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Abstract: The effect of thermal treatment of aluminum core-shell particles on their oxidation kinetics
in water for hydrogen production was investigated. The samples were obtained by dividing dried
aluminum powder, partially oxidized by distilled water, into eight portions, which were thermally
treated at temperatures of 120, 200, 300, 400, 450, 500, 550 and 600 ◦C. Alumina shell cracking
at 500–600 ◦C enhances hydrogen generation due to uncovering of the aluminum cores, while
sharp thickening of the protective oxide film on the uncovered aluminum surfaces at 550–600 ◦C
significantly reduces reactivity of the core-shell particles. For these reasons, after reaction with
distilled water at 90 ◦C for two hours, the highest hydrogen yield (11.59 ± 1.20)% was obtained for
the sample thermally treated at 500 ◦C , while the yield for aluminum core-shell powder without
heat treatment was only (5.46 ± 0.13)%. Another set of experiments employed multiple consecutive
cycles of alternating oxidation by water and thermal treatment at 500 ◦C of the same powder sample.
As predicted, the hydrogen yield gradually decreased with each subsequent experiment. The series
of six cycles resulted in a total hydrogen yield of 53.46%.

Keywords: hydrogen; core-shell particles; aluminum; thermal treatment; oxidation kinetics

1. Introduction

Until quite recently the implementation of clean energy technologies has seemed
almost exotic. However, we now observe an accelerating evolution of the conventional
energy industry based on fossil fuels towards new environment-friendly concepts. One
of these concepts is to use carbon-neutral energy carriers, such as hydrogen, that can be
consumed without greenhouse gas emissions and produced without a carbon footprint.
Other reasons for the high degree of attention to hydrogen include its high gravimetric
energy density and the availability of methods that ensure highly efficient conversion of
hydrogen energy [1]. These high-efficiency energy conversion methods include hydrogen
utilization in fuel cells, or its combustion in a combustion chamber to drive gas and
steam turbines with expanding heated air or steam, produced from water heating by the
exhausted air, respectively [2].

Presently, there are a variety of approaches to hydrogen production either from
fossils or from renewable sources (e.g., biomass, water) [3]. Most hydrogen is generated
by natural gas reforming and coal gasification processes which are emissions-intensive;
biomass is not currently considered as a source for industrial-scale hydrogen production,
while water represents a promising alternative. The established methods of water splitting,
which are currently attracting much attention, include thermolysis, photolysis, radiolysis,
and electrolysis [3,4]. Small-scale production of ‘green’ hydrogen from water can be
achieved by its reaction with so-called ‘metal-based energy carriers’, such as magnesium
and aluminum. This approach has the following advantages: it provides a feasible method
of producing pure hydrogen without its separation from other gases, it is not accompanied
by harmful gas emissions, and it does not require expensive large-scale equipment or
complicated technology.
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The application of aluminum and magnesium to obtain hydrogen is also anticipated
to be profitable in terms of waste management, which is an important current problem.
There are many methods for the utilization of aluminum and magnesium scraps for
hydrogen production, some of which are described in [5–10]. It is also important to note
that in 2018, ‘Alcoa’ and ‘Rio Tinto’ (well-known aluminum manufacturers) announced
their ‘ELYSIS’ project applying revolutionary smelting technology, based on inert anodes,
that produces oxygen and eliminates greenhouse gases [11,12]. Aluminum is, therefore,
anticipated to become ‘green’ providing a further argument in support of its use for
hydrogen generation. Since aluminum is a multi-purpose metal, widely used in industry,
a variety of aluminum-based composite materials are known. Aluminum is used for the
production of high-purity γ-Al2O3 [13] and α-Al2O3 (the raw material for leucosapphire
crystals) [14], porous alumina catalyst carriers [15], and production of aluminum-based
core-shell powders reinforced with Al2O3, which represent promising materials for the
fast-growing additive manufacturing industry [16] due to its enhanced mechanical and
physical properties [17–19]. These composite materials can be manufactured via aluminum
oxidation by pure water resulting in the production of a pure solid reaction product.
Moreover, hydrogen generated during the oxidation process can be converted into useful
energy, thus contributing to the efficiency of the manufacturing process in terms of energy
saving, another goal to be pursued.

Under standard conditions (room temperature, atmospheric pressure), the reaction
between pure water and magnesium or aluminum (excepting that in the form of nanopow-
ders) can barely proceed because of a thin dense oxide layer on the surfaces of these metals,
or because of the fast formation of limited permeability, low-soluble layers of the reaction
products (e.g., Mg(OH)2, AlOOH, Al(OH)3), onto them at the very beginning of the process.
The reaction therefore requires either higher temperatures [20–22] or activation procedures
to destroy the protective layers. A number of activation methods for their disruption, disso-
lution or removal in other ways are known. For example, tested techniques for magnesium
include: ball-milling of magnesium powders together with chlorine salts (AlCl3, NaCl,
KCl) to obtain hydrogen from pure water [23,24], preparation of hydroreactive ‘mechanical
alloys’ of magnesium and other metals (Ni, Fe, Co, Cu) [25–27], and implementation of
a Pt-coated titanium net or stainless steel net as a catalyst for magnesium alloy ingots to
promote hydrogen evolution from conductive (NaCl) aqueous solution [28,29]. The list
of suggested methods for aluminum activation is even more extensive. Thus, aqueous
solutions of salts (e.g., CoCl2 or NiCl2 [30]), or alkali (e.g., KOH or NaOH) or acid (HCl)
solutions [31–33], have proved to be effective for obtaining hydrogen from aluminum in
dispersed or bulk forms at moderate or even below-zero temperatures. The addition of
different metals to aluminum, for instance, low-melting-point metals, such as Ga, In, Mg, Li,
Zn, Bi, Sn, or metals with higher melting points, such as Ca and Cu) [34–40], or iron group
metals, such as Fe, Co, Ni [41] (alone or with additives such as organic fluoride, NaCl,
SnCl2, Bi2O3), by alloying or ball-milling, also enhances aluminum reactivity. Aluminum
oxidation can be promoted as well by its ball-milling with various additives, such as metal
oxides, water soluble salts, and other compounds, such as chlorides of metals, carbon
nitride, etc. [42,43]. The reaction of aluminum with water can be facilitated by aluminum
compounds including aluminum hydroxide (gibbsite, bayerite), boehmite [44–49], and
alumina-based catalysts, as they can be employed, for instance, to promote the production
of aluminum-based core-shell powders. No addition of other compounds, potentially
resulting in product contamination, is needed. Even if no composite materials are to be
produced, the reaction product composed of aluminum hydroxides, aluminum oxides,
or their mixture (and, probably, some amount of unreacted aluminum) can be used for
aluminum regeneration without a need for separation from impurities. Techniques for
manufacturing composite materials of aluminum and alumina include aluminum powder
ball-milling together with α- or γ-Al2O3 powders [50–53], aluminum ball-milling with
Al(OH)3 powder with subsequent sintering in vacuum at 600 ◦C resulting in the formation
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of γ-Al2O3 phase [54], and aluminum mixing with γ-Al2O3 powder with its sintering in
vacuum at 600 ◦C [55].

Summarizing the above, in previous studies, it has been clearly demonstrated that
aluminum is a promising material for hydrogen production, and its reaction with water can
be effectively promoted by different additives including aluminum hydroxide and alumina.
In [56] a process for manufacturing aluminum-alumina composites via the oxidation of
aluminum powder by water at 120–200 ◦C with hydrogen co-production is demonstrated.
The present study is intended to investigate the effect of the thermal treatment of aluminum
core-shell powder at different temperatures on its oxidation kinetics in water for hydrogen
production at a moderate temperature of 90 ◦C, and to determine whether a substantial
degree of aluminum conversion (e.g., hydrogen yield) can be achieved.

2. Materials and Methods
2.1. Original Reagents

In the present study, the original reagents were a fine aluminum powder ‘APZh’
(TU 1791 99-024-99) and distilled water. The average aluminum powder particle size
was determined from grain size measurements which were carried out using a laser light
scattering particle size analyzer, Analysette 22 (Fritsch GmbH, Idar-Oberstein, Germany).
The particle size distribution histogram is given in Figure 1. The average size of the powder
particles was 34.68 µm.
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Figure 1. Aluminum powder particle size distribution histogram.

To investigate the surface structure of the powder particles, scanning electron mi-
croscopy (SEM) analysis with a field emission scanning electron microscope, model JSM
7401F (JEOL Ltd., Tokyo, Japan) was performed.

The SEM micrographs of the aluminum powder are shown in Figure 2. The aluminum
particles represented on the micrographs had an approximately spherical shape.

The aluminum powder composition was determined via an x-ray fluorescent spec-
trometer Thermo Scientific Niton XL3t GOLDD+ XRF Analyzer (Thermo Fisher Scientific
Inc., Billerica, MA, USA). The results are represented in Table 1.
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Table 1. Aluminum powder composition.

Element Content (ppm) Element Content (ppm)

Al base Ga 90.7
Li 1.4 Y 0.1
Be 0.28 Zr 1.5
B 13.5 Mo 0.41

Na 9.6 U 0.41
Mg 16.2 Sn 1.0
Ti 9.9 Ba 0.2
V 32.2 La 0.72
Cr 4.7 Ce 0.81
Mn 13.7 Pr 0.04
Fe 771 Nd 0.16
Co 0.57 Sm 0.02
Ni 15.9 Gd 0.03
Cu 0.57 W 0.2
Zn 80.7 Tl 0.08

2.2. Experimental Plant

In the experiments on aluminum powder oxidation in hot water the experimental
facility shown in Figure 3 was employed. The reactor with a cooling jacket has its inlet
and outlet connected to a thermostat. The thermostat is used to maintain a constant
temperature in the reactor during an experiment. The temperature of the media in the
reactor is measured with a resistance temperature detector. The reactor is installed on a
magnetic mixer. Hydrogen obtained during an experiment is supplied through silicon
hoses to a gas meter. The readings of the resistance temperature detector and the gas meter
are transferred to a computer for on-line visualization.
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2.3. Experimental Procedure

In each experiment, the reactor was filled with 400 mL of distilled water and aluminum
powder was added to it. Then the reactor was sealed and the media inside it (initially at
room temperature) were heated up to 90 ◦C. This temperature was maintained at a constant
level during each experiment.

In the first experiment, aluminum powder (25.0752 g) was added to water and after 2 h
the suspension was discharged, subjected to decantation, and then the resulting partially
oxidized aluminum powder was dried in a drying oven at 120 ◦C (3 h). The powder
was then divided into eight parts each of which was used as the original material in the
following experiments. The first portion was used as it was and the other seven parts were
passed through thermal treatment in a muffle furnace at different temperatures (200, 300,
400, 450, 500, 550 and 600 ◦C, 2 h). Hydrogen yields were measured via the gas meter.

3. Results
3.1. Effect of Temperature

The first set of experiments was carried out to determine the effect of the thermal
treatment temperature on the degree of aluminum conversion (hydrogen yield) of different
samples. Firstly, a sample of original aluminum powder (‘primary’ sample with a mass of
25.0752 g) was reacted with distilled water at 90 ◦C for two hours. Then the resulting solid
product (partially oxidized aluminum powder) was separated from water and dried in a
drying oven at 120 ◦C. The dried solid product (composed of powder particles containing
both unreacted aluminum and aluminum oxidation product) was then divided into eight
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samples (‘subsamples’ or ‘secondary’ samples with approximately equal masses), each of
which was individually thermally treated. Seven of the eight samples underwent thermal
treatment at 200, 300, 400, 450, 500, 550 and 600 ◦C (2 h of holding at constant temperature);
the eighth was not thermally treated in any way other than drying at 120 ◦C (in practice,
drying was common to all eight ‘secondary’ samples, as they were ‘derived’ from the same
‘primary’ sample).

Each of the eight samples was in turn added to distilled water, and the suspension
was heated to 90 ◦C (the duration of all experiments was 2 h). The corresponding curves of
hydrogen yield (represented as aluminum conversion degree per sample gram) vs. time
for the original sample, and the eight samples produced from it, are shown in Figure 4.
The ‘secondary’ samples contained a reduced amount of aluminum (as compared to the
original sample). The curves for the ‘secondary’ samples are represented as ‘extensions’ of
the curve for the ‘primary’ (original) sample in order to demonstrate the reduction of the
unreacted aluminum content in the samples.

For each of the ‘original’ powder samples and ‘secondary’ samples thermally treated
at 300 ◦C, the measured values were averaged over three experiments, and for each of
the ‘secondary’ samples thermally treated at 400, 500 and 600 ◦C, the obtained data sets
were averaged over two experiments. For the repeated tests the standard deviation values
were calculated, which are represented in Figure 4 and in Table 2. As can be seen, the data
sets for the ‘original’ powder sample and for the ‘secondary’ sample thermally treated at
600 ◦C show quite good repeatability; the deviation ranges for the ‘secondary’ samples
after thermal treatment at 400 ◦C and 500 ◦C overlap, while results for the sample thermally
treated at 300 ◦C demonstrate a large uncertainty in the experimental data.

The hydrogen production curves demonstrate that the thermal treatment of partially
oxidized aluminum samples at temperatures of 400, 450, 500 and 550 ◦C considerably
enhanced their reactivity with water as compared to the original sample of aluminum
powder and the samples thermally treated at 200, 300 and 600 ◦C, as well as the sample
without thermal treatment in a muffle oven (passed only through drying at 120 ◦C). The
corresponding conversion degrees (hydrogen yields) for the samples are given in Table 2
(the total conversion degrees account for the contribution of the original sample, i.e., 5.46%,
while the conversion degrees per experiment account for only the amount of aluminum
converted into hydrogen during the experiments with the ‘secondary’ samples). The
probable reasons for such a difference in the standard deviations for the various samples
are suggested below, following discussion of the X-ray diffraction analysis results).

The highest conversion degree (hydrogen yield) corresponded to the sample thermally
treated at 500 ◦C, (11.59 ± 1.20)% during an experiment (17.05% in total). This experimental
value was almost twice as high as the equivalent value for the original aluminum powder,
(5.46 ± 0.13)%. The data in Table 2 clearly demonstrate that heat treatment at 200, 300
and 600 ◦C, as well as the absence of heat treatment in a muffle oven (that is equal to
heat treatment at 120 ◦C in a drying oven), provided a quite low degree of conversion;
the amount of hydrogen produced during 2 h of experiment approximately halved in
comparison with that for the original powder. Thermal treatment in the temperature range
from 400 ◦C to 550 ◦C significantly improved the reactivity of the samples compared to both
the original sample and the samples thermally treated at the other temperatures. All the
curves started to rise after about 20 min from the beginning of the experiments; this time
corresponds to the heating of the suspension in the reactor (in all the experiments traceable
hydrogen production started at a temperature of ~68–70 ◦C). Almost all the curves have a
section with a high reaction rate, and after about 20–40 min reaction rates became almost
constant. Such reaction slowdown may be attributed to the formation of fresh aluminum
hydroxide aggregations on the surfaces of the powder particles.
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Figure 4. Aluminum conversion degrees (hydrogen yields) for different powder samples: (a) orig-
inal size; (b) magnified section: 1—original aluminum powder, 2—sample after drying at 120 ◦C,
3—sample after thermal treatment at 200 ◦C, 4—sample after thermal treatment at 300 ◦C, 5—sample
after thermal treatment at 450 ◦C, 6—sample after thermal treatment at 400 ◦C, 7—sample after
thermal treatment at 500 ◦C, 8—sample after thermal treatment at 550 ◦C, 9—sample after thermal
treatment at 600 ◦C.
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Table 2. Aluminum conversion degrees (hydrogen yields) for different samples.

Sample Conversion Degree
(Total), %

Conversion
Degree ± Standard

Deviation
(Per Experiment), %

Standard Deviation
Averaged over

Measurement Time, %

Original aluminum powder 5.46 5.46 ± 0.13 0.13
Sample after drying at 120 ◦C 7.38 1.92 –

Sample after thermal treatment at 200 ◦C 6.93 1.47 –
Sample after thermal treatment at 300 ◦C 8.82 3.36 ± 1.33 1.18
Sample after thermal treatment at 400 ◦C 15.51 10.05 ± 0.99 0.91
Sample after thermal treatment at 450 ◦C 13.82 8.36 –
Sample after thermal treatment at 500 ◦C 17.05 11.59 ± 1.20 0.74
Sample after thermal treatment at 550 ◦C 12.46 7.00 –
Sample after thermal treatment at 600 ◦C 6.99 1.53 ± 0.10 0.08

Figure 5 shows the corresponding micrographs of the thermally treated samples before
the experiments. The particles comprise aluminum cores covered with the shells of the
reaction product. As can be seen, the shells on the samples thermally treated at 500 ◦C and
600 ◦C have cracks, and the shells on the particles thermally treated at 600 ◦C appear to
have shrunk compared with those for the samples thermally treated at 500 ◦C.
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As the results show, the samples thermally treated at 120, 200 and 300 ◦C were
composed of aluminum, boehmite and bayerite. The samples treated at 400 ◦C and higher
contained alumina, which agrees with the results obtained in other studies. For example,
experimental data on oxide-film growth for pure aluminum reported in [57] showed that at
temperatures of 673 K (400 ◦C) and higher the amorphous oxide film becomes crystalline
Al2O3, and a novel model described in [58] predicts formation of Al2O3 at temperatures
over 578 K (305 ◦C), and formation of Al(OH)3 and AlOOH at lower temperatures. As the
corresponding lines for some components of the powder were too close to each other, in
some cases precise identification of components was hindered (the corresponding peaks
are marked as two listed components). With respect to the crystalline form of aluminum
oxide, it is more likely that in such doubtful instances it was still γ-Al2.144O3.2 rather
than η-(Al2O3)1.333.
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The structure of the reaction product had substantially the same appearance for all
the samples. Figure 6 shows the reaction product layer for the sample thermally treated at
300 ◦C. As can be seen, the product mostly formed a flake-like structure. There were also
relatively large crystals on the samples which probably appeared during the reaction due
to crystallization of the product dissolved in water.
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The X-ray diffraction plots demonstrate the formation of crystalline aluminum oxide

phases (η-(Al2O3)1.333 or γ-Al2.144O3.2) at temperatures of 400 ◦C and higher and, at the
same time, a considerable increase in the degree of aluminum conversion was observed
for 400 ◦C compared to that for the preceding tested thermal treatment temperature of
300 ◦C. Such an effect can presumably be attributed to a higher concentration of Lewis acid
sites for alumina in comparison with those for boehmite, as a lower Al atom coordination
generally corresponds to a stronger Lewis acidity, and the susceptibility of Lewis acid
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same explanation, i.e., the Lewis acidity of η-Al2O3 is higher than that of γ-Al2O3 [62,63].

Considering the standard divergences for different samples, their relatively high
values for the samples thermally treated at 300, 400 and 500 ◦C can be attributed to random
damage to some particle shells composed of boehmite, bayerite or aluminum oxide phases,
as a result of mechanical effects (impacts, friction, etc.) occurring during the manipulations
with the powder samples. With respect to the sample thermally treated at 600 ◦C, its
alumina shells are perhaps more dense and tight due to sintering (from the corresponding
micrograph in Figure 5, it can be seen that shrinkage of the shells took place) and therefore
was more resistant to random mechanical damages; the original powder simply did not
contain shells of aluminum-water reaction products.

When summarizing the data from the micrographs, it might be expected that the
samples thermally treated at a temperature of 500 ◦C and higher would react with water
more rapidly than other samples, due to the formation of cracks in the shells of alumina
causing uncovering of the aluminum cores. However, in practice, thermal treatment at the
higher temperatures (550 and 600 ◦C) resulted in lower rates of aluminum oxidation.
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Figure 7. Results of X-ray diffraction analysis for different samples: (a) sample after drying at 120 ◦C; (b) sample after
thermal treatment at 200 ◦C; (c) sample after thermal treatment at 300 ◦C; (d) sample after thermal treatment at 400 ◦C;
(e) sample after thermal treatment at 450 ◦C; (f) sample after thermal treatment at 500 ◦C; (g) sample after thermal treatment
at 550 ◦C; (h) sample after thermal treatment at 600 ◦C.
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According to the XPS analysis results reported in [57], the thickness of the passive
oxide film on the aluminum surface was drastically affected by temperature. For the
aluminum substrate heated under temperatures of 100–300 ◦C for 15,000s it was less than
1 nm, while at temperatures of 400 ◦C and 500 ◦C, it increased to 3.9 nm and 6.1 nm,
respectively, for the same exposure time. However, these values are still relatively low;
according to Figure 1.2, ‘Growth of oxide skin’, represented in the ‘Handbook of Aluminium
Recycling’, Part III, Section 1.2, ‘Oxidation during melting’, p. 87 [64], a discontinuity in the
oxidation trend occurs, expressed as a sudden and sharp increase in film thickness (from
nearly 6 nm at 500 ◦C up to approximately 20–21 nm at 600 ◦C). Such an effect is ascribed
to the transformation of an amorphous oxide structure to a crystalline structure.

In order to check whether the observed decrease in the reaction rate can be attributed
to the formation of a thicker oxide layer on the uncovered surfaces of aluminum cores at
temperatures above 500 ◦C, a sample of unreacted aluminum powder was analyzed using
a thermogravimetric (TG) method. The analysis was performed using a thermogravimetric
analyzer STA PT1600 (Linseis Messgeraete GmbH, Selb, Germany). The sample was heated
from room temperature (23 ◦C) to 600 ◦C in air atmosphere at a flow rate of 30 mL/min,
and a heating rate of 5 ◦C/min. During the analysis, the relative mass change of the
powder sample, from the reaction between aluminum and oxygen contained in the air flow
resulting in the formation of aluminum oxide on the particles surfaces, was measured. The
obtained TG curve is represented in Figure 8.
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Figure 8. TG curve for original aluminum powder.

The TG curve is steepest between approximately 500 and 600 ◦C (levels of 500, 550
and 600 ◦C are marked with dashed lines). Within this range, the relative mass change
(attributed to the formation of a passive aluminum oxide layer on the powder particle sur-
faces) rose from 0.24 to 0.83%. This result is consistent with the formation of a considerably
thicker passive oxide layer at temperatures over 500 ◦C.

Therefore, 500 ◦C is the optimum temperature value tested in this study. At this
temperature, crack formation in alumina shells provides aluminum core uncovering, and
water contacts aluminum cores through these cracks, and the oxide film forming on the
uncovered areas of aluminum cores (as thermal treatment in a muffle furnace proceeded
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under air atmosphere) is relatively thin. At the higher tested temperatures (550 and
600 ◦C) the oxide film forming on the uncovered aluminum surfaces becomes too thick
(and its hydration in water preceding the start of the aluminum core oxidation is much
slower). At lower temperatures (400 and, presumably, 450 ◦C) considerable crack formation
does not occur and, therefore, the surface layer separating aluminum cores and water is
much thicker.

In [52,54] the samples of aluminum and γ-Al2O3 thermally treated at 600 ◦C provided
much better results in terms of hydrogen production than the samples of pure aluminum
powder, while in the present study an opposite effect occurred. This difference can be
attributed to the fact that, in the other studies, γ-Al2O3 was ball-milled with aluminum
resulting in the formation of inclusions on the surface of the aluminum particles and
thermal treatment took place in a vacuum. In contrast, in the present study, no mechanical
treatment was employed and thermal treatment proceeded in air atmosphere, favorable for
the formation of a thick layer of passive oxide film on the surface areas of aluminum cores
uncovered due to the cracking of the aluminum oxide shells.

3.2. Effect of Multiple Alternating Oxidation and Thermal Treatment

The second set of experiments was intended to investigate the effect of multiple cycles
of alternating oxidation and thermal treatment at 500 ◦C (with preliminary drying at 120 ◦C)
of the powder sample obtained in the first set of experiments under the same conditions
(drying at 120 ◦C and thermal treatment at 500 ◦C) on its aluminum conversion degree
(hydrogen yield). As in the previous series of experiments, partially oxidized aluminum
powder was reacted with distilled water heated up to 90 ◦C for 2 h (2 h and 8.5 min for
the first powder oxidation after treatment). The resulting curves of aluminum conversion
degree (per sample gram) vs. time are represented in Figure 9. In the experiments, the
same sample was tested, the amount of aluminum in it gradually decreased. The curves
corresponding to the experiments of this series are represented as successive ‘extensions’
of each other and the curve for the ‘primary’ (original) sample (this enables illustration of
the reduction of aluminum content in the sample due to its conversion into hydrogen and
solid reaction product).

The corresponding conversion degrees (hydrogen yields) for the sample are given
in Table 3 (total conversion degrees account for the contributions of the initial and all
preceding experiments, while conversion degrees per experiment account for only the
amount of aluminum converted into hydrogen during the corresponding experiment).

Figure 9 and Table 3 clearly demonstrate that the degree of aluminum conversion
(per experiment) of the sample gradually became lower with each subsequent experiment
involving thermal treatment, as expected. This trend can be explained by a decrease in
the sizes of the aluminum cores of the partially oxidized aluminum powder resulting in
the reduction of the interface area between aluminum and water. However, up to and
including the fifth cycle, the degree of conversion was higher than that for the original
sample of aluminum powder, (5.46 ± 0.13)%. The total conversion degree achieved in this
experiment series was 53.46%.

In all the experiments, two-thirds of the hydrogen yields obtained over 2 h were
produced in 35–50 min of the start (or 15–30 min from the beginning of the reaction, as
the reaction starts at approximately 68–70 ◦C), and all the curves demonstrated reaction
deceleration caused by the formation of the product layer on the powder particle surfaces.

As shown in the micrographs (see Figures 5 and 6), there are two major structure types
formed by the solid product: a flake-like spongy structure and bulk crystalline structures.
As the bulk crystalline structures form due to the dissolution and further crystallization of
the product on the crystal nuclei, an increase in their amount and sizes with an increase
in the reaction time might be expected. Therefore, to obtain aluminum core-shell powder
with a higher uniformity of product distribution on the particle surfaces and its structure,
it would be recommended to reduce the duration of reaction between aluminum and water
in each cycle of successive thermal treatment and oxidation.
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Figure 9. Aluminum conversion degrees (hydrogen yields) for the powder sample subjected to alternating oxidation and
thermal treatment at 500 ◦C (with preliminary drying at 120 ◦C): 1—original aluminum powder, 2—sample after the first
thermal treatment, 3—sample after the second thermal treatment, 4—sample after the third thermal treatment, 5—sample
after the fourth thermal treatment, 6—sample after the fifth thermal treatment, 7—sample after the sixth thermal treatment.

Table 3. Aluminum conversion degrees (hydrogen yield) for the powder sample subjected to alternating oxidation and
thermal treatment at 500 ◦C (with preliminary drying at 120 ◦C).

Sample Conversion Degree
(Total), %

Conversion Degree
(Per Experiment), %

Original aluminum powder 5.46 5.46 ± 0.13
Sample after the first thermal treatment 17.05 11.59 ± 1.20

Sample after the second thermal treatment 26.61 9.56
Sample after the third thermal treatment 35.62 9.01

Sample after the fourth thermal treatment 42.97 7.35
Sample after the fifth thermal treatment 48.77 5.80
Sample after the sixth thermal treatment 53.46 4.69

In summary, successive alternating procedures (thermal treatment at 500 ◦C and
oxidation by water), with a reduced reaction period, were tested for co-production of
hydrogen and composite material containing aluminum cores and alumina shells with a
flake-like spongy structure. This approach has potential application to the manufacture
of composite products with high accuracy in the control of the aluminum and alumina
contents during the reaction via hydrogen yield measurement. Hydrogen co-production
and its effective utilization are further potential advantages of the process.

4. Conclusions

In the present study the effect of thermal treatment of aluminum core-shell powder
on its oxidation kinetics in water for hydrogen production was studied.

The first set of experiments sought to determine the effect of thermal treatment
temperature on hydrogen yield. For this purpose, the original sample of aluminum powder
was reacted with distilled water and heated up to 90 ◦C for two hours, then it was dried
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and divided into eight samples (seven samples thermally treated at 200, 300, 400, 450,
500, 550 and 600 ◦C in a muffle oven and one sample passed only through drying at
120 ◦C), each of which was then reacted with distilled water heated up to 90 ◦C for two
hours. Heat treatment at 200, 300 and 600 ◦C, as well as the absence of heat treatment
(sample after drying at 120 ◦C), resulted in relatively low conversion degrees, while heat
treatment from 400 to 550 ◦C provided higher conversion degrees. The highest aluminum
conversion degree (hydrogen yield) corresponded to the sample thermally treated at 500 ◦C,
(11.59 ± 1.20)% during the experiment (and 17.05% in total), i.e., almost twice as high as
the same value for the original powder, (5.46 ± 0.13)%. This can be ascribed to crack
formation in the alumina shells with aluminum uncovering and a relatively thin oxide
film forming on the uncovered areas of aluminum cores, as compared to treatment at
higher temperatures.

The second set of experiments was focused on the impact on hydrogen production
performance of multiple cycles of alternating oxidation and thermal treatment at 500 ◦C
of the powder sample. Aluminum conversion degree (hydrogen yield per experiment)
gradually became lower with each subsequent treatment, as expected. However, up to and
including the fifth treatment, the conversion degree was higher than that for the original
sample of aluminum powder. The total conversion degree (hydrogen yield) achieved in
this experimental series (six experiments with thermally treated powder) was 53.46%.

The successive cycles of the alternating procedures (thermal treatment at 500 ◦C
and oxidation by water) described in the present paper can potentially provide a useful
technique for the co-production of hydrogen and composite material containing aluminum
cores and alumina shells with desired contents of aluminum and alumina (which can be
controlled during the reaction with high accuracy by hydrogen yield measurement).
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