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Abstract.
BACKGROUND: Feature selection is a technology that improves the performance result by eliminating overlapping or unrelated
features.
OBJECTIVE: To improve the performance result, this study proposes a new feature selection that uses the distance between the
centers.
METHODS: This study uses the distance between the centers of gravity (DBCG) of the bounded sum of the weighted fuzzy
memberships (BSWFMs) supported by a neural network with weighted fuzzy membership (NEWFM).
RESULTS: Using distance-based feature selection, 22 minimum features with a high performance result are selected, with the
shortest DBCG of BSWFMs removed individually from the initial 24 features. The NEWFM used 22 minimum features as
inputs to obtain a sensitivity, accuracy, and specificity of 99.3%, 99.5%, and 99.7%, respectively.
CONCLUSIONS: In this study, only the mean DBCG is used to select the features; in the future, however, it will be necessary
to incorporate statistical methods such as the standard deviation, maximum, and normal distribution.
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1. Introduction

Epilepsy, affecting 0.6%–1.0% of the total population, is a condition in which a portion of the nerve
cells that make up the human brain are damaged and seizures repeatedly occur owing to excessive
electrical discharge from the cerebral cortex [1,2]. Partial epilepsy is called epilepsy when excessive
seizures occur only in one part of the brain, and generalized epilepsy occurs throughout the brain [3]. A
condition is diagnosed as epilepsy when seizures in the brain occur recursively for a long period without
any special cause [4].

Nonlinear techniques such as correlation dimensions and the Lyapunov exponents have been used to
extract the complexity from EEG signal [5–7]. EEG signal was decomposed into timefrequency domains
by a discreet wavelet transforms (DWTs) [8,9]. In addition, the coefficients produced by the wavelet
transformation (WT) are used as inputs for the adaptive neuro-fuzzy inference system (ANFIS) [10].
Some models of epileptic seizure classification have been developed that combine wavelet coefficients
with an artificial neural network [11] and a support vector machine [12]. Subasi extracted features
based on the wavelet coefficients and for the extracted features used a classification model called a
mixture of experts [13]. In addition, Polat classified epileptic seizures using Fourier transforms and a
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Fig. 1. Normal and epileptic seizure classification model.

principal component analysis [14]. Convolutional neural networks have also been used for detecting
epileptic seizures based on functional near-infrared spectroscopy signal [15], a recurrence quantification
analysis [16], and a multi-channel time-series [17]. In addition, deep neural networks have been used to
detect epileptic seizures with higher order statistics [18] and different feature scaling techniques [19].
However, as disadvantages of these two models, the initial features are used without a feature selection
and cannot provide interpretable general rules, such as fuzzy rules for epileptic seizure classification.

Feature selection has become an important subject in machine learning and pattern recognition [20–22].
A good feature selection allows benefits such as reduced computational costs or an improved performance
result by eliminating unnecessary or noisy features. The rapid increase in data used for learning has also
recently led to problems in the learning process [23,24]. As one of the major problems, large amounts of
data are less relevant to each other, which often leads to a misclassification and increases in classification
errors as a result of learning using poor data [25,26].

This study proposes a new distance-based feature selection using an existing neural network with
weighted fuzzy membership (NEWFM) [27,28] to improve the performance result of both normal
and epileptic seizure EEG signal. An NEWFM has the bounded sum of weighted fuzzy memberships
(BSWFMs) that can indicate the differences in the graphical characteristics between normal and epileptic
seizure EEG signal. This study is largely composed of two parts, the first part of which processes the EEG
signal, and the second part classifies normal and epileptic seizure EEG signal by selecting the minimum
features. In the signal processing section, the WT produces a wavelet coefficient that eliminates noise
from the EEG signal. A statistical technique has been used to extract features from wavelet coefficients to
be used as inputs.

Feature selection uses the DBCG of the BSWFMs generated by the learning process of the NEWFM to
obtain the minimum features that represent the best performance result.

The remainders of this study are organized as follows. Section 2 describes the experimental data,
wavelet transformation, and statistical techniques. It also describes the NEWFM. Section 3 then details the
NEWFM-based feature selection techniques proposed in this study. Section 4 describes the performance
result obtained using feature selection and compares the performance result before and after feature
selection. Finally, Section 5 provides some concluding remarks regarding this study.

2. Overview of the epileptic seizure classification model

As can be seen from the epileptic seizure classification model shown in Fig. 1, the frequency distribution
and frequency variation are features extracted from the wavelet coefficients generated from an EEG
signal. From the extracted features, the minimum features representing the best performance result were
selected using a distance-based feature selection technique.
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Table 1
Number of training and test set

Class Training set Test set Total set
Normal EEG signal 300 500 800
Epileptic seizure EEG signal 300 500 800
Total 600 1000 1600

Fig. 2. Examples of epileptic seizure (left) and normal (right) EEG signal.

2.1. Experimental data

In this study, the EEG signal tested by Andrzejak [29] was applied to classify both normal and epileptic
seizure EEG signal. The experimental data are divided into five groups of experiments (A, B, C, D, and
E) [29]. All experimental groups included 100 single channels EEG signal sections. This study used two
groups of experiments A and E applied by Subasi [13]. Experiment A is made up of normal EEG signal
from a healthy subject, and Experiment E is made up of epileptic seizure EEG signal from a subject with
epilepsy symptoms. The experimental datasets used in this study are listed in Table 1. Each episode in the
experimental group consisted of 512 points. Figure 2 shows example normal and epileptic seizure EEG
signal.

2.2. Wavelet transforms (WTs) and feature extraction

WTs are transformation technologies that represent the time and frequency components of a signal,
and frequency components vary over time [8,10,11]. Typically, Fourier transforms represent frequency
components assuming that the signal does not change over time. In contrast, WT is a technique applied
to signal processing regions to represent frequency and time components of signals whose frequency
components change over time. Using experimental data tested by Andrzejak and Subasi, in this study,
Daubechies 4 wavelet transforms (WTs), at a 5-point scale, as described in Fig. 3, were applied to extract
the wavelet coefficients, the detail coefficient (g[n]), and the approximation coefficient (a[n]) [4]. Figure 4
shows episodes of wavelet transformed normal and epileptic seizure EEG signal.



S522 S.-H. Lee / Classification of epileptic seizure using feature selection based on fuzzy membership from EEG signal

Table 2
Description of features

No Description of features
1 Mean of absolute g[n] and a[n] in Fig. 3
2 Average power of g[n] and a[n] in Fig. 3
3 Standard deviation of g[n] and a[n] in Fig. 3
4 Ratio of absolute mean of g[n] and a[n] of adjacent scale-levels in Fig. 3
5 Median g[n] and a[n] in Fig. 3

Fig. 3. Decomposition of wavelet transform.

Fig. 4. Examples of wavelet transformed epileptic seizure (left) and normal (right) EEG signal.

The wavelet coefficients were extracted from the initial 24 features to be used as input by the statistical
techniques in Table 2 [30]. The initial 24 features are listed in Table 3. (1), (2), and (5) in Table 2 indicate
the EEG signal frequency distribution [13]. In addition, (3) and (4) in Table 2 refer to frequency variations
for the EEG signal [13].

2.3. Neural networks with weighted fuzzy membership (NEWFM)

An NEWFM is a type of fuzzy neural networks that use the BSWFMs [27,28]. The NEWFM is
composed of three layers: class, hyperbox, and input in Fig. 5. An hth node in input layer is used as
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Fig. 5. Structure of NEWFM.

Ih = {Ah = (a1, a2, . . . , an), class}, where class denotes the class node (1: normal and 2: epileptic
seizure EEG signal) and Ah denotes n features.

An adjust (Bl) function can adjust the center and weights of the membership shown in Fig. 6. After
completing the Adjust (Bl) function, all fuzzy sets in the hyperbox node Bl in Fig. 5 have three weighted
fuzzy memberships (WFMs). A WFM refers to gray memberships in Fig. 7. The bounded sum of WFMs
(BSWFMs in Fig. 7) in the ith fuzzy set, Bi

l (x), indicated as µib(x), is defined as follows:

µib (x) =

n∑
j=1

Bi
l (µj (x)) . (1)

Both BSWFMs can graphically show the difference between normal and epileptic seizure EEG signal
for each feature. In Fig. 8, the fuzzy values of fuzzy membership functions w1 and w2 can be obtained for
class 1 (normal EEG signal) and 2 (epileptic seizure EEG signal), respectively. The graph in Fig. 8 shows
that as w1 increases, the likelihood of belonging to class 1 increases, and as w2 increases, the likelihood
of belonging to class 2 increases [31].

2.4. Feature selection based on distance

To overcome misclassification and classification errors as a result of learning using poor data, and
to improve the performance result, NEWFM uses the DBCG of the BSWFMs to select features that
eliminate less relevant data from a large amount of data. This study was carried out using an NEWFM
from the initial 24 features. Using the DBCG of the BSWFMs generated through this learning, the feature
selection was carried out in four steps.

Step 1 The values of v0 and v4 of the BSWFM in Fig. 7, which were generated through this learning,
are normalized to 0 and 100, respectively.

Step 2 Using the normalized BSWFM, the centers of gravity for the BSWFM of the normal and
epileptic seizure EEG signal are derived.

Step 3 The DBCG of the BSWFMs is derived in Fig. 9, and the DBCGs for the BSWFMs for 24
features are as shown in Table 3.
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Fig. 6. Example of before and after an adjust (Bl) function.

Fig. 7. Example of three BSWFMs.

Step 4 The performance result is compared by individually removing features with the lowest mean
DBCG of the BSWFMs.

In Step 4, the performance result is obtained by removing the features with the lowest mean individually
based on the results of Table 3. As the results indicate, the performance result was the highest when 22
among the initial 24 features were removed with coefficients dc(2) and dc(5) remaining.
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Table 3
Detailed descriptions of features based on wavelet coefficients

Wavelet coefficients No. in Table 2 Mean Min Max Standard deviation Selected
ac(5) 1 20.11 19.78 20.44 0.11 Yes
ac(5) 5 13.41 12.98 13.53 0.10 Yes
ac(5) 2 11.17 10.39 12.56 0.52 Yes
dc(2) 2 8.81 8.51 8.94 0.10 Yes
dc(4) 4 8.29 7.75 8.67 0.26 Yes
dc(3) 4 8.28 7.58 9.46 0.52 Yes
dc(4) 1 7.68 7.46 7.80 0.09 Yes
dc(5) 4 7.58 7.31 7.86 0.18 Yes
dc(5) 2 6.87 6.44 7.93 0.53 Yes
dc(2) 1 6.80 6.55 7.27 0.17 Yes
dc(5) 1 6.40 5.99 6.77 0.27 Yes
dc(3) 1 6.31 6.26 6.38 0.03 Yes
dc(2) 3 6.26 6.12 6.37 0.09 Yes
dc(4) 3 4.72 4.54 5.00 0.09 Yes
dc(3) 3 4.67 4.50 4.81 0.06 Yes
dc(2) 5 4.57 3.32 6.15 0.90 Yes
dc(5) 3 4.52 3.90 5.36 0.32 Yes
dc(4) 5 4.23 2.61 6.70 1.27 Yes
ac(5) 3 4.02 3.88 4.11 0.07 Yes
dc(4) 2 1.87 1.81 1.97 0.05 Yes
dc(3) 5 0.66 0.56 0.82 0.08 Yes
dc(3) 2 0.57 0.56 0.57 0.00 Yes
dc(5) 5 0.49 0.23 0.80 0.25 No
dc(2) 2 0.24 0.23 0.24 0.00 No

The numbers in parentheses mean the level of wavelet coefficients. As examples, dc(2) denotes the
detailed coefficients, and ac(2) denotes the approximation coefficients, at level 2.

Fig. 8. BSWFMs-based on inference system.

3. Experimental results

The sensitivity, accuracy, and specificity, defined in (2), were used to evaluate the performance result in
this study. Here, a true positive (TP) denotes that an epileptic seizure EEG signal is classified properly
as an epileptic seizure EEG signal, a false negative (FN) denotes that it is classified as a normal EEG
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Table 4
Performance results without feature selection

Class Results
Epileptic seizure EEG signal (300) TP FN

288 12
Normal EEG signal (300) FP TN

0 300

Table 5
Performance results with feature selection

Class Results
Epileptic seizure EEG signal (300) TP FN

298 2
Normal EEG signal (300) FP TN

1 299

Table 6
Comparison of performance results

Sensitivity Specificity Accuracy
Subasi [13] 95% 94% 94.5%
Without feature selection [30] 95% 100% 97.5%
With feature selection 99.3% 99.7% 99.5%

Fig. 9. DBCG of BSWFMs.

signal, a false positive (FP) denotes that it is falsely classified as an epileptic seizure EEG signal, and a
true negative (TN) denotes that it is classified as a normal EEG signal. In this study, the performance
result obtained from the 22 minimum features selected through the feature selection based on the DBCG
of the BSWFMs, and the performance result obtained from the 24 initial features, are compared in
Tables 4–6. Although 0.3% were lower in specificity, 3.3% and 1.5% were higher in sensitivity and
accuracy, respectively.
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Sensitivity =
TP

TP + FN
× 100%

Accuracy =
TP + TN

TP + FN + TN + FP
× 100% (2)

Specificity =
TN

TN + FP
× 100%

4. Concluding remarks

In this study, using feature selection based on the DBCG of the BSWFMs through this learning of
the NEWFM, the least important features were removed individually. Eliminating each of these least
important features individually while selecting the minimum features for epileptic seizure classification
was proposed to obtain the best performance result. Using this feature selection, 22 minimum features
obtained from 24 initial features were used as input to the NEWFM to achieve the best performance
result. Feature selection based on the DBCG of the BSWFMs minimizes the number of features and
enables the highest performance result by eliminating those features that are unnecessary or adversely
affect the classification results. NEWFM has an advantage that it takes long time (more than 1 week) to
learn data for learning process, however, it takes very short time (less than 1 second) to make a result for
classification process.

The sensitivity, accuracy, and specificity when using feature selection based on the DBCG of the
BSWFMs were 99.3%, 99.5%, and 99.7%, respectively, which are 3.3% and 1.5% higher and 0.3% lower
than those obtained without using feature selection (at 96%, 98%, and 100%), respectively.

In this study, only the mean DBCG was used to select the features; in the future, however, it will
be necessary to incorporate statistical methods such as the standard deviation, maximum, and normal
distribution using the maximum based on the results listed in Table 3.
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