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ABSTRACT

Compromised RNA quality is suggested to lead to
unreliable results in gene expression studies.
Therefore, assessment of RNA integrity and purity
is deemed essential prior to including samples in
the analytical pipeline. This may be of particular im-
portance when diagnostic, prognostic or thera-
peutic conclusions depend on such analyses. In
this study, the comparative value of six RNA
quality parameters was determined using a large
panel of 740 primary tumour samples for which
real-time quantitative PCR gene expression results
were available. The tested parameters comprise of
microfluidic capillary electrophoresis based 18S/
28S rRNA ratio and RNA Quality Index value,
HPRT1 50–30 difference in quantification cycle (Cq)
and HPRT1 30 Cq value based on a 50/30 ratio
mRNA integrity assay, the Cq value of expressed
Alu repeat sequences and a normalization factor
based on the mean expression level of four refer-
ence genes. Upon establishment of an innovative
analytical framework to assess impact of RNA
quality, we observed a measurable impact of RNA
quality on the variation of the reference genes, on
the significance of differential expression of prog-
nostic marker genes between two cancer patient
risk groups, and on risk classification performance
using a multigene signature. This study forms the
basis for further rational assessment of reverse
transcription quantitative PCR based results in
relation to RNA quality.

INTRODUCTION

Gene expression quantification plays a central role in a
wide variety of studies, including biomedical research
with clinical relevance. Among the various methods avail-
able for gene expression analysis, the reverse transcription
quantitative polymerase chain reaction (RT–qPCR) is the
most rapid, sensitive, accurate and precise method and its
use in clinical diagnostic procedures is presently growing
exponentially (1–5).
While there is conflicting literature data, it is often sug-

gested that RNA integrity and purity are important in
order to obtain reliable results (6–9). RNA degradation
can occur due to inadequate sample handling, prolonged
storage, suboptimal storage conditions or inter-laboratory
shipment of samples (10,11). RNA may be degraded
through exposure to heat or UV, or cleavage by RNAse
enzymes. In addition, the presence of inhibiting compo-
nents such as urea, salts, phenol, heparin or other agents
used during sampling or RNA extraction may also com-
promise with results (12). It would seem, therefore, that a
rigorous assessment of RNA integrity and purity is essen-
tial before using RNA samples in downstream applica-
tions, especially if diagnostic, therapeutic or prognostic
conclusions will be drawn. Unfortunately, proper RNA
quality control is lacking in a substantial number of
studies (4). While it is recently listed as a required
element in the Minimum Information for Publication of
Quantitative Real-Time PCR Experiments (MIQE) guide-
lines (13), there remains a great need to explore in detail
the implications of RNA quality on the final results.
Various methods have been proposed for the assessment

of RNA integrity, most often through measurement of
the size of the ribosomal subunit RNA molecules.
Importantly though, in RT–qPCR analyses, messenger
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RNA is the target and not the ribosomal RNA transcripts.
Therefore, it might be more appropriate to directly assess
the quality of the mRNA fraction. In addition,
PCR-based methods assessing RNA quality might be
more relevant given the fact that the targets are also
measured using the same technology when doing RT–
qPCR.
In this study, two qPCR-based assays using minute

amounts of RNA for investigation of mRNA integrity
or purity were first validated in RNA samples from
cultured neuroblastoma cells and subsequently applied
along with microfluidic-based capillary electrophoresis
on a large panel of RNA samples extracted from neuro-
blastoma tumours recently used in a qPCR-based prog-
nostic multigene signature validation study (14).

MATERIAL AND METHODS

Sample preparation

Total RNA was extracted from 6 neuroblastoma cell lines
and 740 fresh frozen neuroblastoma tumour biopsies ac-
cording to three different methods in collaborating
laboratories as described in Vermeulen et al. (14).
Concentration of each RNA sample was measured using
the Nanodrop 1000 Spectrophotometer (Thermo
Scientific).
Reverse transcription of RNA and cDNA synthesis was

carried out using the iScript Select cDNA Synthesis Kit
(Bio-Rad). In brief, 10 ng of each total RNA sample was
reverse transcribed using anchored oligo-dT primers and
iScript Select reverse transcriptase according to the manu-
facturer’s instructions and subsequently diluted with
nuclease-free water (Sigma) to 0.5 ng/ml cDNA (total
RNA equivalents) and stored at �20�C.
Prior to the cDNA synthesis, a DNase treatment was

performed using the RQ1 RNase-free DNase according to
the manufacturer’s instructions (Promega).
A sample pre-amplification method was applied starting

from 20 ng total RNA from the neuroblastoma tumour
samples yielding sufficient cDNA to measure more than
1000 target genes (WT-Ovation, NuGEN). Briefly, this
linear and isothermal pre-amplification method starts
with randomly primed whole transcriptome double-
stranded cDNA synthesis followed by SPIA-based DNA
pre-amplification to generate single-stranded cDNA
pre-amplification product (15–17).

Assessment of RNA purity and integrity

SPUD assay. To assess the purity of the RNA samples, a
quantitative PCR-based assay was used to detect PCR
(enzyme) inhibitors (9). A potato nucleic acid sequence
of 101 bp, lacking homology with any other known
human sequence, was amplified with specific primers by
real-time qPCR using an iQ5 real-time PCR detection
system (Bio-Rad) (Supplementary Data). PCR amplifica-
tion mixtures (15 ml) contained SYBR Green I Master Mix
buffer (7.5 ml) (Eurogentec), 0.15ml fluorescein (1 mM), 2 ml
SPUD template (5000 molecules/ml), 0.75 ml matching
forward and reverse primer (5mM), 2.85ml nuclease-free
water and 1 ml of either RNA from the sample to be tested

(10 ng/ml), inhibitory agent (positive control) or
nuclease-free water (negative control to determine the ref-
erence Cq value). The cycling conditions comprised 10min
polymerase activation at 95�C and 40 cycles of 15 s at
95�C and of 60 s at 60�C, followed by a dissociation run
from 60�C to 95�C for melting curve analysis.
Subsequently, Cq values were compared to the Cq value
of the negative control assay and a difference in Cq or
delta-Cq (dCq)> 1 was used as a cut-off designating the
presence of inhibitors of the SPUD assay.

The 50/30 ratio mRNA integrity assay. This assay aims at
measurement of the integrity of a reference gene mRNA
that is considered to be representative of the integrity of
all mRNAs in a given RNA sample (12). The principle of
this qPCR-based assay is based on the fact that anchored
oligo-dT primed reverse transcription proceeds from the 30

poly-A tail to the 50 start, being interrupted if mRNA is
fragmented due to degradation. Two qPCR assays target-
ing either the 30 end or the 50 start of the low abundant
reference gene HPRT1 were developed and validated
using our in silico analysis pipeline (18). The assays had
an efficiency of 88.6% (±0.4 SEM) and 94.9% (±1.0
SEM), respectively, based on 6-point, 4-fold dilution
series (Supplementary Data). Real-time qPCR was per-
formed on oligo-dT primed cDNA in a 384-well plate in-
strument (LC480, Roche). Real-time qPCR amplifications
were performed in 7.5ml containing 3.75 ml 2� SYBR
Green I master mix (Roche), 0.375 ml forward and
reverse primer (5 mM each), 1 ml nuclease-free water and
2 ml cDNA (1 ng total RNA equivalents). The cycling con-
ditions were comprised of 3min polymerase activation at
95�C and 55 cycles of 15 s at 95�C and 30 s at 60�C,
followed by a dissociation curve analysis from 60�C to
95�C.

Four reference samples were tested in all runs and used
as inter-run calibrators. The HPRT1 30 and 50 Cq values
were determined and the difference in Cq value between
both assays was calculated and defined as the 50–30 dCq. In
principle, the more degraded the RNA sample, the higher
the 50–30 dCq. As the 50 Cq was below detection level for
various samples (hence no 50–30 dCq could be calculated),
the 30Cq value in itself was also evaluated as an alternative
RNA quality parameter.

Microfluidic capillary electrophoresis. About 1 ng of each
total RNA isolate was analysed on a High Sensitivity
Chip (Experion, software version 3.0, Bio-Rad) in order
to determine a 18S/28S rRNA ratio and an RNA quality
index (RQI) (according to the manufacturer’s
instructions).

Alu expression. Alu repeat sequences are the most
abundant repeats in the human genome (�1 million
copies). By random integration during evolution, these
repeats got embedded in the 30-UTR of thousands of
coding genes and can thus be used as a reference for the
amount of mRNA (19). An RT–qPCR assay was designed
and validated in-house (forward primer: CATGGTGAA
ACCCCGTCTCTA, reverse primer: GCCTCAGCCTCC
CGAGTAG) and RT–qPCR was performed in a 384-well
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plate instrument (LC480, Roche) using the same condi-
tions as described above.

Normalization factor. A normalization factor was
calculated based on the arithmetic mean Cq value of
four stably expressed reference genes (HMBS, HPRT1,
SDHA, UBC) (20). In principle, the more degraded the
RNA sample, the higher the normalization factor is.

Gene expression analysis of prognostic marker genes

Gene expression analysis was performed according to a
procedure described elsewhere (14). In brief, a qPCR
assay was designed for 59 prognostic genes and 5 reference
sequences (HMBS, HPRT1, SDHA, UBC and Alu) and
validated using our in silico analysis pipeline (18)
(Supplementary Data). Real-time qPCR was performed
in a 384-well plate instrument (LC480, Roche) and data
analysed using qbasePLUS 1.4 [http://www.qbaseplus.
com,(21)].

Statistical analysis

Assessment of impact of RNA quality on qPCR results
was performed with six individual quality parameters,
including 18S/28S rRNA ratio, RQI, HPRT1 50–30 dCq,
HPRT1 30 Cq value, Alu Cq value and a normalization
factor based on the arithmetic mean Cq value of four ref-
erence genes (HMBS, HPRT1, SDHA, UBC).

The gene-specific variation for each reference gene was
calculated as the standard deviation of the log2 trans-
formed expression of the reference gene under study
normalized with the exponentiated arithmetic mean Cq
value of the three other reference genes. The Mann–
Whitney test was used to measure the significance of dif-
ferential expression of a marker gene between the HR and
non-HR subgroups. The HR subgroup comprised neuro-
blastoma patients >12 months at diagnosis with INSS
Stage 4 tumours (irrespective of MYCN status) or with
INSS Stages 2 and 3 tumours with MYCN amplification
and patients younger than 12 months with INSS Stages 2–
4 tumours with MYCN amplification. The non-HR
subgroup comprised of all other patients. Reference gene
variation and significance of differential expressions were
measured in sample groups with increasing numbers of
either best quality samples or worst quality samples
starting with 50 samples up to the total number of
samples analysed. This resulted in two curves, one for
each quality group, denoting the difference of the refer-
ence gene expression variation or significance of differen-
tial expression between the two RNA quality groups in
function of increasing group size. The mean difference
between the best quality and worst quality sample
groups was calculated as the area between the curves
divided by the numbers of group comparisons (i.e. the
total number of intervals across which the reference gene
expression variation was calculated) and constitutes a
measure for the impact of the RNA quality parameter
under investigation on the results (reference gene expres-
sion variation or significance of differential expression).

A null distribution interval was determined upon 100
random permutations and calculation of a 90%

distribution interval (1.64*standard deviation). Values
outside this distribution are significantly different
(P< 0.05, one-sided).
A multigene expression signature was built using 30

training samples using either the Prediction Analysis of
Microarrays (PAM) method (22) or the correlation signa-
ture method (23) and tested on the remaining samples.
The R-language for statistical computing (version 2.6.2)
was used to train and test the prognostic signature and to
evaluate its performance by receiver operating character-
istic (ROC) area under the curve (AUC) analyses using the
Bioconductor MCR estimate (24) and the ROC packages,
respectively.
Multivariate logistic regression analysis was performed

using SPSS (version 17). Therefore the six RNA quality
parameter values were first re-scaled between 0 (best RNA
quality) and 1 (worst RNA quality) to make them
comparable.

Data availability

The experimental data are available as Supplementary
Data in RDML (Real-time PCR Data Markup
Language) format, a structured and universal data
standard for exchanging quantitative PCR (qPCR) data
(25) (http://www.rdml.org) according to the MIQE guide-
lines (13). The primer sequences and target genes of each
assay are available in the rdml files together with their
corresponding RTPrimerDB ID (18) (http://www
.rtprimerdb.org).

RESULTS

Validation of the methods for RNA purity and integrity
assessment

SPUD assay. A dilution series consisting of six 10-fold
serial dilution points, starting from 1 000 000 molecules
down to 10 molecules of SPUD template was created
using 10 ng/ml yeast tRNA as carrier. Heparin (0.4U/ml)
was added as inhibitory agent to the individual wells.
Figure 1 shows that addition of heparin results in PCR
(enzyme) inhibition leading to higher Cq values compared
to the reference Cq value of the negative control
(Figure 1a) and to a difference in Cq or dCq> 1 for
each dilution point (Figure 1b) (Supplementary Data).
This agent thus constitutes an useful positive control for
PCR inhibition of an assay containing 10 000 SPUD
molecules.

The 50/30 ratio mRNA integrity assay. Six RNA samples
from cultured neuroblastoma cells were artificially
degraded by heat exposure (10 or 20min at 80�C) and
subsequently subjected to 50/30 ratio mRNA integrity
and microfluidic electrophoresis analyses. A clear
increase in 50–30 dCq was noticed upon exposure of the
originally high quality RNA samples to an elevated tem-
perature (Figure 2a) (Supplementary Data). Total RNA
electropherograms were in accordance with the above
described results showing a progressive reduction in size
of the 18S and 28S peaks and an elevation of the base line
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resulting in a decrease of the RQI as shown in Figure 2b
for one representative RNA sample. Assay characteristics,
RT and PCR variability, and suboptimal RNA quality
contribute to 50–30 dCq values deviating from zero in the
six untreated samples.

Assessment of RNA purity and integrity in a large series
of tumour samples

The SPUD assay was used for the detection of inhibitors
in a large panel of RNA samples extracted from fresh
frozen neuroblastoma biopsies in 11 different laboratories

Figure 2. (a) qPCR based 50/30 ratio mRNA integrity assay for 6 RNA samples from cultured neuroblastoma cells artificially degraded by heat
exposure (at 80�C). The x-axis represents the samples (intact, 10min heat exposure, 20min heat exposure). The longer the heat exposure, the more
degraded the sample, the higher the difference in Cq (50–30 dCq). (b) Microfluidic capillary electrophoresis for one representative sample. The longer
the heat exposure, the more degraded the sample, the lower the RNA Quality Index (RQI).

Figure 1. qPCR-based SPUD assay for the detection of PCR (enzyme) inhibitors. (a) Dilution series consisting of six 10-fold serial dilution points,
starting from 1 000 000 molecules down to 10 molecules of SPUD template. Individual wells were supplemented with water (negative control; four
replicates for each dilution point) to determine the reference Cq value shown as black diamonds, or with an inhibitory agent (heparin, two replicates
for each dilution point; grey squares) leading to an increase in Cq values. (b) Difference in Cq (dCq) (y-axis) between the Cq values of the control
assays performed in the presence of water and the Cq values of the assays containing the inhibitory agent. The dCq values >1 indicate the presence
of PCR (enzyme) inhibitors.
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using 5 different protocols. Out of 740 samples, all but 8
(1.1%, confirmed in a separate run) were within 1 cycle of
the negative control and thus considered to be free of in-
hibitors affecting the SPUD assay. Based on this, we ex-
trapolate that the applied extraction methods generally
provide RNA free of PCR inhibitors.

In order to evaluate the RNA integrity of the neuro-
blastoma samples, six different quality parameters were
determined and compared, including 18S/28S rRNA
ratio (S), RQI (R), HPRT1 50–30 difference in Cq or
dCq (D), HPRT1 30 Cq value (C), the Cq value of ex-
pressed Alu repeat sequences (A) (measure for the
overall mRNA content) and a normalization factor
based on the arithmetic mean Cq value of four stably ex-
pressed reference genes (N) (HMBS, HPRT1, SDHA,
UBC) (Supplementary Table S1). S, R, D and C are
measured on unamplified RNA; A and N on pre-amplified
cDNA. The frequency distribution and cumulative fre-
quency of the different parameters are displayed in
Figure 3 and Table 1. All parameters were significantly
correlated to each other (Figure 4, P< 0.001). Not unex-
pectedly, the highest correlation was found between Alu
Cq (A) and the normalization factor (N) (r2=0.68).

Influence of RNA integrity on single gene level

Variation of reference genes. In principle, normalized ref-
erence gene expression levels should be similar in all
samples, hence displaying a low variation across all
samples. Here, we wanted to determine if RNA quality
has an impact on the remaining variation of normalized
reference gene expression. To this purpose, the
gene-specific variation of each reference gene (standard
variation) was calculated for sample subgroups with
increasing numbers of either best quality samples or
worst quality samples starting with 50 samples up to all
615 samples for which expression and clinical data were
available. All RNA quality parameters were investigated.
RNA quality has a clear influence on the noise of the
reference genes as shown in Figure 5 for one representative
reference gene (UBC) and RNA quality parameter
(HPRT1 50–30 dCq). The variation in the 50 most
compromised RNA samples is >2-fold in the 50 most
intact samples (3.5 versus 1.5). A significant difference in
reference gene variation between best quality and worst
quality samples was observed for 18 out of 24 combin-
ations of 4 reference genes with 6 RNA quality parameters
(Table 2). On average, the 50–30 dCq and the normaliza-
tion factor had the largest impact on reference gene vari-
ation when comparing best quality with worst quality
samples.

We also tested the effect of different combinations of
the six RNA quality parameters but could not find signifi-
cantly larger effects for specific combinations (data not
shown).

Differential expression of prognostic marker genes. In the
second step, we studied the impact of RNA quality on the
significance of differential expression of marker genes
between two risk groups of cancer patients (HR versus
non-HR) using the six RNA quality parameters in all

samples for which clinical and expression data were avail-
able (n=615). The significance of differential expression
of each marker gene (n=59) between the HR and
non-HR group was measured using the same procedure
of growing sample subgroups of opposite RNA quality as
used for assessment of reference gene variation. Instead of
calculating the variation, the negative 10 log of the
P-value of the Mann–Whitney test was used. The results
clearly show an influence of RNA quality on single gene
differential expression for a substantial number of genes
(Figure 6 and Supplementary Table S2). For 27 genes,
significance of differential expression is higher for
high-quality samples for at least one RNA quality param-
eter (as exemplified for 50/30 ratio for target SLC25A5 in
Figure 6a, mean difference in significance is 8.29); 8 genes
seem not to be sensitive to RNA quality (as exemplified
for 50/30 ratio assay for target PLAT in Figure 6b, mean
difference in significance is 0.13); for 19 genes, significance
of differential expression seems to be better in low-quality
samples for at least one RNA quality parameter (as
exemplified for 50/30 ratio assay for target CAMTA1 in
Figure 6c, mean difference in significance is �4.95); and
for 5 genes there are conflicting data. S, N and A param-
eters seem to result in more genes where better quality
RNA leads to more significant results. R, D and C par-
ameters seem to result in as many or more genes where
there is an opposite effect.
In practice, gene expression studies are often based on

small sample sizes (e.g. 15 low risk patients versus 15 high
risk patients). Therefore, we also evaluated the impact of
RNA quality parameters on the differential expression of
genes within such an experimental set-up. For this
analysis, we performed 100 000 random sampling of 15
patients from the HR group and 15 patients from the
non-HR group. Within each of the sampling, we per-
formed a Mann–Whitney test for differential expression
analysis and plotted the �10 log P-values as boxplots,
grouped according to the number of samples belonging
to the 75% percentile of the best quality. This approach
was applied on the representative genes depicted in
Figure 6a–c for quality parameter D (cut-off for good
quality, 75%=3.54). The same conclusions can be
obtained, i.e. for SLC25A5, the differential expression is
more significant when testing on a higher proportion of
high-quality samples (Figure 6d), while for PLAT, there is
no bias (Figure 6e) and for CAMTA1, a reduction in sig-
nificance can be appreciated (Figure 6f).

Influence of RNA integrity on multigene level

After establishment of a clear link between RNA quality
and single gene results, we now studied the impact of
RNA quality on risk classification performance using a
multigene signature in the samples for which clinical
data were available (30 training samples and 585 test
samples) (Table 3). We used two different classification
algorithms PAM (22) and correlation signature (23) and
determined the sensitivity, specificity, positive predictive
value, negative predictive value and overall accuracy as
ROC–AUC analysis of either a 6-gene or a 59-gene
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Figure 3. Frequency distribution (left axis) and cumulative frequency (right axis) of six RNA quality parameters measured in 740 neuroblastoma
tumour samples. S, 18S/28S rRNA ratio determined by microfluidic capillary electrophoresis; R, RNA Quality Index determined by microfluidic
capillary electrophoresis; D, HPRT1 50–30 dCq (difference in quantification cycle value); C, HPRT1 30 Cq value; A, Alu Cq value; N, normalization
factor based on the arithmetic mean Cq value of four reference genes (HMBS, HPRT1, SDHA, UBC).
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classifier. RNA quality of the tumour samples from sur-
vivors was comparable with those from non-survivors
(data not shown). The impact of RNA quality was
determined using the same procedure as described in the
previous paragraph. The 50–30 dCq had the largest overall
impact on classification performance when comparing
best quality and worst quality samples. The correlation
signature method appears less sensitive to RNA quality
than the PAM method and the 59-gene classifier is less
sensitive to RNA quality than the 6-gene classifier when
the correlation signature method is used.
Multivariate logistic forward conditional regression

testing all RNA quality parameters in a model indicated
that the 50–30 dCq and normalization factor quality

Figure 4. Correlation scatterplots between six RNA quality parameters measured on 740 neuroblastoma tumour samples indicate a significant
correlation (Pearson, P< 0.001). Missing values for D and C due to severely degraded RNA were replaced by the value from the sample with
the worst quality according to the parameter under study (these imputed values were not taken into account for the correlation analysis). Asterisks
indicate correlation between 30 Cq and 50–30 dCq values was not calculated because 30 Cq is included in the calculation of 50–30 dCq (not independent
parameters). S, 18S/28S rRNA ratio determined by microfluidic capillary electrophoresis; R, RNA Quality Index determined by microfluidic capillary
electrophoresis; D, HPRT1 50–30 dCq (difference in quantification cycle value); C, HPRT1 30 Cq value; A, Alu Cq value; N, normalization factor
based on the arithmetic mean Cq value of four reference genes (HMBS, HPRT1, SDHA, UBC).

Table 1. Frequencies of six RNA quality parameters measured in 740

neuroblastoma tumour samples

n=740 Median (range) Mean Not available (%)

S 1.0 (0.0 to 4.2) 1 0 (0)
R 7.6 (1 to 10) 6.8 6 (0.8)
D 2.5 (�2.1 to 10.5) 2.8 53 (7.2)
C 33.2 (27.4 to 45.8) 33.8 14 (1.9)
A 10.9 (7.8 to 27.3) 11.3 30 (4.1)
N 28.5 (24.3 to 39.2) 29.1 30 (4.1)

S, 18S/28S rRNA ratio determined by microfluidic capillary electro-
phoresis; R, RNA Quality Index determined by microfluidic capillary
electrophoresis; D, HPRT1 50–30 dCq; C, HPRT1 30 Cq value; A, Alu
Cq value; N, normalization factor based on the arithmetic mean Cq
value of four reference genes (HMBS, HPRT1, SDHA, UBC).
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parameters were the only significant independent param-
eters to have an impact on outcome prediction using the
59-gene PAM signature [odds ratios 4.65 (95% CI: 1.19–
18.18; and 17.86 (95% CI: 4.17–76.92), respectively].
These parameters were also found to be independently
statistically significant together with other parameters
using the 6-gene PAM signature and the 59-gene correl-
ation signature, and the normalization factor was the only
significant independent parameters using the 6-gene cor-
relation signature (Supplementary Table S3).

DISCUSSION

An often underestimated critical issue underlying the reli-
ability of gene expression results is the quality of the RNA
samples. To assess the impact of RNA quality on the
results, a useful quality parameter is needed as well as a
measurable outcome. In this study, we have examined the
quality of an unprecedentedly large series of 740 clinical
RNA samples using six RNA quality parameters. We did
not aim to identify the best parameter measuring RNA
quality. Rather, we developed and applied an analytical
framework using novel methods for evaluation of RNA
quality in relation to qPCR results. Undisputedly, we
demonstrated a measurable influence of RNA quality on
the gene expression results.

A significant—albeit imperfect—positive correlation
was found between all RNA quality parameters; each par-
ameter appears to have a different appreciation of RNA
quality. While the Alu repeat sequence expression level
and the normalization factor based on four reference
genes were determined on randomly primed pre-amplified
material, HPRT1 50–30 dCq and HPRT1 30 Cq value were
measured on cDNA obtained from anchored oligo-dT
priming of original RNA. Therefore, a possible explan-
ation for the lower correlation between these parameters
is the use of a different RT priming strategy, resulting in
successful pre-amplification of partially compromised
RNA samples in case of random priming (23). This
might also explain why some samples classified as bad
quality based on RQI or 18S/28S rRNA ratio (measured
on total RNA) turn out to be better quality samples based
on the other methods (measured on cDNA).

Upon careful interpretation of the impact of RNA
quality on the results using the novel methods, we
clearly observed an effect on the variation of reference
gene expression, on the significance of differential expres-
sion of prognostic marker genes and on the classification
performance using a multigene signature. In contrast to
some reports in the literature (8,26), the results obtained
from this study indicate that the process of normalization
does not completely resolve the effect of compromised
RNA quality on the final results. A substantial impact

Table 2. Mean difference in normalized reference gene standard variation between best quality and worst quality samples based on six RNA

quality parameters in 615 neuroblastoma tumour samples

RNA quality parameter HMBS HPRT1 SDHA UBC Mean

S 0.12 0.19 0.06 0.41a 0.12
R 0.25 0.42a 0.18 0.32a 0.37
D 0.49a 0.66a 0.72a 0.81a,b 0.62
C 0.58a 0.66a 0.47a 0.78a 0.62
A 0.06 0.60a 0.59a 0.51a 0.56
N 0.60a 0.75a 0.72a 0.81a 0.72
90% null distribution intervalc (�0.27 to 0.28) (�0.24 to 0.26) (�0.31 to 0.33) (�0.24 to 0.23)

aSignificant difference (P< 0.05) (smaller in permutated samples than in ranked samples based on RNA quality).
bMean difference in reference gene UBC variation according to 50–30 dCq (example shown in Figure 5).
cBased on 100 random permutations. Grey boxes: the value with the largest mean difference (quality parameter with biggest impact on variation) for
each reference gene.
S, 18S/28S rRNA ratio determined by microfluidic capillary electrophoresis; R, RNA Quality Index determined by microfluidic capillary electro-
phoresis; D, HPRT1 50-30 dCq (difference in quantification cycle value); C, HPRT1 30 Cq value; A, Alu Cq value; N, normalization factor based on
the arithmetic mean Cq value of three reference genes (i.e. excluding reference gene under evaluation).

Figure 5. Variation of reference gene UBC calculated as the standard
deviation of the log transformed gene expression levels after normal-
ization with the arithmetic mean Cq value of three other reference
genes (HMBS, SDHA, HPRT1). Variation is measured in increasing
numbers of both best quality samples (blue curve) and worst quality
samples (red curves) starting with 50 samples up to all 615 samples
(quality here defined by 50–30 dCq value). The null distribution was
determined upon 100 random permutations (grey curves denote 90%
distribution range). Similar results were obtained for the other reference
genes and RNA quality parameters.
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Figure 6. The effect of RNA quality on the significance of differential expression of a marker gene between tumours from two risk groups of
neuroblastoma patients (HR versus non-HR) (Mann–Whitney test) was investigated using two different approaches. (i) The negative 10log of the
P-value is calculated for increasing numbers of both best quality samples (blue curve) and worst quality samples (red curves) starting with 50 samples
up to all 615 samples (a–c). The null distribution was determined upon 100 random permutations (grey curves denote 90% distribution range).
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of RNA quality on the standard deviation of each of the
four reference genes when normalized by the three other
reference genes was observed. This is in accordance with
our previous report indicating that reference gene expres-
sion stability is influenced by RNA quality and that genes
display varying sensitivity to RNA degradation (7). As
lower RNA quality generally results in higher Cq values,
it is important to note that the observed increase in vari-
ation is not simply due to sampling noise that occurs when
the number of input molecules are low. Indeed, the
measured Cq values of the reference genes are found in
a range well below values at which sampling noise is
expected; furthermore, the same observations are made
when RNA quality metrics are used that are not depend-
ing on the input amount (such as 18S/28S rRNA ratio,
RQI and 50–30 dCq).
RNA quality has also a noticeable influence on the sig-

nificance of differential expression of individual marker
genes between two divergent risk groups of cancer
patients. Some genes appear to be sensitive to RNA
quality, while others are not. Surprisingly, for a few
genes, the results seem better when RNA was of lower
quality. This puzzling observation is in accordance to
findings within the EU FP7 Spedia project on

standardization and improvement of pre-analytical pro-
cedures for in vitro diagnostics (M. Kubista, Personal
communication). Upon extensive correlation analyses
using different parameters, including qPCR assay and
gene expression specific characteristics such as amplicon
length, transcript length, distance to 30-end, assay ampli-
fication efficiency, mean Cq value and magnitude of dif-
ferential expression between the two risk groups, no clear
explanation was found as to why some genes were more
sensitive to RNA quality than others (data not shown).

Our data further show that the performance of gene
expression based classification in function of RNA integ-
rity is influenced by the number of genes included in the
classifier and by the nature of the applied classification
algorithm. The correlation signature algorithm seems to
be the least sensitive to RNA quality and an expression
signature built with a larger number of genes results in
more robust classification.

Overall, the 50–30 dCq and normalization factor quality
parameters appear to have the largest influence on the
qPCR expression results obtained on fresh frozen
biopsies. As such, they ‘appear to constitute the most’
useful parameters to qualify RNA samples. The advantage
of using a 50/30 ratio assay or the normalization factor to

Figure 6. Continued
(ii) The impact of RNA quality parameters on the differential expression of genes between 100 000 random samplings of 15 patients belonging to two
risk groups (HR versus non-HR) (Mann–Whitney test) (d–f). Each boxplot represents differential expression between HR and non-HR groups
according to the fraction of samples with best quality (dCq 50–30< 3.54). Representative gene (SLC25A5) for which differential expression is more
significant in best quality samples (a and d), representative gene (PLAT) for which expression results are not sensitive to RNA quality (b and e),
representative gene (CAMTA1) for which differential expression is more significant in worst quality samples (c and f).

Table 3. Impact of RNA quality on risk classification performance in 585 neuroblastoma tumour samples

SENS
(%)

SPEC
(%)

AUC
(%)

PPV
(%)

NPV
(%)

SENS
(%)

SPEC
(%)

AUC
(%)

PPV
(%)

NPV
(%)

COR 59 COR 6
S �4.2 �6.4 �5.3 �9.6 �1.3 S �2.4 �1.6 �2.0 �3.2 �0.5
R �8.4 0.1 �4.1 �6.7 �1.3 R �8.0 6.5 �0.7 �1.8 �0.5
D 6.9a 9.7 8.3 �3.4 5.3 D 5.0 16.2 10.6 �1.9 7.2
C 0.8 7.8 4.3 0.3 2.5 C �5.5 14.3 4.4 1.3 2.3
A 1.6 �3.1 �0.8 0.9 �0.5 A �13.8 12.3 �0.7 7.2 �3.9
N �2.5 �5.0 �3.8 0.6 �2.3 N 1.3 �2.9 �0.8 4.4 �1.5

PAM 59 PAM 6
S �5.4 1.8 �1.8 �1.1 �0.7 S �9.7 �1.3 �5.5 �6.2 �2.2
R �8.0 7.1 �0.4 1.8 0.0 R �13.9 5.9 �4.0 �2.7 �1.8
D 0.6 15.2 7.9 5.1 5.0 D �0.7 14.6 6.9 0.4 5.0
C �13.9 12.6 �0.6 2.4 0.0 C �14.7 12.1 �1.3 �0.4 �0.3
A �2.8 8.7 3.0 11.6 �0.8 A �6.9 4.8 �1.1 5.5 �2.4
N �5.7 �0.2 �3.0 4.5 �3.0 N �9.0 �1.6 �5.3 1.8 �4.0

COR 59 versus
PAM 59b

0.0762 <0.01 0.478 <0.01 0.610 PAM 6 versus
COR 6b

0.0927 0.234 <0.01 0.158 0.0651

COR 59 versus
COR 6b

0.351 <0.05 <0.05 <0.01 0.876 PAM 6 versus
PAM 59b

<0.01 <0.05 <0.01 <0.01 <0.05

Values represent the mean difference in performance between two groups of divergent RNA quality.
aWorst RNA quality samples show 6.9% lower sensitivity compared to best quality samples. Grey boxes: the value with the largest difference
(quality parameter with biggest impact on classification performance) for each performance parameter.
bComparison of the values of all RNA quality parameters for a specific performance between two classification methods (t-test). COR/PAM:
correlation signature/prediction analysis of microarray method using 59 or 6 genes. SENS, sensitivity; SPEC, specificity; AUC, overall accuracy
as receiver operating characteristic area under the curve analysis; PPV, negative predictive value; NVP, positive predictive value; S, 18S/28S rRNA
ratio determined by microfluidic capillary electrophoresis; R, RNA Quality Index determined by microfluidic capillary electrophoresis; D, HPRT1
50-30 dCq (difference in quantification cycle value); C, HPRT1 30 Cq value; A, Alu Cq value; N, normalization factor based on the arithmetic mean
Cq value of four reference genes (HMBS, HPRT1, SDHA, UBC).
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assess the integrity of an RNA sample before its use in a
gene expression study is that it specifically ‘addresses’ the
integrity of a messenger RNA molecule. This is not the
case for other methods such as microfluidic electrophor-
esis that predominately inspect the ribosomal RNA profile
to infer RNA quality. Undoubtedly, such methods
provide an indication of total RNA quality but are not
necessarily most appropriate to predict the integrity of
mRNA transcripts that form the actual template in RT–
qPCR analyses. Of note, the 50–30 dCq value in itself is not
only depending on the RNA quality, but may also be
influenced by reverse transcriptase efficiency and assay
performance (qPCR efficiency). The last two factors do
not need to be taken into account if the RNA quality
parameter is used to rank the samples in the same study
according to RNA quality. However, if the aim is to es-
tablish a quality cut-off value, these factors should be con-
sidered. The evaluation of qPCR assays targeting the
30-end and the 50 start of other reference gene is needed
in order to confirm our results and establish 50–30 dCq as a
valuable RNA quality parameter.

Clearly, further studies are warranted to establish a
cut-off value for inclusion of a given sample in a gene
expression study. We propose that pilot experiments are
initiated that include positive and negative control
samples in order to establish a study-specific cut-off. It
is expected that this value will depend on the observed
expression difference, the target abundance, the
intra-group expression variability, the sensitivity to deg-
radation of the target, the gene expression measurement
method (RT–qPCR versus microarray versus massively
parallel sequencing), and the nature of the samples (e.g.
fresh frozen versus formalin fixed paraffin embedded). The
cut-off value will also depend on the purpose of the study;
a more stringent assessment of RNA quality is probably
needed when a therapeutic decision is required for an in-
dividual patient compared to drawing statistical conclu-
sions for a group of samples. Nonetheless, the inability to
diagnose or assess prognosis of patients due to inferior
RNA quality is unacceptable. Therefore, efforts should
be made to overcome this problem and to increase the
percentage of eligible cases for gene expression profiling
in a clinical setting. For instance, laboratories should be
trained to use standard operating procedures for the ex-
traction and storage of high quality RNA. Furthermore,
random primed reverse transcription could allow samples
with some degree of RNA fragmentation to become
eligible (27). The number of useable samples can also be
increased if gene expression profiling is performed imme-
diately after sampling of the tumour (which is clearly a
compromising factor in retrospective studies) as it is
known that storage of RNA samples might lead to deg-
radation (10,11).

The results from this study demonstrate that monitor-
ing RNA quality is of critical importance to obtain mean-
ingful and reliable gene expression data and to ensure
reproducibility of the results. This study confirms the
need of proper RNA integrity control and proposes a
framework to assess the value of an RNA quality param-
eter to measure the impact on the gene expression results.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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