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With next generation sequencing thousands of virus and viral vector integration genome targets are now under
investigation to uncover specific integration preferences and to define clusters of integration, termed common
integration sites (CIS), that may allow to assess gene therapy safety or to detect disease related genomic features
such as oncogenes.
Here, we addressed the challenge to: 1) define the notion of CIS on graphmodels, 2) demonstrate that the struc-
ture of CIS enters in the category of scale-free networks and 3) show that our network approach analyzes CIS dy-
namically in an integrated systems biology framework using the Retroviral Transposon Tagged Cancer Gene
Database (RTCGD) as a testing dataset.

© 2016 The Authors. Published by Elsevier B.V. on behalf of the Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license
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1. Introduction

Viral vector integration is a process exploited in gene therapy (GT)
to correct defective cells of an individual and to drive the health status
from the pathological condition to a normal one [1–6]. As consequence
of this perturbation, i.e. if vectors integrate into cellular genome posi-
tionswhere the expression of an important gene is dysregulated, the af-
fected cell may step from the primary illness state to a secondary state.
Thus, insertional mutagenesis is a potential risk that may accompany
vector integration events [7–11].

Therefore, large insertional mutagenesis screenings are used to as-
sess the safety of the treatment in clinical GT, to design safer GT proto-
cols and to discover new disease (i.e. cancer) candidate genes [12–16].

The central role in integration site (IS) analyses is given in the assess-
ment of the genome-wide integration profile and the identification of
integration clusters that could alter gene expression. The definition of
these clusters or common integration sites (CIS) is not standardized
and usually based on accumulation of IS that are unlikely to occur by
chance and statistically significant different compared to a random in
silico control. A regular interpretation (Standard Windows Method,
SWM) is founded on the number of integrations in a predefined geno-
mic window, that classifies CIS as follows: a) 2 IS are within 30 Kb or
b) 3 IS within 50 Kb or c) 4 IS within 100 Kb or d) ≥5 IS within 200 Kb
[17,18]. It is obvious that this historical definition can be used only as
a first approximation for discovery of biologically (and clinically)
Fronza).
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relevant CIS, because the results are highly dependent from the size of
the IS dataset [19]. Even if methods not constrained on a predefined
set of fixed windows were released [20–23], the data importation to-
gether with CIS generation and analysis remain tedious tasks. The static
tabular and text oriented nature of the CIS representation requires ex-
tensive processing steps that can involve custom programming, format
exchanging and manual interpretation of the results. These computa-
tional difficulties reduce the analysis capability of standard life science
labs and strictly rely on elevated bioinformatics skills.

We hypothesized that in the next generation sequencing area
only systems biology approaches may be able to dissect biologically
(and clinically) relevant CIS. Here, we developed a new CIS construction
framework using an approach based on graphs. This approach has nu-
merous advantages: 1) the resulting CIS are represented by networks,
2) graph theory can be used to infer characteristics and properties of
the integration process (i.e. the node degree distribution of the net-
works can be linked to the randomness of the integration process, and
3) a large repertoire of IS can be imported and parsed without any
prior constraint (except for the maximal distance between two IS).

More in detail, the graph model allows an easy structural organiza-
tion of the annotations in the Gene Atmosphere (GA) (e.g. protein
coding atmosphere, post-transcriptional atmosphere, etc.) by using dif-
ferent layers of node categories while performing the enrichment as de-
scribed in Paragraph 2.6. The implementation of this model in software
tools, which allow networks visualization, provides a broader overview
of the data at a glance. An example of this feature is depicted in Fig. 3
where the CIS network is disposed on a plane by applying a force-
directed layout. Furthermore, with the availability of Hi-C data, this
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framework is ready to embed relations among CIS in the spatial organi-
zation of the genome, enriching the modeling to a multidimensional
level [24] (i.e. moving from a linear genomic vicinity modeling to a
topological genomic modeling). Another interesting feature which
emerges using this graph model is the capability of assessing biological
properties by exploiting topological characteristics of the network. For
example, the scale-free distribution of a set of CIS can be used to estab-
lish if the dataset under analysis contains genomic regions enriched in
IS, an observation that is a prerequisite in order to properly recognize
CIS.

Recent approaches to the identification of hot-spots try to take into
account the size of the IS's dataset and the prior knowledge about vector
integration preferences [23]. The implementation of this graph model
on a normal computer machine could be greedy of computational re-
sources when dealing with very huge IS datasets (i.e. millions of
nodes). To our knowledge, there are no IS datasets in literature big
enough that cannot be easily represented by our model. Enhanced
with annotated genomic data, this model could be easily extended in
order to drive the identification of CIS exploiting the information
contained in the annotations. It is our intention to evaluate this possibil-
ity in future. One of the main differences between our model and the
statistical frameworks used to the identification of CIS is that here the
statistical method is applied after the CIS identification leaving to the
user of the model the ability to give a biological meaning to the CIS
(e.g. the CIS is not excluded a priori by the statistical method). With
the complex annotation feature, as described in Paragraph 2.6, our
model is able to perform a many-to-many mapping against genomic
features (i.e. genes) and integration sites while other methods just per-
form a one-to-one mapping (i.e. one gene, one IS). In this way, our
model provides a more refined granularity, when it is enhanced with
complex annotation, allowing the simultaneous representation of dif-
ferent genomic features in themodel (i.e. transcriptional elements, pro-
tein coding genes, etc.), that other models do not allow.

A Cytoscape [25] draft prototype plugin was developed to test the
framework of this paper.

2. Results and Discussion

2.1. CIS Definition

First of all we define what a common integration site is. A set of n IS
in the database is represented as the set of n vertices V of the graph G.
Then, for each couple of vertices vi and vj (i, j = 1, 2, …, n i ≠ j) we add
an edge eij if the distance between the corresponding IS is below a
threshold TH of 50 Kbp. A weight wij is associated with the edge eij and
represents the distance between the corresponding IS. The default
value of 50 Kbp was selected using the maximal influence window
size where a causal relation is found between an insertion event and
gene expression [22]. De Jong showed that the presence of viral integra-
tion is correlated with the local amount of gene expression and that
50 Kbp is an upper bound on which the presence of IS can be linked
with gene expression. At the end of this process, we obtain the undirect-
ed weighted graph G = (V, e) as abstract representation of all the dis-
tance relations in the IS dataset. The graph G is composed by a set of
unconnected subgraphs (Connected Components, CC). Each CC is the
natural graph representation of a CIS in which the order is represented
by the number of vertices.

2.2. Integration Process and Node Degree Distribution

The non-random character of virus and viral vector integration sug-
gests the existence of sub genomic regions that are preferentially
targeted. Asmany complex biological systemswheremany components
interact together, also the viral integration process derives from intri-
cate functional interactions that involve viral and host proteins/DNA.
The behaviors of complex systems are captured by a characteristic of
the network that is called scale-free property [26–28]. This property de-
pends on the distribution of the nodes degree. The node degree is the
number of edges that connect a node with the neighbors. The degree
distributions of several networks follow a power law, precisely defined
with the functional d(k) = ak−γ, where d(k) is the degree distribution,
k= 0,1,2,… is the node degree, a is the normalization constant and γ is
the degree exponent. In scale-free network the exponent is usually less
than three (γ b 3), whereas in random networks γ ≥ 3.

To prove that themechanism of viral CIS or hot-spot (HS) formation
is embedded via scale-free property into the network representation,
we developed a series of synthetic transfection experiments that
consisted of placing a fixed number of integrations on human genome
carrying a random number of artificial hot-spots. The integrations
were divided in two subsets: 1) IS placed on a simulated genome with
hot-spots (ISSYN) and 2) IS randomly placed on a genome without hot-
spots (ISRAND). The scale-free property of CIS networks found in ISRAND
and ISSYN was then verified using the Cytoscape “Network Analysis”
plugin.

We further verified the presence of a HS driven mechanism on six
datasets: five in which we expected a scale free behavior (LV [1], HIV
[29], GV1 [2], GV2 [16] and RTCGD [12]); and one from an adeno-
associated viral (AAV) vector study [30] where we expected a random
integration profile. In Fig. 1 the degree distributions of the groups of
the experimental IS sets are plotted. The richness in integration sites
of the datasets is: ~1000 ISSYN (g), ~15,000 ISRAND (e), ~4000 ISLV1 (b),
~2000 ISAAV (a), ~35,000 ISHIV (d), ~15,000 ISGV1 (h), ~800 ISGV2 (c),
and ~8800 ISRTCGD (f). All the experimental and synthetic sets, except
for the AAV and RAND set, have a log–log degree distribution that fol-
lows a power law with gamma exponent γ b 3. Only two datasets, the
random dataset ISRAND (γ = 3.6) and ISAAV (γ = 4.8) have no scale-
free degree distribution. This last finding is in line with our and other
published studies that did not attribute to AAV any HS driven integra-
tion pattern [30,31]. From a practical point of view and as a first result
of our graph modeling, the node degree distribution in a network that
represent integration events indicate the presence of an accumulation
process driven by genomic hotspots.

Réka [26] demonstrated that complex systems that display a high
degree of error tolerance (robustness) are represented by scale-free
networks. An incomplete IS dataset can be seen as the result of a process
that remove IS from the complete basin of integrationspresent in a sam-
ple, due to unavoidable experimental subsampling. Recalling the ro-
bustness property for scale free networks we can prove that genomic
hot-spots are identified even within an incomplete set of experimental
IS.

2.3. General Structure of the CIS Pool and RTCGD Dataset

The Retroviral Transposon tagged Cancer Gene Database (RTCGD;
http://variation.osu.edu/rtcgd/, [12]) was used as test case for our
graph model.

The RTCGD dataset has been first analyzed in order to compare two
general CIS properties, the order and the dimension of the 10 biggest CIS
identified by our framework and the SWM. Fig. 2(A) shows the general
structure and shape of all theCISwith order bigger than9 as they appear
analyzing RTCGD integration.

5110 IS are selected by the CIS construction tool as belonging to re-
puted CIS and 4035 compose CIS with p-value b 0.05 (see Appendix A
Table 1 in [41]). How the p-value is computed per CIS is explained in
the Paragraph 3.6. The CIS order goes from 2 to 82 (in Fig. 2(A) CIS
from order 2 to order 8 are not shown). RTCGD data contains 2910 IS
and the CIS falls in the same range order. No statistical model is applied
in order to test the CIS significance.

In the 10 biggest CIS the order and dimension of 3 of them (myc, ahi
and rasgrp1) were returned identical by the analysis performed using
our model and RTCGD and other 4 CIS (gif1, lvis1, pim1 and notch1)
were comparable (difference in the order is less than 10; see Table 1).

http://variation.osu.edu/rtcgd/


Fig. 1.Degreedistributions for datasets used to test scale freeproperties of CIS networks. Thedegree distribution of a scale-free network follows thepower law d(k)= ak−γ, withγ b 3. This
distribution is interpolated as a straight line on log–log plot.
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For the remaining common integration sites the RTCGD ones were
fragmented in two separated CIS by using our model (sox4 and meis1)
or vice versa (fgf3). Fig. 2(B) shows the structure of these CIS. A box sur-
rounding two CIS indicates that the CIS are combined in RTCGD.

The CIS discovered using our graph model have a wide spectrum of
dimensions imposing only the threshold distance between two IS. As
shown in Table 1 the high order CIS are generally more compact than
the CIS retrieved by a SWM. This behavior can easily explained by the
construction rules that SWM imposes to fill a region of 200 Kbp in CIS
with order bigger than four.

As a further point of discussion we would like to make some obser-
vation on the structure of CIS in sets of IS that contains many IS that
accumulate in genomic hotspots that cover several megabases. The
ISHIV set of IS contains more than 35,000 objects and produces a typical
integration profile with dense accumulation regions. The biggest CIS is
found on chromosome 16 at position 89,730,888 and spans 0.69 Mb.
The graph that represents this hotspot is shown in Fig. 3 and is strongly
anisotropic. In order to arrange the nodes in this manner we used a
force-direct layout embedded in Cytoscape. Accumulations of nodes
(strongly connected) indicate an area in the CIS rich in integration.
Regions in the network where few links (weakly connected, 3e) are
present represent areas that act as interface between two IS dense
areas. The CIS in the figure might be dissected in at least 4 independent
subregions that cover 300 (3a), 162 (3b), 32 (3c) and 47 (3d) kilobases
and where different genomic elements are targeted. In Fig. 4 the net-
works structure of a region of 1.2 Mb on chromosome 3 is shown. Five
independent CIS of order 25–68 are detected. Only one of them4II is iso-
tropic and does not show subregions of accumulation. Three CIS, 4I, 4II
and 4IV, contain at least two subregions whereas in 4V, 46 IS cover
more or less uniformly a region of about 200 Kb. To conclude this para-
graph, the networks can be visually represented to be easily examined
by eye or is possible to use graph algorithms that automatically extract
topological structures related with specific hotspot features.
2.4. Shannon Index and Dataset Comparison

Entropy [32] is the most elementary concept of information theory
and is widely used in many fields in order to measure the complexity
of a defined system. We can introduce a level of complexity to the CIS
analysis combining the IS that belong to different investigational classes
like tumors or vectors type. A hotspot can consequently be composed by
a mixture of IS that derive from different sources. In order to measure
the complexity of one CIS we computed the entropy value, absolute
and relative. Low entropy values are found in CIS where IS come from
few tumor source (exactly one source if normalized entropy NE = 0).
If NE = 1 all the tumor sources contribute equally to the CIS. To deter-
mine significant tumor hotspots we extracted the set of CIS that belong
to 10% of the upper (highly heterogeneous) and lower (highly homoge-
neous) tail of the entropy distribution. The NE distribution for 203 CIS
(order N 4; 2129 IS) is comprised between 0 and 0.65 (median = 0.4).
23 CIS (201 IS, 9.4%) with NE b 0.1515 and 18 CIS (198 IS, 9.3%) with
NE N 0.5375were selected as homo and heterogeneous CIS respectively.
The largest homogeneous CISwas found on chromosome 15: 98795118
(Wnt1 gene) and contains 28/29 IS that are associated with mam-
mary tumor. The most heterogeneous CIS was found at the position
chr2:173665 (cebpb gene) and contains 23 IS. It is originated from 6 dif-
ferent tumors: T cell, B cell, myeloid, lymphoma, brain tumor andHS. On

Image of Fig. 1


Fig. 2. A) CIS representation on graphs of RTCGD. A CIS is represented as a network of nodes that symbolize a single integration event. An edge between two nodes indicates that the two
corresponding IS are within a range of 50 Kbp. B) Comparison between three high order CIS in graph representation and original RTCGD.
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average the CIS order and dimensionwere 11 and 99.5 Kbp respectively
in the heterogeneous set and 9 and 58 Kbp in homogeneous CIS.
2.5. Literature Analysis

Adetailed literature exploration of the list of genes returned in the ho-
mogeneous set was performed in order to detect potential candidates to
further experimental tasks. The probability that a homogeneous CIS ap-
pears by chance was assessed on a multinomial model. The complete
list of homogeneous CIS is given in Table 2.We divided the genes present
in this list in 3 collections concordantly with the CIS homogeneity: 1) in
the “mammary” group those found in “mammary tumor”, 2) in the
Table 1
RTCGD CIS order and dimension comparison.
Only the 10biggest CIS are considered. In parenthesis the order or the dimension of theCIS
that complete the corresponding CIS found applying the dual method.

Graph CIS RTCGD

CIS name Order Dimension Order Dimension

Gif1 81 122,521 82 197,286
Myc 78 234,094 78 234,094
Sox4 65 (10) 51,755 (130,119) 75 235,775
Ahi 61 297,769 61 297,769
Pim1 35 (9) 12,131 (81,543) 43 144,748
Meis1 26 (13) 9,894 (46,027) 38 154,229
Lvis1 42 118,556 38 89,966
Fgf3 53 143,856 38 (33) 95,144 (182,060)
Rasgrp1 36 86,755 36 86,755
Notch1 36 92,014 34 (2) 90,385 (1,629)
“sarcoma” group those found in “sarcoma” and 3) combining in the “Leu-
kemia” collection those found in “B cell”, “T cell” or “myeloid”. The analy-
sis was performed using ProteinQuest, a literature mining tool [33,34].

All the genes found specifically for mammary tumor were already
well known as contributing to mammary neoplasia. In the sarcoma
group genes, tmem74 and rabgap1l, only rabgap1lwas previously linked
with tumors [35], but not with sarcomas, while in the leukemic group
usp49, smsg6 and zpf423were not linked with blood diseases.

2.6. Complex Annotation

The previous investigation is directly based on the gene annotation
provided by RTCGD, annotation found using the Next Gene Approach
(NGA). This approach just annotates an IS with the name of the proximal
genetic element, that habitually is a protein coding genes. This procedure
implicitly force a many-to-one relation between IS and a gene element.
We think that this is a true analysis limitation because it is not possible
to assign multiple genes to the same IS. Moreover, due to the variety of
the gene types (i.e. protein coding, miRNA or lincRNA), to the complexity
of genetic loci (i.e. introns can contain non coding genes) or simply to the
high density of gene elements in few kilo bases, the NGA should be limit-
ed only to a raw estimation of the genes involved in the viral integration.
In our network model we decided to introduce a new category of nodes
that represent gene elements. These auxiliary nodes added to the net-
work symbolize genes foundwithin a certain distance (50Kbpbydefault)
to any IS.With this simple addition to the network structurewe naturally
introduced amany-to-many relation between integration sites and geno-
mic elements (referred as Transcriptional Elements (TE) in the model).
The group of the genes found in one CIS network is defined as the gene

Image of Fig. 2


Fig. 3. The network representation of the biggest CIS (0.69 Mbases) in ISHIV (chromosome 16: 89,730,888; ~35,000 IS). The structure contains some regions with many (a, b, c and d) and
few (e) integration sites. Labels in the nodes correspond to genes in the original IS annotation.
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atmosphere (GA) of the CIS. Applying this new network layer, we were
able to notice many other gene elements that did not emerge in the pre-
vious literature analysis.

In the following analysis we focus only on genes found in GA (see
Appendix A Table 2 in [41]) that are not present in the original RTCGD
annotation.

2.6.1. Sarcomas
No gene elements were found in sarcoma CIS Fig. 5. AI and AII

using 50 Kbp threshold. For this reason we increased the threshold to
Fig. 4. 5 independent CIS of order 25–68 are detected in a IS dense region of 1.2 Mbases (chromo
sub regions. Labels in the nodes correspond to genes in the original IS annotation.
200 Kbp. Two coding genes, tmem74 and trhr, constitute the GA of
this CIS. The first was reported in RTCGD and used to annotate the
CIS. The other one not reported in the original list, the thyrotropin-
releasing hormone receptor gene (trhr), was associated with differenti-
ated thyroid cancer risk [36]. In CIS AII the composition of the GA
contains two coding genes (rabgap1l, cacybp), 1 miRNA (mir1927) and
1 snoRNA (GM23528). The calcyclin-binding protein (cacybp) was
ubiquitously detected in all kinds of tumor tissues and was highly
expressed in nasopharyngeal carcinoma, osteogenic sarcoma, and pan-
creatic cancer [37].
some 3:49,000,000–50,000,000). Three of them (I, II and IV) are composed by at least two

Image of Fig. 4
Image of Fig. 3


Fig. 5.Gene atmosphere of the homogeneous CIS associated onlywith A) Sarcomas or B) Leukemia but not linkedwith the same disease in the literature analysis. Purple nodes: genes, light
blue: insertion sites.

Table 2
Genes found in homogeneous CIS (normalized entropy, NE b 0.1515).

Chr Position Dimension Order Tumor type Gene Entropy p-Value

15 98795118 65490 29 Mammary_tumor Wnt1 0.055 b0.001
3 97979620 120117 20 Bcell Notch2 0.146 b0.001
11 103817471 61740 12 Mammary_tumor Wnt3 0.000 b0.001
14 115040166 9438 12 Tcell Mirn17 0.106 b0.001
11 59292730 16451 10 Mammary_tumor Wnt3a 0.000 b0.001
1 160495222 156990 9 Sarcoma Rabgap1l 0.129 b0.001
4 3916043 43556 9 Myeloid Plag1 0.129 b0.001
7 25114306 15181 9 Bcell Pou2f2 0.000 b0.001
4 154549687 57802 8 Bcell Prdm16 0.139 0.002
11 74982305 88850 8 Bcell Smg6 0.000 b0.001
13 37813516 74223 7 Bcell Rreb1 0.139 0.002
15 43989356 57412 8 Sarcoma Tmem74 0.000 b0.001
12 86876152 126384 7 Bcell 6430527G18Rik 0.151 0.004
20 12087680 59992 7 Bcell Bcor 0.151 0.004
16 30038826 74290 6 Bcell Hes1 0.000 0.001
17 45556480 2280 6 Bcell Nfkbie 0.000 0.001
2 31079892 40607 5 Bcell Fnbp1 0.000 0.003
6 125321059 37420 5 Bcell Ltbr 0.000 0.003
8 87959778 25262 5 Bcell Zfp423 0.000 0.003
15 80537828 36086 5 Tcell Grap2 0.000 b0.001
16 24166711 82290 5 Bcell Bcl6 0.000 0.003
16 39882896 180 5 Mammary_tumor ENSMUSG00000068293 0.000 b0.001
17 47754686 85300 5 Bcell Usp49 0.000 0.003
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2.6.2. Leukemia
As displayed in Fig. 5.BI two CIS fall in the same locus. The two twin

CIS are falsely connected for the reason that IS belonging to distinct CIS
are coupled over two common genes (med20 and usp49). The GA of BI
contains 6 coding genes fsr3, pgc, prickle4, tomm6, tfeb, usp49. Interest-
ingly this block of mouse genes was found and described in a human
large linkage disequilibrium block, which contains CCND3, BYSL, TRFP,
USP49, C6ofr49, FRS3, and PGC [38]. This block contains somatic alter-
ations that correlate with breast cancer prognosis and survival in
humans. In CIS BII the GA contains smg6 and srr. We didn't find any ver-
ified involvement of srr in tumor development. In CIS BIII we found
complete concordance between our graph model complex annotation
and RTCGD because only zfp423 compose the GA.

Therefore, implementing an annotation strategy based on a single
simple network construction rule, we were able to explore several
potential tumor related genes both coding and not coding that are not
described in the original dataset.

We would like to briefly illustrate a pathway analysis that we
performed on 1421 unique genes found in the GA (see Appendix A
Table 2 in [41]). Processes associated with the chromatin rearrange-
ment and the ribosome structure emerge clearly from the data. Because
all the IS in RTCGD are strongly correlated with the appearance of
tumors in mice, the likelihood that genes in the neighborhood of an IS
are in a significant pathway is in fact high. Consequently, we do not dis-
cuss further this result.

In conclusion in this workwas our interest to show that the network
representation of integration sites hotspots is a convincing framework
since it links topological structures of the graphswith biological features
of the CIS. To demonstrate that the complex interactions between viral
and cellular components during the viral integration originates the IS
accumulation, we showed that the graphs representing putative hot-
spots are represented as scale-free networks.Wepropose that the visual
modeling introduces a better data understanding and that the incorpo-
ration of themodel in frameworks that manage graph representation of
biological data, like Cytoscape, makes easier to explore data and test al-
ternative functional hypothesis.

3. Experimental Procedures

3.1. Integration Sites Datasets

Six datasets, LV, HIV, GV1, GV2, AAV and RTCGDwere obtained from
the authors of the studies [1,2,12,16,29,30] whereas two random
datasets were created as described below.

3.2. Liftover of RTCGD from mm9 to mm10

RTCGD dataset (http://variation.osu.edu/rtcgd/) is actually based on
mm9 genome assembly. The dataset was updated to mm10 assembly
via liftover procedure [39]. A conservative minimum ratio of bases
remapping was chosen (0.95) along with unique output regions in
order to guarantee the quality of the mapping. From 8807 IS only two
were not mapped on the new genome assembly.

The gene annotation table based on Ensembl GRCm38.p2 was used
for complex annotation

3.3. Network Construction

A graph is constructed following these steps:

CIS Layer:

1. Order the Insertion Site Dataset D by Insertion Posi-

tion (location)

2. For each IS i in the ordered Insertion Site Dataset D do
2.1. Add a node vi, annotating the location of the IS i to
the graph GD

2.2. For each node vj in the graph GD do

2.2.1. If the location of vi is at a distance smaller

than the threshold TH from the node vj,with i ≠ j

a) Connect the vi and vj with the edge eij and weight

wij, add eij to graph GD

b) Otherwise continue from 2.2 (next j)
2.3. Continue from 2 (next i)

GA Layer:
1. Order the Transcriptional Element Dataset DTE by Tran-

scription Start Site (location)

2. For each TE iin the ordered Transcriptional Element

Dataset DTE do

2.1. Add a nodevi, annotating the location of the TEi
to the graphGD(previously created and ordered by

location)

2.2. For each nodevj in the graph GD do

2.2.1. If the location of vi is at a distance smaller

than the thresholdTH from the node vj, with i ≠ j

a) Connect the vi and vj with the edge eij and

weightwij, add eijto graph GD

b) Otherwise continue from 2.2 (next j)
2.3. Continue from 2 (next i)
Scale free structure of graphs is tested using NetworkAnalyzer
plugin [40] directly in Cytoscape.

3.4. Random Datasets and Random CIS Statistics

In order to detect integration patterns that deviate from a random
even distribution we generated a set of m = 100 datasets composed
of l = 500, 2000, 5000, 10, 000 random IS. Two factors were taken
into account in order to avoid some biases in the random model:
1) only regions reported as mappable by 100 bp reads (http://moma.
ki.au.dk/cgi-bin/hgTables) are chosen as potential IS areas and 2) the
fraction of IS per chromosomes is shaped on the frequency detected in
the LV1 studio. From the created random datasets we extracted (con-
nection threshold 50 Kbp) and grouped the CIS by the order i =
2,.., 10. In the random dataset we never detected CIS with order larger
than 9. On these groups we computed 1) the CIS rarity distributions
(see Paragraph 3.6), and 2) the maximal number of random CIS of
order i found in any of them the datasets of numerosity l. Except for ran-
dom CIS of order i=2,where Rl2 uniformly distributed over the thresh-
old distance, the distribution of R used to compute the p-value and log-
likelihood was approximated by a continuous normal distributions of
mean µθrnd (26,000 bases) and standard deviation σθrnd (12,000
bases). These values were chosen from the smallest mean and biggest
variance found within all the Rli. Also for the experimental CIS we ap-
proximated the rarity distribution using mean and variance found in
LV1 samples.

3.5. Synthetic Transfection Experiment

An in silico chromosome that contains a fixed number of randomly
placed hotspotswas created. In brief, 159 hot-spotswith various dimen-
sions (from few hundred bp to 5 Mbp) where randomly marked on a
linear chromosome composed by 100 Mbp. A set of 100, 500 and 1000
insertion sites were simulated on this chromosome. A random process
then assigns a fraction of IS randomly in the hotspots (His) and a fraction
on the complete chromosome (Hrnd). We decided to use a ratio His:

http://variation.osu.edu/rtcgd/
http://moma.ki.au.dk/cgiin/hgTables
http://moma.ki.au.dk/cgiin/hgTables
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Hrnd = 1:3 between random IS and hotspot IS in order to simulate an
experiment with a low signal to noise ratio.

3.6. Statistical Model, p-Value and Log-Likelihood Ratio Test

For each CIS a p-value and a log likelihood ratio for a 2-class problem,
with full specified null (θrnd) and alternative (θex) hypotheses, are
returned.

Two classes of CIS are extracted from the data: CISRAND, the CIS found
in the simulation experimentwithout hot-spots (ISRAND) and CISEXP, the
experimental CIS found in one clinical study [1]. The simulation experi-
mentwas repeated 100 times (connection threshold 50Kbp) in order to
obtain a measurement of the CIS frequency.

The rarity R measures the IS compactness in a CIS and the rarity
distributions were computed for both CIS classes. The rarity for dataset

l and order i Rli is expressed as dimension of the CIS indatatset l
i−1 . Except in ran-

dom CIS of order 2, where R uniformly distributed over the threshold
distance, the rarity was approximated by two continuous normal distri-
butions of mean (µθrnd, μθex) and variance (σθrnd

2 , σθex
2 ).

Two prior probabilities for the hypothesis, p(θex) and p(θrnd), were
calculated from the number of experimental (Nex) and expected (Nrnd)
CIS. The expected number of random CIS, grouped by order, was equat-
ed to the maximal CIS frequency found in the random experiments for
CIS of same order. Then the priori for the experimental class is
p(θex) = Nex/(Nex + Nrnd) and p(θrnd) = 1 − p(θex).

The probability of an error, interpreting a CIS as not random (rejec-
tion of θrnd) given the CIS rarity x, is

p θrndjxð Þ ¼ p xjθrndð Þp θrndð Þ

¼ p θrndð Þ 2πσ2
θrnd

� �−1
2
Zx
−∞

exp −0:5
x−μθrnd
σθrnd

� �2
 !

dx:

We returned also the log-likelihood ratio Λ(x) in order to indicate
the CIS class more probably given the rarity x.

For a 2-class problem the class θex is chosenwhen p(θex|x) N p(θrnd|x).
By the Bayes theorem it is equivalent to write p(x|θex)p(θex) N

p(x|θrnd)p(θrnd). Rearranging this relation we can write

Λ xð Þ ¼ log2
p xjθexð Þp θexð Þ
p xjθrndð Þp θrndð Þ

obtaining the decision rule that if Λ(x) N 0 the hypothesis θrnd is
rejected. The higher is Λ(x), the better the is hypothesis θex.

This probability p(θrnd|x) and the log-likelihood Λ(x) score are asso-
ciated to any CIS and returned to the user.

3.7. Integration Sites Analysis Software and Availability of Supporting Data

Cytoscape 2.8 was used as prototyping environment to perform all
the network examination. Supporting material as the prototype plugin
for Cytoscape 2.8 and tutorials are available on request.
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