efficacy scenario we calculate the value that Rc would have to reach
for the number of COVID-19 deaths generated by the model between 1 February 2021 and 1
November 2021 to match the data (26, 129 deaths over the stipulated 9 months). We obtained
Rc = 1.23 · R0 in the 30% scenario and Rc = 1.41 · R0 in the 70% scenario. Subtracting the
number of deaths under vaccination from the corresponding simulations without vaccination
would lead us to conclude that the vaccine would have prevented around 52, 000 and 88, 000
deaths in the 30% and 70% vaccine efficacy scenarios, respectively. This calculation is not
possible with the homogeneous model because no vaccination programme in that model can fill
the gap between projections in Fig. 15 (c) and the reported deaths (see Fig. 16(c),(d)). Scenarios
equivalent to those provided for the heterogeneous model result in epidemic waves one order of
magnitude larger when heterogeneity is omitted. Heterogeneous models, which performed better
than homogeneous in statistical inferences in this paper (whether based on fittings until July
2020 or February 2021, with or without reinfection, assuming different infection fatality ratios,
informed by government stringency indices and mobility data or not), also generate projections
in closer agreement with data beyond the fitted period.

In the timeframe of this study, SARS-CoV-2 has undergone substantial evolution, with
dominant genetic types being replaced by more transmissible variants. Specifically, the larger
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wave which peaked in January 2021 was caused by the alpha variant (B.1.1.7), estimated
as up to 30% more transmissible than early viruses, while the flatter wave in the summer
2021 was mostly due to delta (B.1.617.2), estimated about 40% more transmissible than al-
pha [PHE 2021, Richard et al. 2021, Wang et al. 2021] and hence 80% more than early types.
The crude analysis in Fig. 16 suggests that Rc might have been 23 − 41% higher during the
delta wave than in the early months of the pandemic (baseline R0). This is consistent with
people retaining cautious behaviours which cancel some of the increases in transmissibility, e.g.,
a virus that is 80% more transmissible than the original (wild type) opposed by 22% reduced
transmission due to behavioural change has Rc = 1.4 ·R0. In December 2021, delta was replaced
by the omicron variant (B.1.1.529) [Elliott et al. 2022], assessed as even more transmissible but
less pathogenic, a phenomenon that would be interesting to analyse with the models presented
here but is beyond scope of the present study.

Throughout the COVID-19 pandemic, our heterogeneity models have systematically projected
lower infection rates in the UK (more specifically, England and Scotland) than others conform-
ing to more common approaches [Flaxman et al. 2020, Knock et al. 2021, Sonabend et al. 2021,
Davies et al. 2020, Davies et al. 2021, Hilton et al. 2020, Keeling et al. 2021a, Keeling et al. 2021b,
Moore et al. 2021]. This was also noticed in similar analyses featuring Spain and Portugal
[Aguas et al. 2020]. When we disable individual variation in susceptibility and exposure to
infection we obtain results similar to those presented elsewhere, suggesting that to be the distin-
guishing feature that prevents our models from overpredicting infection rates. When mitigations
are applied the discrepancy between homogeneous and heterogeneous trajectories increases as
the pandemic progresses, eventually causing the rejection of models that lack sufficient hetero-
geneity. By then, however, such models would have over-attributed impact to interventions, and
may have induced governments to systematically make suboptimal decisions by over-weighting
benefits in relation to the costs and collateral damages of control measures. More work is need
to establish to what extent these might have happened in the COVID-19 pandemic.
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Figure 15: Counterfactuals. Simulations of the COVID-19 pandemic in England with epidemiological param-
eters estimated in Section 5.1 and interventions implemented incrementally: (a) no interventions (unmitigated
epidemic); (b) lockdown 1 only (spring 2020); (c) lockdown 1, as well as 2 and 3 (autumn and winter 2020-2021);
(d) lockdowns 1, 2 and 3, as well as vaccination from late 2020 / early 2021 (30% vaccine efficacy (VE) against
infection (solid); 70% VE against infection (dashed); 90% VE against death in both cases). Shallow panels
show controlled reproduction numbers as introduced in Section 2.1. Cumulative percentage fully vaccinated (two
doses) in blue. Curves generated by running model (31)-(39): (red) heterogeneous susceptibility; (black) assuming
homogeneity.
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Figure 16: Scenarios allowing transmissibility to increase beyond initial R0. Simulations of the COVID-19
pandemic in England with epidemiological parameters estimated in Section 5.1. Larger panels show daily COVID-
19 deaths in England while shallow panels underneath show the corresponding controlled reproduction numbers
as introduced in Section 2.1. (a,b) heterogeneous susceptibility model: without vaccination (red); and with
cumulative vaccination as per blue dots (green curve); (c,d) homogeneous model: without vaccination (black);
and with vaccination (green curve). Dashed curves represent cumulative percentage infected in the respective
colours. Reported COVID-19 deaths are represented by green dots. Two scenarios are considered for VE against
infection: 30% (a,c); and 70% (b,d). VE against death is fixed at 90%. Curves generated by running model
(31)-(39).

32

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 14, 2022. ; https://doi.org/10.1101/2020.04.27.20081893doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.27.20081893
http://creativecommons.org/licenses/by-nc-nd/4.0/


6. Limitations of the study

We have presented an original approach to modelling pandemics that includes inference of
individual variation from its response to selection and enables reliable projections based on series
of daily counts of disease outcomes (deaths in this case, but it could have been hospitalisations,
reported infections, or a combination of multiple data streams) complemented by minimal infor-
mation about interventions (Sections 5.1 and 5.2). Future developments might integrate more
detailed data about interventions, such as NPIs and vaccines, the emergence and spread of new
variants, individual variation in vulnerability to infection due to age, comorbidities or other
factors, seasonal dynamics, susceptibility replenishment through waning immunity or birth and
deaths, and interactions among these and other processes. Based on explorations initiated here
(Sections 5.3 and 5.6) we expect our results to be robust to such extensions given abounding
agreements with empirical evidence from independent sources (Section 5.4 and 5.5). Specifying
more detail into the models does not necessarily enable more accurate predictions, but there are
often other reasons, such as informing the design of targeted interventions, for such developments
[Mishra et al. 2020]. Although those extensions are beyond the scope of the current paper they
are sometimes essential in specific circumstances.

Another aspect where this work may fall short of expectations, and we hope to stimulate
further research, is in the treatment of uncertainty. Our inferences result in noticeably narrow
credible intervals which may inadvertently suggest overconfidence. Factors that may have con-
tributed to this include the lack of account for uncertainty around some input parameters (such
as incubation period, recovery rate and infection fatality ratio) which we assume at fixed values
taken from the literature, the absence of stochasticity along individual trajectories (although we
consider between individual variability) and the choice of a particular Monte Carlo algorithm
[Stapor et al. 2018] implemented in Matlab while alternatives are always worth exploring given
the rapid development of MCMC methods (although we have replicated a sample of fittings with
other algorithms in Stan and obtained similar results). Given the wide discrepancy between
heterogeneous and homogeneous model outputs and the consistency across a spectrum of sce-
narios, however, methodological improvements along these lines are not expected to affect the
conclusions of this study. They may nevertheless reduce the confidence on particular metrics
being estimated.

7. Discussion and conclusion

The conclusions of this work apply much beyond COVID-19. Individual variation in the
propensity to acquire infections has many factors. Individuals differ in genetic background,
the local environment they live in, and social activity, in ways that affect their susceptibility
and exposure to many infectious diseases. Immunological studies identify local environmental
conditions as key in shaping the human immune system [Carr et al. 2016], while social inequality
is probably a main driver [Cevik and Baral 2021]. Studies designed to identify specific factors
and characterise their modes of action are key, not necessarily to inform the development of
more predictive models but primarily to help focusing interventions on those individuals who
need more protection. Notwithstanding these studies being conducted, there will always remain
some unobserved variation and, for the sake of model predictability, all variation responding
to selection by natural infection must be accounted for to prevent biased outputs. For this
reason we took the inverse approach of quantifying selectable variation by fitting fairly generic
models to epidemic curves. We used the COVID-19 pandemic in England and Scotland to
test the approach. We estimate coefficients of variation for variable connectivity (around 1.1)
in agreement with empirical studies of contact patterns, resulting in natural herd immunity
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thresholds around 25 − 28%. For variable susceptibility we are not aware of available data
specific to human COVID-19 to immediately compare our inferences (CV around 1.5, leading to
herd immunity thresholds around 27− 29%).

The natural herd immunity threshold used here (H) describes a ceiling for epidemic growth
formulated in terms of the basic reproduction number (R0) and coefficients of individual varia-
tion in traits that are under selection by natural infection (namely, susceptibility and exposure
to infection), filling a gap in mathematical epidemiology. While R0 is indicative of the early
growth of an epidemic, it says little about the final size and the height of the peak, which are
strongly dependent on types of individual variation that decrease transmission over time (see
also [Brauer 2018]). H accounts for that variation enabling more accurate predictions of how
large an epidemic might be, but it is a theoretical framework to the extent that R0 is a theo-
retical framework. H changes if the parameters that determine its value change. Most notably,
natural changes in R0 through time, which can happen due to seasonal forces or viral evolution,
will manifest in H. In particular, the percentage of the population immune required to pre-
vent sustained epidemic growth may become higher than the initially estimated H if we enter a
high-transmission season or if the virus evolves towards higher transmissibility.

The UK experienced a first wave of the wild type virus in the spring 2020 (low-to-moderate
transmission season but highly susceptible population) and initiated a second wave in the autumn
of the same year (presumably driven by seasonality). The wave was subsiding (due to acquired
immunity and contact restrictions) when a more transmissible variant (alpha) emerged, reaccel-
erating epidemic growth and becoming dominant by January 2021. By the end of January 2021,
this wave was retracting again. Levels of infection and disease were especially low throughout
April-May 2021 but this was somewhat altered by an even more transmissible variant (delta) that
become dominant by the end of May 2021. The delta variant, which ravaged parts of the world
(such as India, where it was first detected), maintained moderate levels of infection and disease
in the UK throughout the summer and autumn 2021 (immunity due to previous infection and
vaccination having a key role in this outcome). By the time this study was completed (November
2021), a new variant was being detected (omicron, associated with even higher transmissibility,
lower incubation period and lower pathogenicity) but this is beyond the scope of this paper.

Although our models have not been developed to estimate variant-specific parameters (except
for the wild type), they can give an indication of which parameter ranges are compatible with
the transmission dynamics in each nation at the time a particular variant was dominant. In
England, assuming an infection fatality ratio of 0.9%, our heterogeneous models estimate H for
wild type in the range 25− 27% (R0 around 2.7). Assuming alpha 30% more transmissible, and
delta 40% more transmissible than alpha [PHE 2021], we obtain H in the range 30 − 33% (R0

around 3.6) for alpha, and 36−40% (R0 around 5.0) for delta. The estimated cumulative infected
percentage is close to 25% by November 2021, suggesting that the nation was then entering the
range estimated for the natural herd immunity threshold for wild type SARS-CoV-2 (assuming
acquired immunity to be effective across variants), but remained 5% and 11% below threshold
for alpha and delta variants, respectively. Adding that almost 70% of the population had been
fully vaccinated by then, it might have been reasonable to expect herd immunity to be achieved
soon for the variants as well. This was happening just prior to the rapid rise of the omicron
variant by December 2021.

In Scotland, we estimate H in the range 26−29% (R0 around 2.9) for the wild type, 31−34%
(R0 around 3.8) for alpha, and 37 − 41% (R0 around 5.3) for delta, where the same infection
fatality ratio of 0.9% would suggest a cumulative infected percentage close to 20% by November
2021. In this case, the nation remained 6% below the natural herd immunity threshold for the
wild type, 11% for alpha, and 17% for the delta variant. As in England, though, it is plausible the
addition of vaccination coverage would have brought the nation to the herd immunity threshold
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for the three SARS-CoV-2 types, but more research is needed to determine this with satisfactory
confidence.

These figures are for the scenario where the IFR is 0.9% and should be adapted if different
assumptions are made about this metric, but explorations reported in Supplementary Material
suggest that general tendencies will not be affected. Also worth noting that although neither the
wild type nor the alpha variant remained in circulation by November 2021, it is of both theoretical
and practical interest to detail the mechanisms that resulted in their elimination. In particular,
our analyses suggest that variant-specific naturally acquired immunity had a much larger role
than what might have been expected according to models that take less account of individual
variation in susceptibility and exposure to infection (recall that models that assume homogeneity
inflate herd immunity thresholds to 60% and higher). More generally, heterogeneity affects
competition mechanisms and measures of relative fitness between variants [Gomes et al. 2019],
and efficacy of vaccines over time [Gomes et al. 2016, Gomes 2020], in ways that are yet to be
considered for COVID-19 [Bushman et al. 2021, Althaus et al. 2021, Thomas et al. 2021].

Finally, the maintenance of herd immunity is a dynamic process [Gomes 2021]. Immune in-
dividuals lose their immunity or die while new susceptibles are born. Further infections and
vaccinations replenish population immunity maintaining infection rates at an endemic equilib-
rium - the herd immunity threshold. This equilibrium is precarious in the sense that it is
sensitive to viral evolution and demographic change, and may be temporarily eroded by season-
ality [Bacaër and Gomes 2009] in a pattern exhibited by many common air-borne or vector-borne
infectious diseases.
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