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Abstract: Coarse-graining is a powerful tool for extending the reach of dynamic models of proteins
and other biological macromolecules. Topological coarse-graining, in which biomolecules or sets
thereof are represented via graph structures, is a particularly useful way of obtaining highly com-
pressed representations of molecular structures, and simulations operating via such representations
can achieve substantial computational savings. A drawback of coarse-graining, however, is the loss
of atomistic detail—an effect that is especially acute for topological representations such as protein
structure networks (PSNs). Here, we introduce an approach based on a combination of machine
learning and physically-guided refinement for inferring atomic coordinates from PSNs. This “neural
upscaling” procedure exploits the constraints implied by PSNs on possible configurations, as well
as differences in the likelihood of observing different configurations with the same PSN. Using a
1 µs atomistic molecular dynamics trajectory of Aβ1–40, we show that neural upscaling is able to
effectively recapitulate detailed structural information for intrinsically disordered proteins, being
particularly successful in recovering features such as transient secondary structure. These results
suggest that scalable network-based models for protein structure and dynamics may be used in
settings where atomistic detail is desired, with upscaling employed to impute atomic coordinates
from PSNs.

Keywords: coarse-grained models; molecular dynamics; protein structure networks; intrinsically
disordered proteins; machine learning

1. Background

Proteins and other biological macromolecules exhibit a wide variety of complex
dynamics and interactions at varying size and time scales. While atomistic molecular
dynamics (MD) models currently serve as the gold standard tools for simulating dynamics
at high resolution (with some inroads by quantum mechanical methods in small-scale or
specialized applications), the cost of large-scale MD simulations limits their use to relatively
small systems on time scales of microseconds or less. Coarse-grained (CG) models offer a
means of accessing larger system sizes and longer time scales, sacrificing atomistic detail in
exchange for reduced computational cost. Many “flavors” of coarse-grained simulation
exist, with the most common being aggregate particle models that represent collections of
atoms by single particles whose positions evolve under a suitably modified forcefield. The
highly successful MARTINI model [1], for instance, represents biomolecules by “beads”
corresponding roughly to one bead per four heavy atoms, with hydrogens left implicit;
MARTINI and other CG MD models have proven useful in studying the structure and
dynamics of large complexes, lipid phases, and other systems that are too large to be
treated with atomistic MD methods [2]. An even more radical approach to coarse-graining
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employs topological representations, representing molecules or molecular aggregates by
network structures that encode the interactions between atoms or groups thereof, but not
their positions in three-dimensional space [3,4]. Often employed for descriptive analysis of
trajectories produced by MD or other methods (see, e.g., [5–7]), network representations
have the advantage of retaining complex topological information involving protein struc-
ture while being highly compressive (greatly reducing the computational cost needed for,
e.g., comparative analysis of long trajectories), and facilitating application of a large body
of graph-theoretic measures for capturing structural properties ranging from cohesion and
constraint to differences in centrality and contact rates. Recent work has also considered the
generation of trajectories directly within the topological representation (“coordinate-free”
simulation), allowing considerable computational savings [8,9].

While many questions can be posed directly within a CG representation, an obvious
limitation of coarse-graining is that some observables of interest cannot be obtained with-
out an additional step of ”backmapping” or ”upscaling” the CG trajectory to atomistic
resolution. At first blush, this may seem impossible: by definition, a CG model does
not resolve individual atoms. In practice, however, CG structures are often sufficiently
constraining that a well-designed algorithm can infer atomic positions from them with
considerable accuracy [10]. For instance, a number of upscaling methods for particle-based
CG models work via a two-stage process in which initial guesses for atomic placement
are made based on, e.g., random positioning [11], fragment-based [12,13], or geometry-
based [14–17] initialization, followed by an energy minimization step to ensure physically
realistic coordinates. This is not unrelated to protein structure prediction methods like
those of [18,19], which begin with approximate structures based on local homology and
subsequently refine them via minimization in a simplified force field. Such techniques
have proven extremely successful in predicting the structure of globular proteins [20,21],
and are widely used in enzyme discovery and engineering applications [22,23].

In the context of topological coarse-graining, the historical focus has been on mapping
from atomistic to coarse-grained networks for purposes of analysis (e.g., [3,24–27]), with
correspondingly less emphasis on the upscaling problem. Recent work, however, has sug-
gested the potential of graph-theoretic models for molecular structure and dynamics. For
instance, Grazioli et al. [9], Yu et al. [28] use Hamiltonians defined on graphs representing
the structures of protein aggregates to model the equilibrium structures and kinetics of
amyloid fibrils and associated aggregation states (with vertices representing individual
proteins, and edges indicating bound interactions). On a smaller scale, Grazioli et al. [8]
used a closely related approach to model transient structure in intrinsically disordered
proteins (IDPs), using residue-level protein structure networks (PSNs) in which each vertex
represents a residue and edges represent inter-residue contacts. Although we are unaware
of any existing methods for upscaling such graph structures to atomic resolution, effec-
tive methods for this purpose would greatly extend the practical reach of network-based
simulation models.

Our focus in this paper is this last problem: the upscaling of topological representa-
tions of macromolecular structure (and by extension, dynamics) to atomic resolution. We
specifically consider the upscaling of residue-level PSNs, as this is a widely used level
of network coarse-graining for proteins and poses a non-trivial challenge for atomistic
refinement. To perform the mapping from network structure to atomistic structure, we
exploit advances in machine learning (ML) methods, predicting atomic coordinates from
topological inputs using deep neural networks. Machine learning strategies (particularly
including neural networks) have become widely used in CG modeling, with past efforts fo-
cused on ML-based methods for learning or refining CG forcefields (see e.g., [24,25,29–33]).
Here, we use multilayer perceptron-based (MLP) neural networks to learn pairwise in-
teratomic distances from residue-level PSNs, allowing us to recover atomistic detail from
input network structures.

In this work, we demonstrate the utility of MLP neural network models to translate
coarse-grained protein structure network representations to their more finely detailed 3D
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coordinate structures. We apply this to the case of IDPs, showing that the trained neural
network is able to reproduce equilibrium conformations of amyloid-β protein obtained
from MD simulations at atomic-level detail, also capturing its diverse transient secondary
structure behavior. We additionally consider the use of further refinements (such as chirality
corrections and energy minimization) to improve predictive performance. We show that
this scheme can obtain a high level of accuracy, with median RMSE for predicted versus true
3D structures of approximately 2.13 Å and a high degree of correspondence for relatively
folded regions of the protein. The resulting scheme provides a practical mechanism for
mapping PSNs produced by generative network models to predicted atomistic structures
(Figure 1), for using PSNs as an efficient tool for lossy compression of long trajectories, or
other applications in which it is useful to infer atomistic information from coarse-grained
topological representations.

1a

MD Simulation Imputed StructurePSN

Generative Model

2

1b
1a

2

1b

Coarsening

Draws from a generative model

Upscaling from PSN to 3D atomistic structure

Figure 1. The ability to impute atomistic structures from network representations enables both
compressive representation of structures from MD trajectories and the use of generative network
models to predict distributions of atomistic structures.

The remainder of the paper is organized as follows. We introduce our approach in
Section 2, including both our ML pipeline and subsequent refinement methods. Section 3
reports the results of our simulation study, Section 4 discusses further directions, and
Section 5 concludes the paper.

2. Methods

Data Generation Our data come from atomistic MD trajectories of Aβ1–40, a widely
studied IDP implicated in the etiology of Alzheimer’s disease; the atomistic trajectories
and associated PSN coarsenings, respectively, serve as ground truth and inputs for the
upscaling model (Figure 2). Beginning with the lowest energy monomer of the PDB
structure, 2LFM [34], one Aβ1–40 monomer was simulated in explicit solvent for 1 µs
using NAMD [35] via the following protocol: the initial monomer structure was solvated
in a cubic TIP3P [36] water box of minimum margin 25 Å, and neutralized with NaCl
counter-ions. This assembly was minimized for 10,000 iterations, followed by velocity
initialization and 250 simulation iterations before final adjustment of the water box. A
trajectory of approximately 1.1 µs was then simulated. Simulation was performed under
periodic boundary conditions in NAMD with the CHARMM36m forcefield [37], using
an NPT ensemble at 300K and 1 atm pressure. Temperature control was maintained by
Langevin dynamics with a period of 1/ps, with Nosé-Hoover Langevin piston pressure
control [38,39]. Creation of initial conditions and related data processing were performed
using VMD [40].

The simulation contains 11,926 total frames/conformations, of which 72% was al-
located for training, 20% for testing, and 8% for validation. When working with highly
flexible, nonparametric learning methods (including approaches such as the deep learning
techniques used here), it is common to employ multiple data splits for cross-validation
purposes. Here, the training data is used for parameter estimation, the validation group
is used for hyperparameter tuning and other optimizations to the training process, and
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the test data is used to provide a held-out evaluation of the final model. Five-fold cross
validation was also performed to ensure that bias was not introduced during the initial
train-test division. k-fold cross validation (a standard technique in which the data is split
at random into k segments, each of which is then used to produce one test-train split)
guards against the risk of obtaining anomalous performance estimates due to selection of
an unusual data division, and can provide additional insights into performance sensitivity
by comparing results across divisions of the data. For each frame in the Aβ1–40 simulation,
a protein structure network (PSN) was calculated using a combination of VMD [40] and
the statnet [41,42] and bio3d [43] libraries for R [44]).

MD Simulation

Contact 
adjacency 

matrix (flattened 
upper triangular)

Pairwise 
Interatomic 

Distances (non-
hydrogen)

Figure 2. Data generation of input (upper triangle of PSN adjacency matrices) and output (upper
triangular of PIDs) data.

Monomer states were sampled from the trajectory every 100 ps, from which residue-
level protein structure networks were constructed. Vertices correspond to individual
residues, with two vertices being considered adjacent if they contain respective atoms
whose distance is less than or equal to 1.1 times the sum of their van der Waals radii (based
on radius data from [45]). The input data used to train the neural network model consists
of the flattened upper triangular matrix data extracted from the residue-level contact
adjacency matrix for each conformation in the Aβ1–40 trajectory. A contact adjacency
matrix, x, is a binary square representation of the edges existing between two residues,
with xij = 0 where there is no edge between the vertices associated with respective residues
i and j, and xij = 1 where an edge is present. As contact is an undirected relation, x is
symmetric, and only one triangle of the matrix is required for learning. Here, the upper
triangle is flattened into a one-dimensional array for processing. The output data used
to train the model is the corresponding set of flattened upper triangles of the pairwise
interatomic distance matrices (PIDs) calculated on all non-hydrogen atoms (across all
frames in the MD simulation) (Figure 2). For purposes of evaluation (as discussed below)
it should be noted that when comparing predicted to observed PIDs, we define errors in
terms of the pairwise distances themselves, not, e.g., the distances between equivalent
atoms in the observed versus predicted structures post-alignment. For instance, let yij
be the observed PID for heavy atoms i and j (i, j ∈ 1, . . . , N), with predicted value ŷij.
Then, the squared error in PIDs is given by ∑N

i=1 ∑N
j=i+1(yij − ŷij)

2, with RMSDs and other
quantities defined accordingly.

Neural network architecture and hyperparameters After generation of input and
output data, a multi-layer perceptron (MLP) neural network was utilized for training as
indicated in the pipeline (Figure 3). This neural network contains four hidden layers (struc-
tured as follows), and was implemented using the machine-learning libraries Keras [46]
and tensorflow [47]. The first three hidden layers consist of 2000 neurons, the fourth
layer contains 8000 neurons, and the last output layer predicts the flattened upper triangle
of the pairwise interatomic distance matrix for a given frame from the MD simulation
(46,665 neurons) (Figure 6). Hyperparameters were optimized using the Talos Keras tuning
module [48]. A Nvidia P6000 Quadro GPU card was used to train the model with the fol-
lowing hyperparameters: nonlinearity = relu, dropout rate = 0.2, optimization = AMSGrad,
loss = mean squared error, batch size = 50, epochs = 100. Predicted output data were
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initially assessed using three metrics: root-mean squared deviation/error (RMSD/RMSE),
mean squared error (MSE), and mean absolute percentage error (MAPE).

Contact adjacency 
matrix (flattened 
upper triangular)

MLP Neural Network
Multidimensional 

Scaling to generate 
3D coordinates

Process 3D 
Structures (minimize 

75 CG steps, 
chirality) 

Pairwise Interatomic 
Distances (non-

hydrogen)

x3

Training Post-prediction processing

Figure 3. Pipeline of MLP neural network training and post-prediction processing.

Post-prediction processing The predicted output data (the flattened upper triangles of
the pairwise interatomic distance matrices) were first transformed into symmetric pairwise
interatomic distance matrices. These were then transformed into 3D coordinate data using
the multi-dimensional scaling (MDS) function from the scikit-learn python module and
MDtraj [49] to generate PDB structures (Figure 3). Chimera [50] was then used to add
hydrogens to predicted PDB structures, which were then further processed to remove
inaccurate chiral predictions. If more than half of Cα centers were inaccurately predicted
as R chiral centers (D-amino acids instead of L-amino acids), this indicated that the MDS
procedure (which is reflection-invariant) predicted a reflection of the true coordinates. This
was mitigated by reflecting all coordinates over the y-axis for predictions exhibiting an R

S
ratio greater than 1. If fewer than half of α-carbons exhibited R chiral centers, reflecting
coordinates was unnecessary. Instead, Chimera was used to switch side chain coordinates
and the α-hydrogen for all inaccurately predicted Cα chiral centers. After checking for
correct chirality for each residue, all conformations were further minimized for 75 conjugate
gradient steps.

The number of conjugate gradient steps was chosen by evaluating structures every
subsequent 20 conjugate gradient steps for a cumulative 520 steps total. The maximum
520 conjugate gradient steps was chosen based on qualitative determination of average
potential energy trends of all predicted conformations with increasing conjugate gradient
minimization (Figure 4). Three superposition-based metrics (RMSD, global distance test,
total score (GDT_TS), template modeling (TM) score) and one superposition-free metric
(local distance difference test (LDDT)) were used to analyze any potential improvements
in additional conjugate gradient steps between predicted 3D structure and the original,
MD-generated 3D conformation. The RMSD metric analyzes all heavy atoms, TM score
focuses primarily on Cα atoms, and GDT_TS also focuses primarily on backbone atoms.
The LDDT score calculates a comparison using all-atom pairwise interatomic distances.
Average values of 500 randomly chosen structures (RMSD, TM Scores, GDT_TS, and LDDT)
suggest a minimization range between 50–100 conjugate gradient steps. Thus, 75 steps was
chosen as the total number of conjugate gradient steps to minimize all 11,926 predicted
conformations. Overall, minimization yields little improvement relative to no minimization
with respect to most metrics; however, it is a necessary step to remove steric clashes and
slight stereochemical errors (Figure 3, last panel).
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Figure 4. Distribution of the optimal number of CG steps for structure refinement, by metric, with
green vertical lines representing means, and notches representing medians. Although exact optima
vary by structure and metric, 50–100 steps are sufficient to provide good performance on most
structures; extensive refinement beyond this point is rarely beneficial.

3. Results
3.1. Multilayer Perceptron (MLP) Neural Network Reconstructs Aβ Conformations with
Atomistic Detail

Pairwise interatomic distance (PID) predictions were made for all sets of data (train,
validation, test). Predictions were evaluated against the ground-truth PIDs from the MD
simulation using root-mean square error/deviation (RMSE/RMSD), mean absolute error
(MAE), mean absolute percentage error (MAPE). (As described above, we evaluate PID
error in terms of the pairwise distances themselves, and not, e.g., imputed coordinates.)
The average metrics for the test set exhibit a favorable RMSE (1.7 Å), MAE (1.17 Å), and
MAPE (7.35%) (Figures 5 and 6). Five-fold cross-validation suggests bias was not arbitrarily
introduced during the initial train-test split (Figure 7). Overall, average PID metrics for the
validation and test set suggest the neural network was able to devise quality predictions.

Figure 5. Boxplots of distributions for the following metrics (RMSE, MAE, MAPE) for the train,
validation, and test datasets: minimum, maximum, median, outliers (grey dots), average (yellow
diamond) ± standard error, lower and upper quartiles.
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Figure 6. A histogram of metrics for the combined validation and test set of the first cross validation
fold. Metrics include RMSD/RMSE in angstroms, LDDT, TM-Score, and GDT_TS. Excluding RMSD,
the other three metrics range from 0 (inaccurate) to 1 (accurate) prediction. Lower RMSD values
indicate more accurate predictions.
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Figure 7. Mean validation performance ± standard error on RMSE, MAE, and MAPE for each of five
cross-validation splits. Performance is robust to choice of fold.

To illustrate model performance, we show examples of both good and bad predic-
tions from the test set, beginning with the positive example of frame 1133. Original and
predicted pairwise interatomic distances for frame 1133 upon initial visualization, have
highly comparable values (Figure 8a,b). A grayscale depiction of absolute value differences
between original and predicted PIDs reveals white and light grey data points, denoting
mostly low values (Figure 8d). The distribution of these data shows that approximately
98% of difference values are less than 2 Å and 88% are less than 1 Å (Figure 8c). This result
from the test set highlights one of the most accurate predictions of atomistic structures
made by the neural network model.
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a b

c d

Figure 8. Comparison between original and predicted pairwise interatomic distances for frame 1133
(from the test set). (a) Actual distances are shown for all heavy atoms. (b) Heavy-atom predictions
of all pairwise interatomic distance. (c) Histogram of differences between original and predicted
Euclidean distances. (d) Binary plot displaying the absolute difference values between each actual
and predicted distance for frame 1133.

Using RMSEs of PIDs as a basis for selection, we show processed 3D predictions of
the lowest RMSE score representation (frame 1133, Figure 9a), the median representation
(frame 7431, Figure 9b), and the highest RMSE score structure (frame 7560, Figure 9b). The
prediction with the lowest RMSE (0.67 Å) exhibits more helical secondary structure com-
pared to the median and worst predictions, which exhibit more random coil-like dynamics.
RMSE of all heavy atoms for the median representation exhibits a fairly reasonable value
of 1.46 Å whereas the worst PID prediction has a RMSE of 10.4 Å. Notably, the prediction
for Figure 9c aligns reasonably well for the first 20 residues and the remaining residues are
more poorly predicted by the neural network model. Since folded regions are inherently
more data-rich for binary contact adjacency matrix representations (e.g., a 5 Å PID and
a 500 Å PID both produce the same zero matrix element), it is not surprising the neural
network model struggles to predict this specific overly extended conformation; however,
we note that the prediction still preserves the qualitative aspects of the extended structure,
and is quite accurate for the N-terminal region. The RMSEs according to 3D structure
alignment between original and processed 3D structure (and not on the basis of PIDs) also
show similar values: best (0.77 Å), median (2.13 Å), and worst (12.01 Å). These values are
slightly higher compared to PID-based RMSEs, most likely due to introduced 3D alignment,
whereas PIDs report RMSEs between all heavy atoms.
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a b

c

Prediction
Original

Figure 9. Alignment between original and predicted and processed 3D structures for (a) the best, (b)
median, and (c) worst predictions based on RMSE values of PIDs.

3.2. Generation of 3D Structures and Subsequent Minimization

When multidimensional scaling maps PIDs into 3D coordinates, it does so without
regard to chirality. There are thus instances in which entire conformations are D- instead of
L-amino acids, a correction that can be easily identified and fixed by reflecting coordinates
across the y-axis. We also corrected conformations that contained only a few instances
of D-amino acids, a result of the neural network predicting slightly incorrect side chain
PIDs. These chirality checks followed by minimization are necessary, computationally
inexpensive processing steps required to transform PIDs into sterically reasonable 3D
structures. Once corrections where fixed using Chimera, we then minimized all proteins
for 75 conjugate gradient steps (a determination detailed in Methods), with a few confor-
mations (23) requiring an additional 5 steps.

Figure 10 depicts a pre- and post-minimization of the best predicted conformation
(frame 1133) in the test set. Here, we focus particularly on residues histidine 13 (His13) and
phenylalanine 4 (Phe4). Both residues in the pre-minimized conformation are sterically
incorrect and misplaced, whereas in the post-minimized conformation, both residues
have expected canonical sterics, devoid of incorrectly positioned atoms. When these
optimization techniques (stereochemical corrections and minimization) are combined with
the predictive power of the MLP neural network, this method yields highly effective
predictive capabilities.

After minimization, it was also imperative to compare 3D minimized predictions to
their original MD simulation counterparts. Three superposition-based metrics (RMSD, TM
score, GDT_TS) and one superposition-free metric (local distance difference test (LDDT))
were utilized for this evaluation. The template modeling (TM) score measures the backbone
similarity between a reference protein and target protein with a range from 0 (dissimilar) to
1 (identical) [51]. RMSD is a canonical protein comparison metric, and here we parameter-
ize it to compare all heavy atoms between native and predicted structures. LDDT utilizes
pairwise interatomic distances in its methodology, focusing on local intramolecular interac-
tions and the degree (range 0–1) of their retention in the target conformation in comparison
to the native reference structure [52]. The global distance test, total score (GDT_TS) is an
improvement compared to RMSD designed to assess structures with the same sequence but
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different tertiary structure, with a higher score denoting better agreement (range 0–1) [53].
All four metrics are commonly used during the biennial Critical Assessment of Structure
Prediction (CASP) structure prediction and assessment competition [54], and here we use
these metrics to assess the predictive performance of the model.

Minimization
No minimization

Figure 10. Comparison of pre- and post-minimized structures of the best prediction in the test set,
frame 1133.

Figure 11 illustrates these metrics for the combined validation-test set. There exists a
positive correlation between LDDT vs. TM scores and GDT_TS (Figure 11a,b). Between
RMSDs vs. TM scores and GDT_TS, predictions exhibit a negative correlation (Figure 11c,d).
Included are also the aforementioned best (yellow diamond), median (purple diamond),
and worst (red diamond) PID predictions from Figure 9. Since their designation as best,
median and worst were on the basis of RMSEs of PIDs and not 3D structure, it is interesting
to observe the surprisingly high LDDT value of frame 7560 (the worst prediction). This
suggests the neural network was able to preserve more local residue interactions despite
struggling with larger more regional intramolecular interactions. TM scores exhibit values
in the lower range of <0.5, whereas most GDT_TS and LDDT values occupy a range >0.5,
suggesting TM scores may not be as reliable of an assessment metric for Aβ1−40. The
average and 95% confidence intervals suggest predicted 3D models are predicted rela-
tively well considering the high GDT_TS average and narrow 95% confidence interval
(Figure 12). The best and median test cases occupy expected 3D metrics (Figure 11). In
combination with PID metrics (Figure 5), the 3D metrics demonstrate the model’s ability to
reasonably reconstruct the complex protein conformation of Aβ1–40 from coarse contact
adjacency matrices.
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a b

c d

Figure 11. Juxtaposition of 3D structural metrics of the combined validation-test set: TM score, LDDT,
GDT_TS, and RMSD. In addition, best, median, and worst predictions are shown based on PIDs.
(a) LDDT vs. TM score metrics of the validation-test set. (b) LDDT vs. GDT_TS score metrics of the
validation-test set. (c) RMSD vs. TM score metrics of the validation-test set. (d) RMSD vs. GTD_TS
score metrics of the validation-test set.

Figure 12. Barplot of average 3D accuracy metrics and corresponding 95% confidence intervals per
score type.

4. Discussion

In this work, we have implemented a custom MLP neural network modeling approach
to reconstruct atom-level representations of Aβ1–40 from residue-level PSNs. Although
this particular neural upscaling model is specific to amyloid-β, the MLP neural network
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model can be retrained to other biomolecular systems using inputs derived from a variety
of different sources (e.g., MD simulations, NMR ensembles, etc.). Given training data in the
form of PIDs, the approach used here can be used to obtain comparable predictive models
for PSNs associated with any protein system (and, assuming appropriate modification of
the coarsening level, alternative PSN definitions such as that of [3]). Although further work
is needed to investigate the range of conditions under which these models will work well,
the success of the Aβ1–40 model (a relatively non-trivial case, due to the presence of highly
variable and often unfolded conformations) bodes well for performance in other systems.
More broadly, an obvious extension of this approach is the creation of more general models
for broader classes of protein systems, and for multiple levels of PSN coarse-graining. The
success of deep learning in producing predictors with good generalization performance
over large ranges of inputs (e.g., images with widely varying content) suggests that such
general-purpose PSN upscaling tools are an achievable goal.

Although previous reverse mapping methods (e.g., random placement, geometric-
based, etc.) are able to reconstruct atomistic models, they do so typically from coarse-
grained force field models based on particle representations (e.g., MARTINI [1]), or from
partially observed atomic coordinates (e.g., [55]). The advantage of a MLP neural network
is the ability to learn and fine-tune parameters specific to the system under investigation
from minimal information (here, PSN adjacency matrices) and without the requirement
that the available information be geometric in character. This opens the door to the use of
“coordinate-free”, network based simulation methods [9] to explore the behavior of complex
biomolecules while still retaining the ability to map results back to a conventional, spatial
representation. Such network simulations can be produced using a network Hamiltonian
based on connectivity patterns rather than atomistically detailed spatial interactions, allow-
ing the prediction and simulation of large ensembles and/or long timescale trajectories
that might otherwise be computationally expensive to model.

In the literature, another class of neural networks, specifically variational autoencoders
(VAE), has been used primarily on single small molecules and bulk-phase simulations as
test cases for reverse mapping [56]. This VAE methodology, although not tested on proteins,
could possibly be adapted for such systems; however, we are able to demonstrate successful
backmapping with a non-variational MLP neural network architecture, indicating that
variational structure is not essential. To better generalize our neural upscaling technique to
protein systems of different sizes, convolutional neural network architectures similar to
AlphaFold [57] could be also be incorporated and trained to predict regions (e.g., N × N
residue regions). With an ever-growing body of architectures whence to choose, there
would seem to be considerable room for experimentation with alternative approaches.

As noted at the outset, there is considerable work on the problem of imputing atomistic
structures from either coarse-grained or incomplete spatial information. Although our focus
here is on the extreme setting where such information is unavailable, further enhancements
may be possible in settings where both types of information can be employed. While
this is not possible for, e.g., predicted PSNs arising from network models, it may be of
use in cases where a combination of partial spatial information and incomplete contact
maps are available, as from, e.g., incomplete NMR data or crosslinking mass spectrometry
experiments. Models for such cases are an interesting direction for further work.

Finally, we note that non-neural network methods can also be applied to the upscaling
problem. In preliminary experiments (not shown), we found that a kernelized ordinary
least squares predictor [58] was able to obtain relatively good results (mean RMSD of
approximately 2.4 Å, mean median ARE approximately 8% on interatomic distances (PIDs)
under 10-fold cross-validation). Though the model was outperformed by the neural
network architecture described here, and we did not therefore pursue it further, there may
be situations in which non-neural network classes of predictors will prove useful. This
would also seem to be a promising area for further investigation.
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5. Conclusions

Direct predictions of PID metrics demonstrate the predictive capabilities of the MLP
neural network to reconstruct all-atom representations of proteins from binary contact
adjacency matrices. Example conformations of the best, median and worst PID-based
predictions in the test set illustrate the MLP performance. In the worst prediction (frame
7560), the RMSD between the N-terminal halves of the original vs. predicted is still quite
favorable (0.98 Å). Chirality corrections and conjugate gradient minimization were vital
post-prediction processing steps in generating stereochemically reasonable 3D structures.
Three-dimensional accuracy metrics, in particular GDT_TS—the main assessment metric
in the CASP competition—suggest the neural network performed well given the average
values and 95% confidence intervals. In totality, we are able to illustrate the viability
of the MLP neural network architecture in this transformation experiment. This work
exemplifies neural network-based techniques capable of extracting useful, meaningful data
from coarse-grained models.
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