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Abstract: Osteoarthritis is a joint disease that commonly occurs in the knee (KOA). The continuous
increase in medical data regarding KOA has triggered researchers to incorporate artificial intelligence
analytics for KOA prognosis or treatment. In this study, two approaches are presented to predict the
progression of knee joint space narrowing (JSN) in each knee and in both knees combined. A machine
learning approach is proposed with the use of multidisciplinary data from the osteoarthritis initiative
database. The proposed methodology employs: (i) A clustering process to identify groups of people
with progressing and non-progressing JSN; (ii) a robust feature selection (FS) process consisting of
filter, wrapper, and embedded techniques that identifies the most informative risk factors; (iii) a
decision making process based on the evaluation and comparison of various classification algorithms
towards the selection and development of the final predictive model for JSN; and (iv) post-hoc
interpretation of the features’ impact on the best performing model. The results showed that
bounding the JSN progression of both knees can result to more robust prediction models with a
higher accuracy (83.3%) and with fewer risk factors (29) compared to the right knee (77.7%, 88 risk
factors) and the left knee (78.3%, 164 risk factors), separately.

Keywords: machine learning; knee osteoarthritis; joint space narrowing prediction; feature
selection; interpretation

1. Introduction

Osteoarthritis is the most common form of arthritis while the knee is the most fre-
quently affected joint [1]. Knee osteoarthritis (KOA) is a chronic disease that can lead to
joint damage, pain, stiffness, and loss of physical function. These physical limitations have
a negative impact to the social life, mental health, and quality of life of KOA patients [1,2].
Due to the heterogeneity of patients’ characteristics and the multifactorial nature of KOA,
the pathophysiology of the disease remains poorly understood, setting the necessity for
the development of diagnostic and predictive tools.

The diagnosis or even the treatment of KOA is still a challenge for the scientific
community. However, the increasing amount of medical data related to KOA permitted the
development of more recent studies by using artificial intelligence and big data. According
to our knowledge, few studies in the literature have adopted advanced analytic techniques
such as machine learning (ML) models, to predict the development of KOA [3,4].

In 2018, Du et al. employed four ML techniques to predict the progression of KOA
on MRI by using the change of Kellgren and Lawrence (KL) grade, joint space narrowing
on medial compartment (JSM) grade, and joint space narrowing on lateral compartment
(JSL) grade as progression metrics [5]. Lazzarini et al. [6] focused on the identification of
key variables (including biomarkers) and their incorporation within predictive models of
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KOA. They used five outcome measures of incident KOA, including medial joint space
narrowing (JSN). The study was limited to overweight and obese women. In [7], self-
reported knee pain and radiographic assessments of joint space narrowing were used
to cluster the OA progression and develop models for early KOA prediction. Similarly,
Tiulpin et al. presented a multi-modal ML-based KOA progression prediction model
using clinical examination results, raw radiographic data, and the medical history of
patients. They demonstrated an improved subject selection process [8]. Furthermore,
Nelson et al. applied innovative ML approaches to KOA phenotyping [9]. They used data
from the FNIH Biomarkers Consortium and identified key variables that are associated
with a progression phenotype. In [10], the authors used MRI images and biomechanical
data in order to develop a multidimensional platform for KOA prediction. This work
contributed to the improvement of OA outcome prediction and stratification of patients.
This study constitutes the first attempt to a large-scale integration of skeletal biomechanics
and compositional imaging.

In [11], Kellgren and Lawrence grading schemes were adopted to compare the per-
formance of a statistical model based on patient’s questionnaire data and a ML model
based on X-ray images, with respect to their prediction accuracy. The results showed that
a combination of both approaches could lead to better performance. Widera et al. [12]
studied a multi-class problem regarding the prediction of KOA progression. The authors
used clinical data and X-ray image assessment metrics and investigated various algorithms
and learning process configurations. In another study, Wang et al. used a long short-term
memory model to predict KOA severity [13]. They presented a 90% accuracy of the KL
grade prediction of the patient’s next visits and they demonstrated that JSN was a major
contributor to KOA progression. Moreover, Lim et al. used statistical data in a deep
neural network with scaled Principal Component Analysis (PCA) for the early detection of
KOA [14]. Furthermore, Brahim et al. presented a computer aided diagnosis (CAD) system
for early KOA detection employing X-ray imaging and ML algorithms [15]. The proposed
method achieved an 82.98% accuracy.

Alexos et al. [16] investigated the progression of pain in KOA patients using clinical
data collected only at the baseline. Specifically, they proposed a robust feature importance
voting system for identifying the most important risk factors with an accuracy of up to
84.3%. Furthermore, Kokkotis et al. [17] demonstrated a ML-based methodology capable
of predicting KOA progression, specifically KL grades progression. Notably, they worked
on the identification of important risk factors that contribute to the prediction of KOA
with a 74.07% accuracy. A machine learning pipeline was proposed in [18] for predicting
the JSN progression in KOA patients for the right and left knee. The predictive models
with the higher accuracy proved to be an SVM model for the right knee (77.7% accuracy)
and a linear regression model for the left knee (78.3% accuracy). In addition, Jamshidi
et al. proposed a ML methodology for the identification of important risk factors that
are associated to KOA incidents [19]. They used data from OAI and they concluded that
baseline X-ray and MRI-based features could identify early OA knee progressors.

Conventional approaches for identifying the risk factors for the prediction of KOA
progression incorporate mostly tedious and time-consuming image-based methods. There-
fore, there is a need for more efficient and explainable methods that could support clinical
decision making and could enable the early detection of individuals who are likely to
present severe KOA. The great majority of the aforementioned are based on images and are
applying image-based processing (e.g., CNN (convolutional neural network) or other deep
learning techniques) for prediction or diagnosis. Studies with exclusively non-imaging
data and processing techniques have been only published on the KOA diagnosis task.

To the best of our knowledge, no work has been performed for the development of
ML prediction models to predict the JSN on Medial compartment (JSM) progression for
healthy patients via highly dimensional features coming from multiple heterogenous data
sources. The development of explainable models could enable accurate decision making
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on medical examination via early detection of healthy individuals that are expected to
develop knee osteoarthritis in the future.

Hence, this highlights the need for a further study and development of new tech-
niques for determining risk factors that contribute to the development of accurate and
reliable tools for predicting KOA. This study aims towards the accurate prediction of
JSN on Medial compartment (JSM) progression via the development of a novel machine
learning approach. This ML approach handles the heterogeneity among a plethora of
features (725) deriving from various feature categories, including diagnosis from medical
examination and medical imaging outcomes, among others. In this study the effectiveness
of two strategies is investigated for predicting the JSN progression of KOA patients by: (i)
Developing predictive models that are trained on data from the left knee and right knee
separately and (ii) developing predictive models that combine KOA patients’ data for both
the right and left knee. For each strategy the same steps were followed. Initially, a clus-
tering approach is applied for the identification of patients groups with and without JSN
progression. Then the risk factors are identified based on a voting scheme that incorporates
various categories of feature selection techniques. The prediction stage was implemented
with the use of well-known ML models in an extensive comparative experimentation.
Post-hoc explainability was finally explored using SHapley Additive exPlanations (SHAP)
to rank features in terms of their impact on the final ML outputs.

The paper is organized as follows. In Section 2, the proposed methodology along
with the necessary data pre-processing, feature selection, and validation mechanisms, are
presented. Section 3 gives a description of the medical dataset that was used in our paper
along with the evaluation methodology that was followed. Results are given in Section 3.
Conclusions and future work are finally drawn in Section 4.

2. Materials and Methods
2.1. Methodology

A machine learning approach was developed in this work by taking advantage of
the combination of predictive and descriptive techniques, such as clustering, FS, and
classification. The proposed methodology for predicting JSN consists of 5 main steps: (i)
Data pre-processing, (ii) data clustering, (iii) feature selection, (iv) data classification, and
(v) post-hoc explainability with SHAP. In the first step, data cleaning and normalization are
performed to remove noise and bring all the variables to the same range. Then the samples
are clustered based on their JSN progression using well-known clustering algorithms. Then,
a selection of features is realized based on the identified clusters (that are considered as
classes in our case). The selected features are used to develop prediction models for the
KOA progression of patients (Figure 1).
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Figure 1. Methodology flowchart.

In this study two strategies were investigated: (i) In the first one, two predictive
models were developed using data from the right and the left knee, separately and (ii) the
second strategy focuses on the development of a unique predictive model using data from
both knees of KOA patients.

2.1.1. Data Pre-Processing

Data deletion was performed by excluding the columns with more than 20% missing
values compared to the total numbers of subjects. Furthermore, data imputation was
implemented to replace missing values of categorical or numerical variables by the most
frequent value of the non-missing variables. In addition, a common requirement for many
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ML classifiers is the standardization of the dataset. In this work, data were normalized to
[0, 1] to build a common basis for the FS algorithms that follow.

2.1.2. Data Clustering

In this study, the clustering process that was followed is presented in Figure 2 and is
described by the pseudocode in Algorithm 1. As a first step, for each patient p ∈ P , where
P is the set of the patients included in the cleaned medical data, the differences between
the consecutive measurements are calculated:

dp
j = mp

j −mp
i , ∀i ∈ [1, . . . , n− 1], j ∈ [2, . . . , n] (1)

where mi is the ith JSN measurement and n is the number of the measurements performed
for the examined knee (left or right). In the presented case study, 5 measurements were
used for each leg that show the JSN progression through the first 5 visits. The absolute sum
of the differences is then calculated:

n

∑
k=2

∣∣∣dp
k

∣∣∣ (2)

forming an indicator of the JSN progression within the first 5 visits for each knee. These
values were used for performing the clustering.
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In case of the second clustering strategy, we denote with pl ∈ P , the medical data from
patient p for the left (l) knee, and with pr ∈ P the medical data from patient p for the right
(r) knee. The sum of the absolute sum of each leg was calculated:

n

∑
k=2

∣∣∣dpl
k

∣∣∣+ n

∑
k=2

∣∣∣dpr
k

∣∣∣ (3)

as an indicator of the overall JSN progression of KOA patients. This value was used to
perform the clustering.

For data clustering, a centroid-based (k-means [20]), a connectivity-based (k-medoids [21]),
and distribution-based clustering method (hierarchical clustering [22]) were employed,
whereas the Davies Bouldin index [23] was used to evaluate the optimal number of clusters.
Further investigation was performed in order to determine the optimal number of clusters
that will be adopted. In our cases, 2 clusters were finally chosen, as described in Section
3.3.1. Data resampling was performed in order to cope with the significantly imbalanced
classes. To this end, the size of the majority cluster was reduced to the number sample of
the minority one.

Algorithm 1 Pseudoalgorithm of the clustering process

Input: JSM measurements of the first five visits
Output: Labeled data

1. For each patient p ∈ P :
Calculate the differences between the consecutive JSM measurements:
dp

j = mp
j −mp

i , ∀i ∈ [1, . . . , n− 1], j ∈ [2, . . . , n]

Calculate the sum of the absolute differences: ∑n
k=2

∣∣∣dp
k

∣∣∣
End for each
2. For each clustering method m examined
Perform clustering evaluation with Davies Boulding index and calculate the optimal number of
clusters Cm.
Perform clustering with Cm clusters
End for each
3. Return labels and evaluate the clustered data

2.1.3. Feature Engineering

To develop a robust FS methodology, the combination of the outcomes of 6 FS tech-
niques was employed to avoid bias. This methodology consists of two filter algorithms
(Pearson correlation [24] and Chi-squared independence test [25]), one wrapper technique,
which is based on recursive feature elimination (RFE) [26], and three embedded algorithms
(random forest [27], light GBM (gradient boosting model) [28], and logistic regression with
L2 penalty [29]). Specifically, a majority vote scheme shapes the basis of the feature ranking.
Each of the six FS techniques was performed separately providing a list of selected features.
A vote is assigned to each attribute each time it is selected by one of the FS techniques.
The final feature ranking was decided with respect to the votes received. In addition, in
case of equality the ranking was shaped from the feature importance of the performing
FS technique (Algorithm 2). Let FSSi, i = 1, . . . , 6 be the subset of the ranked features of
the i FS technique, M be the total number of features, and Vj, j = 1, . . . , M be the total vote
ranking for the j feature.
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Algorithm 2 Pseudoalgorithm of the feature selection

Input: Clinical data

1. All features were normalized as described in the Pre-processing Section
2. For each feature j,
Set Vj = 0
End for each
3. For each FS technique i
For each feature j
If feature j is in FSSi,

Vj = Vj + 1

End if
End for each
End for each
4. Rank features to descending order with respect to Vj. In case of equality the ranking is shaped
from the feature importance of the best performing FS technique.
End

2.1.4. Data Classification

Six well-known classification algorithms were tested for the identification of the
optimum model that achieves the highest accuracy on the test data:

• Gradient boosting model (GBM) is an ensemble ML algorithm, which can be used
for classification or regression predictive tasks. Weak learners are used from GBM to
produce strong learners through a gradual, additive, and sequential process. Hence,
for the development of a new improved tree a modified version of the initial training
data set is fitted in GBM [30,31];

• Logistic regression (LR) describes the relationship of data to a dichotomous dependent
variable. LR is based on the logistic function (1). This model is designed to describe
the data with a probability in the range of 0 and 1 [32]:

f (x) =
1

1 + e−x , where x ∈ (−∞, +∞) and 0 ≤ f (x) ≤ 1; (4)

• Neural networks (NNs), both shallow and deep NNs were employed. NNs are based
on a supervised training procedure to generate a nonlinear model for prediction. They
consist of layers (e.g., input layer, hidden layers, and output layer). Following a
layered feedforward structure, the information is transferred unidirectionally from
the input layer to output layer through the hidden layers [33–35];

• Naïve Bayes Gaussian (NBG) employs the Bayes theorem. This probabilistic classifier
presents strong independence assumptions between the variables/features given the
class. Furthermore, this model embraces the assumption that the data follow the
Gaussian distribution [36,37];

• Random forest (RF) belongs in the ensemble learning methods and is based on decision
trees. This model constructs a large number of decision trees. Every decision tree
denotes a class prediction. Thus, the class with the most votes represents the model’s
prediction [38,39];

• Support vector machines (SVMs) are another supervised learning model [40,41]. SVMs
target to create the hyperplane, which is a decision boundary between two classes that
enables the prediction of labels from one or more feature vectors. The main aim of
SVMs is to maximize the class margin that is actually the distance between the closest
points (support vectors) of each class [42].

2.1.5. Post-Hoc Interpretation/Explainability

In this study the SHapley Additive exPlanations (SHAP) were employed to rank
features in terms of their impact on the final ML outputs. SHAP builds a mini explainer
model for a single row-prediction pair that explains how this prediction was achieved. It is
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based on optimal shapley values from coalitional game theory that indicate how to fairly
distribute the impact on model’s prediction among the features [43].

3. Evaluation
3.1. Medical Data

Data from the osteoarthritis initiative (OAI) database (available upon request at
https://nda.nih.gov/oai/) were used in this study. Specifically, only clinical data from
the baseline from all individuals without or being at high risk to develop KOA in at least
one knee were included. In total, 725 features from 9 feature categories were considered
as possible risk factors for the prediction of JSN as shown in Table 1. Clustering was
performed on the JSN progression represented by the JSM measures (especially using the
variables V00XRJSM, V01XRJSM, V03XRJSM, V05XRJSM, and V06XRJSM of the OAI from
the first five visits) to group patients into two clusters (non-progressing patients and those
whose JSN changes over time).

Table 1. Maim categories of the feature subsets considered in the proposed methodology.

Category Description Number of Features

Anthropometrics
Includes measurements of participants
such as height, weight, BMI (body mass
index), etc.

37

Behavioral Questionnaire results which describe
the participants’ social behaviour 61

Symptoms

Includes variables of participants’
arthritis symptoms and general
arthritis or health-related function and
disability

108

Quality of life Variables which describe the quality
level of daily routine 12

Medical history

Questionnaire results regarding a
participant’s arthritis-related and
general health histories and
medications

123

Medical imaging outcome
Variables which contain medical
imaging outcomes (e.g., osteophytes
and joint space narrowing (JSN))

21

Nutrition
Variables resultfrom the use of the
modified Block Food
Frequency questionnaire

224

Physical exam
Variables of participants’
measurements, performance measures,
and knee and hand exams

115

Physical activity
Questionnaire data results regarding
household activities, leisure
activities, etc.

24

Total number of features: 725

The available data from the baseline visit were divided into 9 categories (Table 1): (i)
Anthropometrics, (ii) behavioral, (iii) symptoms, (iv) quality of life, (v) medical history,
(vi) medical imaging outcomes, (vii) nutrition, (viii) physical exam, and (ix) physical
activity. The first category contains anthropometric characteristics, such as body mass
index, weight, and height. The behavior category concerns the habits and sociability of
the participant. The symptoms category also contains all features that are associated with
pain and any dysfunction. The quality-of-life category refers to variables that represent
the participation of the individual to social events and activities. The medical history
category includes features related to the medical history of the participants and of their
family and whether they have received a medical prescription in specific time periods.
Another category is the medical imaging outcomes which come after clinical evaluation

https://nda.nih.gov/oai/
https://nda.nih.gov/oai/
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with imaging such as X-rays. In addition, in the category of physical examination, we
included all the characteristics related to the examination of a participant (such as hand
and knee exam), various biomechanical measurements, and field tests. Finally, the category
of physical activity includes all variables that relate to the individual activity, such as
household activities and leisure activities.

3.2. Evaluation Methodology

The proposed methodology was applied in the context of predicting the JSN progres-
sion in patients with KOA by using the medical data derived from the dataset (Section 3.1).
Initially, the methodology was applied for each leg separately and, consecutively, for both
legs combined.

Following the clustering approach presented in Section 2, the JSN progression data
were used as input to the clustering algorithm resulting in the identification of the patient
groups with/without JSN progression. To this end, a comparative analysis of the various
clustering methods employed in this stage was realized. The Davies Bouldin index was
also used for an automatic identification of clusters within the dataset and to identify the
magnitude of the variation in the JSM measures of patients. The parameter settings for the
clustering methods are shown in Table 2.

Table 2. Parameter settings for clustering methods.

Clustering Method Parameters

K-Means City block distance, 5 replicates
K-Medoids City block distance, 5 replicates

Hierarchical
Agglomerative cluster tree, Chebychev

distance, farthest distance between clusters, 3
maximum number of clusters

The proportion of 70–30% was chosen for splitting the data set to training set and
testing set, respectively, with normalization upon the features. The models evaluation was
performed on the medical dataset presented in Section 3.1. Hyper parameter tuning was
applied to most of the aforementioned models with grid search and 3-fold cross validation.
Specifically, the involved hyper parameters are presented in Table 3 for each model. The
prediction models were evaluated in subsets of features with increasing dimensionality.

3.3. Results and Discussion
3.3.1. Clustering Results

In the clustering process, an identification of the clusters among the patients was
attempted initially by using the Davies Bouldin index. Specifically, with this approach, four
clusters (Table 4) were identified in most of the methods, grouping the patients to those
with zero, low, medium, and high alterations in JSM measures in the case of the left leg or
right leg, separately. However, the generated clusters presented an imbalanced allocation
of the patients. Specifically, Cluster 1 proved to be significantly bigger compared to the
other three identified clusters for both left and right legs (Figure 3a,b). For instance, for the
right leg, it can be observed that a percentage of the patients with low JSN alterations were
erroneously clustered in Cluster 1, which represents the patients with stable condition or
without KOA. To overcome these problems, another clustering with only 2 clusters was
performed. This issue was not observed during the clustering of both legs combined. In
this case, 2 clusters were identified by using the Davies Bouldin index (Figure 3e). From
the tested clustering approaches, k-means method was adopted based on the clustering
results (Table 4 and Table 5). K-means achieved better clustering among patient groups. Re-
garding the identified clusters, the large one includes patients with stable JSN progression
or patients that did not present KOA at all in their left and/or right leg, while the second
one includes patients with alterations to JSN measures (Figure 3c–e).
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Table 3. Hyper parameter settings for tuning. GBM: Gradient Boosting Model; LR: Logistic Regression; NN: Neural
Networks; NBG: Naïve Bayes Gaussian; RF: Random Forest; SVM: Support Vector Machine.

Classification Model Hyper Parameters Tuning

GBM

The number of boosting stages to perform from 10 to 500 with 10 step size
The maximum depth of the individual regression estimators from 1 to 10 with 1 step size

The minimum number of samples required to split an internal node: 2, 5 and 10
The minimum number of samples required to be at a leaf node: 1, 2 and 4

The number of features to consider when looking for the best split: √n f eatures or log2

(
n f eatures

)

LR

The inverse of regularization strength was tested on 0.001, 0.01, 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Algorithm to use in the optimization problem was set to 4 different solvers that handle L2 or no

penalty, such as ‘newton-cg’, ‘lbfgs’, ‘sag’ and ‘saga’
A binary problem is fit for each label or the loss minimized is the multinomial loss fit across the

entire probability distribution, even when the data is binary
With and without reusing the solution of the previous call to fit as initialization

NN

Both shallow and deep structures were investigated
Hidden layers varying from 1 to 3 with different number of nodes per layer (50, 100, 200)

Activator function: Relu and tanh
Solver for weight optimization: adam, stochastic gradient descent, stochastic gradient-based
optimizer proposed by Kingma, Diederik, and Jimmy Ba and an optimizer in the family of

quasi-Newton methods
L2 penalty (regularization term) parameter: 0.0001 and 0.05

The learning rate schedule for weight updates was set as a constant learning rate given by the
given number and as adaptive by keeping the learning rate constant to the given number as long

as training loss keeps decreasing.
NBG -

RF

The number of trees in the forest from 10 to 500 with 10 step size
The maximum depth of the tree from 1 to 10 with 1 step size

The minimum number of samples required to split an internal node: 2, 5 and 10
The minimum number of samples required to be at a leaf node: 1, 2 and 4

The number of features to consider when looking for the best split: √n f eatures or log2

(
n f eatures

)
With and without bootstrap

SVM The regularization parameter was tested on 0.001, 0.01, 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Kernel type was set to linear, polynomial, sigmoid and radial basis functions

Table 4. Clustering results of each case with the Davies Bouldin index. The best results are indicated with bold.

Clustering
Method

Number of Clusters Cluster Elements

Left Right Both Left Right Both

K-Means 4 4 2 [2763, 209, 62, 28] [2733, 199, 84, 50] [2822,209]
K-Medoids 4 4 2 [2763, 209, 62, 28] [2733, 199, 84, 50] [2822, 209]
Hierarchical 4 3 2 [2960, 74, 24, 4] [2989, 68, 9] [3016, 15]
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Table 5. Clusters adopted in our study for each case. The best results are indicated with bold.

Clustering
Method

Number of Clusters Cluster Elements

Left Right Both Left Right Both

K-Means 2 2 2 [2763,299] [2764,302] [2822,209]
K-

Medoids 2 2 2 [2763, 299] [2764, 302] [2822, 209]

Hierarchical 2 2 2 [3034, 28] [2989, 77] [3016, 15]

3.3.2. Feature Selection Results

Figure 4 illustrates the first 100 features that are selected based on the proposed FS
approach separately for the first strategy as well as for the second strategy. From the
analysis of the results (Figure 4), we have concluded that the feature categories with the
highest contribution seem to come from the symptoms’ category and the category of
medical imaging outcomes. Indeed, in all cases there is a feature or two from the symptoms’
category that were selected first. Then, three imaging outcomes were selected on all three
cases. In total, 21, 19, and 20 features of the first 40 selected in the left knee, right knee,
and both knees combined, respectively, come from either the symptoms or the imaging
outcomes category. Other contributing factors proved to be the nutrition and physical
exam outcomes since approximately 20 out of the 100 features were selected in each case.
Features from the anthropometrics and medical history categories were selected in all
cases. Overall, the main outcome of this analysis is that a combination of heterogeneous
features from almost all feature categories is necessary for an accurate prediction of JSN.
This highlights that there is a need for a multi-parametric approach in order to handle the
complexity and heterogeneity of the available data.
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3.3.3. Classification Results

Table 6 shows the maximum, minimum, and mean accuracy along with the standard
deviation achieved by the models over the test set for increasing the number of features for
the left leg. Figure 5 shows the alterations in the achieved accuracy over the test set with
respect to the number of features (with a step of 2) for the left leg. For the left leg, the LR
model performed better than the others with a maximum accuracy of around 77.7% for
165 features (Table 6, Figure 5). However, NNs and SVM had a comparative performance
with a 75.8% and 76.4% maximum accuracy, respectively. To identify the exact number
of features where the prediction accuracy is maximized, the two best performing models
(LR and SVMs) were tested in the range of 155 and 175 features with a step of 1 with the
results shown in Figure 6. The LR model performed best (∼= 78.3%) at 164 features. For this
performance the following hyperparameters were used: Maximum number of iterations
100, intercept scale 1, L2 penalty, Newton-cg solver with reuse of the previous solution as
initial one, and tolerance 0.0001.



Diagnostics 2021, 11, 285 12 of 20

Table 6. Maximum, minimum, and mean accuracy of prediction models over the tested set for the
left leg. The best results are indicated with bold.

Prediction
Model

Maximum
Accuracy

Minimum
Accuracy Mean Accuracy Standard

Deviation

Gradient
Boosting 0.72611 0.56688 0.66707 0.02622

Logistic
Regression 0.77707 0.60510 0.71540 0.03353

NNs (Neural
Networks) 0.75796 0.62420 0.68234 0.02933

Naïve Bayes
Gaussian 0.68153 0.59236 0.62794 0.02301

Random Forest 0.70064 0.61783 0.65989 0.01616
SVM 0.76433 0.63057 0.70377 0.02783
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For the right leg a similar approach was adopted. Table 7 shows the maximum,
minimum, and mean accuracy with the standard deviation achieved by the models over
the test set for increasing the number of features for the right leg. Figure 7 shows the
alterations in the achieved accuracy over the test set with respect to the number of features
with a step of 2 for the right leg. The SVM model presented the best performance by
achieving the maximum accuracy (∼= 77.7%) for 90 features (Table 7). However, the LR and
NNs models accomplished an adequate performance (Figure 7). Specifically, the LR model
achieved a higher mean accuracy (∼= 70.7% ± 0.036) with a lower standard deviation
compared to the results of the model (∼= 68.6%± 0.039) (Table 7). To this end, these two
models were re-evaluated for features in the neighborhoods, ULR(185, 10) and USVM(90, 5)
with a step of 1 feature at a time. LR achieved its best performance (∼= 77.1% accuracy) at
185 and 188 features while the SVM model reached its maximum accuracy of 77.7% with
88 and 90 features (Figure 8). The SVM model’s hyperparameters that achieved the best
performance are the following: A linear kernel, regularization parameter at 0.1, tolerance
at 0.001, and cache size at 200.

Table 7. Maximum, minimum, and mean accuracy of prediction models over the tested set for the
right leg. The best results are indicated with bold.

Prediction
Model

Maximum
Accuracy

Minimum
Accuracy Mean Accuracy Standard

Deviation

Gradient
Boosting 0.72611 0.61783 0.67172 0.02445

Logistic
Regression 0.77070 0.63057 0.70691 0.03560

NNs 0.76433 0.58599 0.69983 0.03858
Naïve Bayes

Gaussian 0.72611 0.50955 0.62774 0.03926

Random Forest 0.71975 0.61783 0.67577 0.02217
SVM 0.77707 0.60510 0.68598 0.03929
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Table 8 shows the maximum, minimum, and mean accuracy achieved among with
the standard deviation by the models over the test set for a various number of features for
both right and left legs combined. Figure 9 shows the alterations in the achieved accuracy
over a test set for various number of features for both right and left legs combined. The
results show that the LR model performed better compared to the other models by reaching
the maximum accuracy (∼= 83.3%) for 30 features, as illustrated in Table 8 and Figure 9.
Nevertheless, SVM and RF showed a comparative performance. The aforementioned three
models are re-evaluated in order to find the number of features that maximizes the accuracy.
Hence, the models are tested in the neighborhood where all three models achieved their
best performance U (30, 5). From a more detailed analysis, LR remained the predictive
model with the best performance (∼= 83.3%) for 29 features (Figure 10).

Table 8. Maximum, minimum, and mean accuracy of prediction models over the tested set for the
left and right legs combined. The best results are indicated with bold.

Prediction
Model

Maximum
Accuracy

Minimum
Accuracy Mean Accuracy Standard

Deviation

Gradient
Boosting 0.81746 0.69841 0.74591 0.02449

Logistic
Regression 0.83333 0.65873 0.76503 0.03725

NNs 0.79365 0.64286 0.73870 0.03470
Naïve Bayes

Gaussian 0.76984 0.50000 0.63300 0.06331

Random Forest 0.79365 0.61111 0.70755 0.05645
SVM 0.82540 0.64286 0.74928 0.04223

Overall, LR presented a stable performance (Figure 11, 77%± 0.04) reacing the max-
imum accuracy at 29 features (83.3%). The hyperparameters of the LR model with the
best performance were identical to the ones presented for the case of the first strategy. A
generalized linear model such as LR has accomplished the best performance in our study,
indicating that the power of the proposed methodology is not so much dependent on the
complexity of the learning model but actually lies on the effective and robust mechanism
of selecting important risk factors. Identifying robust predictive risk factors from a high
dimensional feature space (such as the OAI dataset) is crucial since it enhances our un-
derstanding of KOA progression and therefore contributes to the development of robust
prediction tools.
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From the aforementioned classification results on the two proposed strategies (analysis
on separate legs and combined) the following remarks can be drawn. Training predictive
models using data from one of the two legs leads to inferior results compared to the
performance of the model that is trained on data coming from both legs. This can be
attributed to the fact that a predictive model trained on data only from the right leg ignores
any JSN progression that might happen to the left leg. Due to complex interactions that
occur in the dynamics of both legs, predictive models that are trained on data from a single
leg are based on partial knowledge of the problem and thus lead to inferior results while
requiring a larger number of features. The second strategy takes into account information
from both legs and therefore leads to a well-defined data classification problem in which
the non-progressors do not experience any JSN progression in any of their legs, whereas
the progressors’ class incudes data from patients that experience JSN progression in at least
one of their legs or both. This data problem proved to be more effectively handled by the
proposed methodology with a 83.33% prediction accuracy at the first 29 features.

The need for applying data under-sampling on the dataset could be considered
as a limitation of our study. Alternative data resampling algorithms (including more
advanced data augmentation techniques such as generative adversarial networks) have
been identified as a future research direction. The use of additional evaluation metrics
(other than accuracy) such as precision, recall, or F score would also be beneficial for
dealing with the observed data imbalance problem.

3.3.4. Post-Hoc Explainability Results

To explain the impact of the selected features to the outcomes of the employed best
prediction model, the SHAP method was used. SHAP was applied to the LR model which
was trained on the selected 29 features that come from both legs. In Figure 12, the features
are sorted by the sum of SHAP value magnitudes over all samples. The SHAP values are
used to indicate the distribution of each feature’s impact on the model’s output. Specifi-
cally, the feature value is represented by color, with the red color corresponding to a high
impact while the blue to a low impact. For instance, a high P01SVRKJSL value (evidence
of knee lateral joint space narrowing) lowers the predicted status of the subjects. The fea-
tures P01SVLKJSL, V00FFQ19, V00WOMSTFR, V00LFEFFB, V00RKLTTPN, P01OAGRDR,
P01SVRKOST, V00KPRKN1, V00WSRKN2, and V00KSXRKN5 present a similar behavior.
On the contrary, V00FFQ16 (how often the patient ate dishes with rice in the past 12 months)
has a positive effect on the prediction outcome. Similar behavior was identified for the
features V00PCTSMAL, V00KPRKN3, P01KPMED, V00FFQ69, V00lemaxf, V00lfTHPL,
V00DTB12, and V00RKALNMT. Figure 13 illustrates the mean absolute value of SHAP
values for each feature as a standard bar plot, which depicts the SHAP global feature im-
portance. We observe that each feature has the same impact on both classes. Furthermore,
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the most important features that affected the prediction output were the P01SVRKJSL,
P01SVLKJSL, and V00PCTSMAL.
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4. Conclusions

The main objective of this study was the accurate prediction of JSN in KOA pa-
tients based on a machine learning pipeline trained on multimodal data from the OAI
(725 features in total were considered). To identify and group patients with and without
JSN progression a clustering process was initially performed on the JSN progression based
on the JSM outcomes of patients over the first five visits. Afterwards, for the identification
of the most important features for the related clusters discrimination (progressing versus
non-progressing patients), a hybrid feature selection technique was employed. Finally, the
selected features were employed for the training of various ML models in order to predict
JSN in KOA patients. The outcome of the ML models indicated that the LR model achieved
the best performance for the left leg with a 78.3% accuracy for 164 features, while for the
right leg, the SVM model dominated with a 77.7% accuracy for 88 and 90 features.

However, the best overall performance was achieved by the second strategy where the
data from both legs were combined. Specifically, the LR model achieved a 83.3% accuracy
for a significantly lower number of features (29). This study was not only focused on the
development of prediction models, but also aimed to reveal significant insights regarding
the nature of the predictive risk factors that were identified as important. Through this
analysis, we concluded that a blend of heterogeneous features from almost all feature
categories is necessary in order to maximize the performance and prediction accuracy of
the models. The nature of the selected features along with their impact on the prediction
outcome (via SHAP) were also discussed to increase our understanding of their effect on
JSN progression. Future work should focus on incorporating morphological knee features
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as an additional feature category that could potentially increase the performance of the
predictive models. These features can be extracted by employing deep learning algorithms
for image processing. Alternative data clustering algorithms, such as self-organizing maps
(SOM) could also be explored to improve the clustering performance of the proposed
methodology, leading to more informative and distinct data classes.
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