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With the fast bloom of flexible electronics and green vehicles, it is vitally important to rationally design and facilely construct
customized functional materials with excellent mechanical properties as well as high electrochemical performance. Herein, by
utilizing two modern industrial techniques, digital light processing (DLP) and chemical vapor deposition (CVD), a unique 3D
hollow graphite foam (HGF) is demonstrated, which shows a periodic porous structure and robust mechanical properties. Finite
element analysis (FEA) results confirm that the properly designed gyroidal porous structure provides a uniform stress area and
mitigates potential structural failure caused by stress concentrations. A typical HGF can show a high Young’s modulus of
3.18 MPa at a low density of 48.2mgcm™. The porous HGF is further covered by active MnO, material with a high mass
loading of 28.2 mgcm™ (141 mgcm™), and the MnO,/HGF electrode still achieves a satisfactory specific capacitance of 260F g,
corresponding to a high areal capacitance of 7.35Fcm™ and a high volumetric capacitance of 36.75 F cm™. Furthermore, the
assembled quasi-solid-state asymmetric supercapacitor also shows remarkable mechanical properties as well as electrochemical

performance.

1. Introduction

The growing requirement for energy in electronics as well as
vehicles has prompted extensive researches on the develop-
ment of high-performance energy storage devices with
higher energy densities and power densities [1-4]. Increasing
the mass loading (larger than 10 mgcm ™) for commercially
available electrodes often leads to the decline of utilization
efficiency of the active materials due to sluggish ion/electron
transport in bulk reactions [5-11]. Design of a 3D structured
electrode containing interconnected porous network can
ensure efficient charge transport throughout the entire elec-
trode, which is necessary for the utilization of all active mate-
rials and the realization of high rate capability with high
capacity/capacitance. With the fast development of 3D print-

ing technology, it has been widely utilized for the construc-
tion of functional materials with unique predesigned
structures for efficient energy storage devices [12-19]. For
example, 3D graphene/graphite-based materials have been
widely studied for high-performance energy storage devices
due to their low density, high conductivity, and excellent
electrochemical stability [20-24]. However, most of the pre-
vious studies on 3D printed electrode materials were focused
on extrusion-based techniques, where the resolution is low
(usually larger than 200 ym) and only certain simple 3D
structures (like lattices and interdigitated structure) can be
achieved. In addition, the mechanical properties of such 3D
carbon materials, which are essential for packaging, trans-
portation, and utilization, are also important for the realiza-
tion of high-performance energy storage devices, but they
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FIGURE 1: Schematic illustration of the fabrication process of the MnO,/HGF electrode.

were merely discussed in previous reports [11, 15, 18, 24-27].
With the above concern, it will be very promising to develop
novel 3D printed electrodes with higher resolution and
unique structure design, which will bring about promising
mechanical properties and electrochemical performance.

In this work, an ultralight and ultrastiff HGF with a
gyroid structure is prepared though integrating DLP technol-
ogy with the CVD method. Different from extrusion-based
3D printing, DLP technology is based on a fast photopoly-
merization process where few structural supports are
required; thus, various complex 3D architectures with high
resolution can be achieved [28-31]. The selected gyroid
structure has been reported with high stiffness at low density,
but it is hard to construct it with extrusion-based methods
[24, 26]. FEA results confirm that the gyroid HGF can pro-
vide a uniform stress distribution, thereby mitigating early
structural failure caused by stress concentrations. The final
HGF can show a high Young’s modulus of 3.18 MPa at the
low density of 48.2mgcm™ in compressive performance
tests. In addition to the mechanical robustness, the HGF elec-
trode with well-designed hierarchical porosity also can
deliver a high mass loading of MnO, with superior electro-
chemical performance. MnO,/HGF with a high mass loading
of 28.2mgcm™ (141 mgcem™) achieves a high areal capaci-
tance of 7.35Fcm™ and a high volumetric capacitance of
36.75F cm™ with a specific capacitance of 260 Fg™'. Further
assembled HFG-based quasi-solid-state asymmetric superca-
pacitor also exhibits a remarkable energy density of
0.96 mWh cm™ under a power density of 50 mW cm ™ as well
as excellent mechanical stability. The 3D HGF with hierar-
chical porous structure and robust mechanical properties,
the customizable facile fabrication process using 3D printing
and CVD, together with the promising mechanical and elec-
trochemical properties would pave a good way for the devel-
opment of high-performance energy storage devices.

2. Results

2.1. Fabrication of MnO,/HGF Electrode. The schematic fab-
rication process of the MnO,/HGF electrode with the photo-
graphs of the samples at each step is shown in Figure 1 (more

details are in the Supplementary Materials (available here)).
A gyroid SiO, template was firstly designed by computer
software and prepared by the high-resolution DLP technol-
ogy with photopolymerization of UV-curable resin mixed
with SiO, microspheres. After 3D printing, a debinding and
sintering process was further conducted, in which the photo-
polymer was completely removed and SiO, was molded.
Then, a graphite layer was deposited on the surface of the
SiO, template by the CVD method (the experimental setup
and reaction route diagram are shown in Figure S1), where
the densities and mechanical properties of the graphite can
be simply controlled by the deposition time. After etching
away the SiO, by aqueous HF solution, MnO, nanosheet
arrays were further grown on the surface of HGF, resulting
in a hybrid electrode of MnO,/HGF.

2.2. The Mechanical Properties of HGF. FEA is performed to
evaluate the influences of the structure for HGF on their
mechanical properties (Figure 2(a)). For comparison, three
shell structures including lattice, primitive, and gyroid were
modeled and analyzed, and their volume (2 x2x 1 mm?)
and thickness (0.1 mm) are fixed consistently. (Red color
highlights the stress concentration area. According to the
barrel principle, the fracture of these stress concentration
points will lead to the destruction of the overall structure.)
As indicated from the color distribution, the gyroid structure
can provide a uniform stress area with no significant red part.
This can be attributed to the continuous periodic structure
that can relive stress well, thus effectively avoiding the possi-
ble collapse caused by the localized stress concentration. As a
comparison, multiple stress concentration points appeared at
the connection parts for lattice structure and the neck regions
for primitive structure, indicating poor mechanical stability.

In order to further explore the mechanical properties, a
gyroidal HGF with an ultralow density of 48.2 mgcm ™ was
prepared. As demonstrated in Figure 2(b), the HGF with a
volume of 2.7 # 1 % 0.2 cm? can steadily stand on a dandelion
flower without causing any deformation. More important,
the ultralight HGF can withstand 15000 times its own weight
without obvious degradation (Figure 2(c)). To further con-
firm, a compressive test is carried out and the stress-strain
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FIGURE 2: Mechanical properties of HGF. (a) FEA models of lattice, primitive, and gyroid structures and their stress distributions under the
same compressive strain along the z-direction (the values of oy, for lattice, primitive, and gyroid structure are 600 MPa, 770 MPa and
600 MPa, respectively). (b) Ultralight and (c) Ultrastiff properties illustrated by the gyroidal HGF. (d) Compressive stress-strain curves of
HGF with different densities. (e) Compressive strength and Young’s modulus of HGF with different densities.

responses with different densities under compressive load are
recorded in Figure 2(d). A high compressive pressure of
0.35MPa can be achieved for HGF at a low density of
482mgcm™>, and the value increased to 0.9 MPa with a
higher density of 95.6mgcm™. Young’s modulus, which
can reveal the ability of resisting deformation, is calculated
and shown in Figure 2(e). The high values of 3.18 MPa
at p=482mgcm™ and 6.98MPa at p=95.6mgcm™
confirm the high stiffness of HGF, which also stands out
from many other carbon-based porous materials, such as
graphene-carbon aerogels [32], BC-LRF carbon aerogels
[33], graphene crosslinked carbon nanotube sponge/polyi-
mide (Gw-CNT/PI) [34], and carbonaceous aerogels [35].
The FEA and compressive results indicate that the gyroi-
dal HGF can well integrate porous, lightweight properties
with promising mechanical stiffness.

2.3. Characterization of HGF and MnO,/HGF. From the
scanning electron microscopy (SEM) image in Figure 3(a),

the HGF can well retain the gyroid structure of the SiO, tem-
plate without any collapse after acid etching, indicating good
chemical and structural stability. From enlarged SEM images
(Figure S2a and S2b), it can be seen that the HGF has
spherical shapes on the surface, which is in accordance with
the grain morphology of SiO, before carbon deposition.
Transmission electron microscopy (TEM) images in
Figures 3(b) and 3(c) illustrate the hollow feature of the
HGF after removal of the SiO, template. Similar results can
be obtained by energy-dispersive X-ray spectroscopy (EDX)
mapping results (Figure 3(d) and Figure S3a). The high-
resolution TEM (HRTEM) in Figure 3(e) clearly exhibits
regular graphitic lattice fringes, indicating the good
crystallinity of HGF. From the Raman spectra in Figure S4,
an additional characteristic 2D band peak is detected from
HGF (compared to the controlled samples of GO and
RGO), revealing the existence of the graphene structure.
The X-ray diffraction (XRD) pattern in Figure S5 shows
that after acid etching, the diffraction peaks of SiO,
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F1GURE 3: Morphology and structure of the HGF and MnO,/HGEF: (a) SEM, (b, ¢) TEM, (d) EDX mapping, and (e) HRTEM images of
HGF; (f) SEM, (g) TEM, (h) HRTEM, and (i) EDX mapping images of MnO,/HGF.

completely disappeared and the peaks that appeared at 26.2°
and 44.3° belong to the (002) and (101) planes of graphite,
respectively.

After a simple hydrothermal reaction, MnO, nanosheets
(about 150nm) are fully covered on the HGF surface
(Figure 3(f) and Figure S2c-d). The nanosheets are
interconnected to each other to form a network and
generate a large number of micropores. Considering the
continuous macropores derived by the gyroid structure and
the mesopores from graphite microspheres, the MnO,/HGF
indeed displays hierarchical porosity. Such a hierarchical
porous structure provides more accessible surfaces for the
electrode-electrolyte contact and reduces the resistance for
ion/electron transport. TEM images of MnO,/HGF in
Figure 3(g) further prove that MnO, nanosheets are
uniformly distributed on the HGF surface. From the
HRTEM (Figure 3(h)), it can be seen that a typical MnO,
nanosheet presents a small sheet thickness of ~4.96 nm,
which would fully expose the surface for electrochemical
reaction and greatly promote the fast charge transfer within
the electrode. The EDX spectrum (Figure S3b) and
mapping images (Figure 3(i)) further show the
homogeneous element distribution of Mn, O, and C. From
the XRD spectrum in Figure S5, the additional two
diffraction peaks at 37.1° and 66.7° match well with the
(100) and (110) planes of &-MnO, (PDF#30-0802),
respectively.

2.4. Electrochemical Properties of MnO,/HGF. The electro-
chemical performance of HGF and MnO,/HGF electrodes
was first studied. As shown in Figure 4(a), after the loading
of MnO, nanosheet arrays, the capacitance of HGF is signif-
icantly increased with a much larger enclosed area in the
cyclic voltammogram (CV) curves. From Figure 4(b) and
Figure S6, the bare HGF electrode shows a small
capacitance (0.5Fcm™), while the MnO,/HGF electrode
(with 28.2mgcm™ of MnO,) achieves a high areal
capacitance of 7.35 Fcm™ at a current density of 1 mA cm™.
In addition, the MnO,/HGF also demonstrated an excellent
high rate capability that was 77.8% of the capacitance that
can be maintained when the current density increased from
1 to 20mA cm>, suggesting highly efficient charge transfer
and jon diffusion. To highlight, the MnO,/HGF shows
promising high mass loading with high areal capacitance, as
compared with other MnO,-based electrodes [36-44]
(Figure 4(c)), showing its great potential for practical usage.

For further optimization, three MnO,/HGF electrodes
with gradient mass loadings by tuning the hydrothermal
reaction time were prepared. As shown in Figure 4(d) and
Figure S7, all the three samples show near-rectangular CV
behaviors, indicating good reaction kinetics, and the sample
with a higher MnO, loading results in a larger enclosed
area. Figure 4(e) further compares the areal, volumetric,
and specific capacitances of the three electrodes. The
MnO,/HGF electrode with 16 mgecm™ of MnO, achieves
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FIGURE 4: Electrochemical characterizations of MnO,/HGF. (a) CV curves and (b) areal capacitances of HGF and MnO,/HGF.
(c) Comparison of areal capacitance and loading mass of MnO,/HGF with those of previously reported MnO,-based electrodes. (d) CV
curves of MnO,/HGF with different mass loadings of MnO,. (e) Areal capacitances and volumetric capacitances and (f) specific
capacitances obtained from MnO,/HGF with different mass loadings of MnO, at different current densities. (g) Cycling performance of

MnO,/HGF at a current density of 50 mA cm™.

areal and volumetric capacitances of 43Fcm™ and
21.5Fcm™, and the values increase almost linearly to
11.6Fcm™ and 58.2Fcm™, respectively, when the MnO,
loading is 53.1 mgcm™. The MnO,/HGF electrode with a
high MnO, mass loading of 53.1 mgcm™ still maintains
68.2% of the initial capacitance when the current density
increased from 1 to 20mA cm%, demonstrating a superior
rate capability. Such observation further proves that the
predesigned hierarchical porous carbon structure possesses
a large ion/electron accessible area and is beneficial to the
rapid charge transfer. In Figure 4(f), it can be seen that the
MnO,/HGF electrode with 16 mgcm™ of MnO, exhibits a
specific capacitance of 269Fg ™", and the value decreases
slightly to 260Fg"' when the loading mass of MnO,
increases to 28.2mgcm”. Even when MnO, reaches
53.1mgcm’”, the MnO,/HGF electrode still achieves a
satisfactory specific capacitance of 219.3Fg™. To highlight,
the high mass loadings together with the high areal/specific
capacitances illustrated by the MnO,/HGF compare
favorably with the values reported from many other MnO,-
based electrodes (Table S1) [41, 44, 45]. The obtained
electrochemical performance of MnO,/HGF can be the
result from the gyroid hierarchical porous structure that is
beneficial to the transfer of ions/electrons between the
electrode and the electrolyte and the well-conducting
graphitic carbon with thin-layered MnO, that effectively
enhances the reaction kinetics.

The structural merits of HGF are further studied by com-
paring it with a commonly used carbon cloth (CC) substrate
which is highly conductive but has limited porosity
(Figure S8). The MnO,/CC electrode was prepared using
the CC substrate with the same hydrothermal method as
MnO,/HGF. The mass loading of MnO, can only reach
1.8mg in MnO,/CC, which is only 1/16 of that for
MnO,/HGF (the thickness of CC is 1/3 of HGF). In
addition, the specific capacitance and rate capability of
MnO,/CC are both poorer than those of MnO,/HGEF,
showing the potential usage of HGF for energy storage
devices.

The MnO,/HGF electrode with 28.2mgcm™ of MnO,
was further applied for the stability test. As shown in

Figure 4(g), at the fixed charge/discharge current density of
50 mA cm 2, the MnO,/HGF electrode can maintain 86.2%
of the initial capacitance after 10000 cycles, demonstrating
good cycle stability. SEM images after the cycling test
(Figure S9) display the well-maintained structure of
MnO,/HGF, further confirming the good cycling stability.

2.5. HGF-Based Asymmetric Supercapacitor. To prove the
practical applications of porous HGF, the negative electrode
of polypyrrole/N-doped carbon/HGF (noted as PPy-
NC/HGF) is further prepared by electrodepositing PPy on a
NC array-coated HGF (Figure S10-12) [46, 47], and an
asymmetric supercapacitor based on MnO,/HGF and PPy-
NC/HGF is assembled (noted as MnO,/HGF//PPy-NC/HGF).

The CV curves of the MnO,/HGF and PPy-NC/HGF,
with a respective potential window of 0 to 1V and -1 to
0V, are shown in Figure S13a. The two electrodes can be
well-matched with similar capacitance. The CV curves
(Figure S13b) of the assembled MnO,/HGF//PPy-NC/HGF
aqueous supercapacitor show an overall voltage of 0-2V
with good capacitive behavior. As shown in Figure S13c,
the GCD curves at various current densities were further
evaluated, and an impressive areal capacitance of 2.8 Fcm™
is achieved at a current density of 1mAcm > When the
current density increases to 20mA cm >, 75% of the value
(Fcm™) can remain unchanged, indicating the excellent
rate capability (Figure S13d). The EIS result (inset in
Figure S13d) shows that the aqueous asymmetric
supercapacitor possesses small charge transfer resistance
and ion diffusion resistance, revealing good electronic
conductivity. Two asymmetric supercapacitors connected in
series can power sixteen green LEDs and ten blue LEDs
(Figure S13e). The MnO,/HGF//PPy-NC/HGF also shows
good cycling stability (Figure S13e) that 77.7% of the initial
capacitance is maintained after 10000 cycles.

A quasi-solid-state asymmetric supercapacitor was also
assembled using MnO,/HGF and PPy-NC/HGF electrodes
with a gel electrolyte, as schematically presented in
Figure 5(a). The quasi-solid-state supercapacitor exhibits
near-rectangular CV curves with a voltage window of 2V
(Figure 5(b)). Based on the GCD curves (Figure S13f), the
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F1GURE 5: Electrochemical properties of the HFG-based quasi-solid-state supercapacitor. (a) Schematic structure, (b) CV curves, and (c) areal
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quasi-solid-state cell achieves an areal capacitance of
3165Fcm™ at a current density of 5mAcm™ and
maintains 1.9Fcm™ at a current density of 50 mA cm,
presenting a satisfactory rate capability (Figure 5(c)).
Besides, the EIS results (inset of Figure 5(c)) indicate that
the quasi-solid-state supercapacitor has small resistance for
ion transfer. The areal energy density and high power
density of the quasi-solid-state cell are exhibited in
Figure 5(d). The MnO,/HGF//PPy-NC/HGF cell achieves a
high areal energy density of 1.76mWhcem™ at a power
density of 5mW cm™, and maintains 0.96mWhcm™ at

50mW cm™?, which are much higher than the other
documented works on MnO,-based supercapacitors,
showing the great promise of the porous HGF (Table S2)
[11, 15, 18, 48-52]. The supercapacitor also exhibits a
volumetric energy density of 3.94mWhcm™ at a power
density of 25mWcem™ and retains 1.54mWhcm™ at a
high power density of 125mWcm™ (Figure 5(e)). In
addition, it can achieve a specific energy density of
31.9Whkg™" at a power density of 90.6 Wkg ' and reaches
a high power density of 905.8 W kg™ at an energy density of
17.4Whkg" (Figure 5(f)). These values are also better than




many previously reported supercapacitors, where the mass
loadings are much smaller [11, 19, 53-62].

To further reveal the mechanical robustness of the
HGF-based device for practical usage, the GCD curves of
the cell in the initial state and under compression were
recorded. As shown in Figure 5(g), there is only a slight
shift in the GCD curves, indicating its excellent stability
under mechanical pressure. One step further, two quasi-
solid-state cells connected in series were used to light up
16 green LEDs (Figure 5(h) and Movie 1), and the bright-
ness of the LEDs remains unchanged after the cells are
pressed with a heavy counterweight. The quasi-solid-state
device also maintains 70.2% of the initial capacitance after
5000 cycles, showing good cycling stability (Figure 5(i)).

3. Conclusion

In conclusion, a porous and robust HGF with lightweight has
been rationally designed and facilely constructed with the
help of DLP and CVD. FEA calculation and compression
tests prove that the porous HGF with a gyroidal porous struc-
ture can effectively prevent structural failure from stress con-
centrations thus maintaining mechanical robustness. The
graphite foam was further coated with MnO, nanosheets,
which can be directly utilized as electrode materials for
supercapacitors, without using additional binders and
current collectors. Due to the unique hollow and porous
structure, not only a high mass loading of active materials
can be achieved, the electrode also demonstrated remarkably
high areal and volumetric capacitances. A quasi-solid-state
asymmetric supercapacitor is further assembled and shows
outstanding electrochemical properties as well as excellent
mechanical performance. Such a strategy for 3D porous
and robust materials with promising mechanical and electro-
chemical properties would pave a good way for the practical
applications of advanced energy storage devices.

4. Materials and Methods

The experimental procedure including the preparation of
HGEF, fabrication of MnO,/HGF and PPy-NC/HGF, FEA cal-
culation, characterizations, and electrochemical measure-
ment can be found in the Supplementary Materials.
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