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Spondyloarthritis (SpA) is a group that includes a wide spectrum of clinically similar

diseases manifested by oligoarticular arthritis and axial or peripheral ankylosis. Although

axial SpA is predominant in Caucasians and adult-onset patients, juvenile-onset and Latin

American patients are characterized by severe peripheral arthritis and particularly foot

involvement. The peripheral involvement of SpA can vary from tarsal arthritis to the most

severe form named ankylosing tarsitis (AT). Although the cause and etiopathogenesis

of axSpA are often studied, the specific characteristics of pSpA are unknown. Several

animal models of SpA develop initial tarsitis and foot ankylosis as the main signs,

emphasizing the role of foot inflammation in the overall SpA spectrum. In this review,

we attempt to highlight the clinical characteristics of foot involvement in SpA and update

the knowledge regarding its pathogenesis, focusing on animal models and the role of

mechanical forces in inflammation.
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INTRODUCTION

Spondyloarthritis (SpA) is a group of chronic inflammatory diseases of the entheses and the
synovial membrane of the joints, tendons, and bursae that affects the spine, the sacroiliac joint,
and peripheral sites (1, 2). Currently, SpA is known as axial SpA (axSpA) (3, 4) or peripheral
(pSpA) (5). Ankylosing spondylitis (AS) represents the most severe form of SpA in which episodes
of disease activity merge with chronic irreversible manifestations such as bone proliferation and
ankylosis. According to ASAS classification, the “SpA” name is kept, and ankylosing spondylitis
(AS) corresponds to radiographic axSpA (r-axSpA). While axSpA predominates at onset and
through disease’s course in European and European descendants (6), the combination of axSpA
with pSpA is the clinical pattern most frequently found in Latin America (7–16), India (17, 18), the
Middle East (19), and Asia (20).

In the past, studies on SpA referred to peripheral involvement in children, adolescents, and
young adults (21, 22). Usually, peripheral involvement was described as an asymmetrical affection
of the lower limbs. Regarding adult-onset disease, particularly AS, the peripheral disease became
recognized in the mid-1970s (23, 24) as part of AS and disorders such as reactive arthritis (ReA)
(formerly Reiter’s syndrome), psoriatic arthritis (PsA), Crohn’s disease, ulcerative colitis, and
undifferentiated SpA.
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Amor et al. (25) first included peripheral arthritis of the
lower limbs among the SpA criteria. Then, the European
Spondyloarthropathy Study Group (ESSG) proposed a
classification system with two entry arms axial and peripheral
(26). This idea gained recognition in the ASAS classification as
pSpA. In the meantime, mid-foot arthritis, enthesitis, or tarsitis
appeared as important manifestations in adolescents or young
adults with AS (27).

It was challenging to assess enthesopathy even though
the concept of “the entheseal organ” turned fundamental
in understanding the disease’s pathophysiology (28–30).
Synovitis and particularly enthesitis, have been the target
for studying cellular infiltrates, pro-inflammatory cytokines,
and bone proliferation. As discussed below, the mechanisms
leading to such phenomena include mechanic forces that
act upon mechano-receptors, HLA-B27, ERAP1, and IL-23.
The approach to studying the disease’s pathogenesis has been
driven from two paths: throughout animal models and human
surgical samples.

FOOT INVOLVEMENT AND TARSITIS

Mid-foot arthritis, also known as, tarsitis, is a prominent feature
in adolescents and young adult males with SpA (31, 32). Most
adolescents and young adults have recurrent lower-limb arthritis
and enthesitis combined with <20% axial symptoms. Five to
10 years later, 75% of such patients fulfill the AS criteria (33,
34). In contrast to juvenile-onset SpA (JoSpA), adults have
back pain and 5 to 10 years later inflammatory back pain
alongside sacroiliitis on magnetic resonance imaging (MRI) and
radiographic studies (5, 35–39). Identifying the characteristic
involvement of peripheral arthritis and enthesitis and its
differentiation from other forms of juvenile idiopathic arthritis
(JIA) as early as possible allows the use of biologic disease-
modifying anti-rheumatic drugs (bDMARDs) years before the
appearance of the spinal and sacroiliac joints symptoms (21).
The same applies to eligibility criteria and outcome measures in

FIGURE 1 | Lateral (A) and coronal (B) T-2 weighted-fat suppressed MR imaging showing edema in various tarsal bones, joint spaces and soft tissues in a 16 year

old boy with chronic ankylosing tarsitis [Modified from Burgos-Vargas (46)].

clinical trials on the efficacy and safety of bDMARDs. Besides
peripheral disease, some other variables are predictive of SpA
in children and adolescents; specifically, a family history of SpA,
HLA-B27 positivity, and clinically the history or presence of foot
enthesopathy and arthropathy uveitis, inflammatory back pain,
and sacroiliitis (40–45).

Tarsitis presents with mid-foot pain and swelling and often
swollen ankles, inflammation of the plantar fascia, and Achilles
tendon enthesitis (Figure 1). Radiographic studies show a
spectrum of findings, such as diffuse osteopenia, joint space
narrowing, and bone ankylosis. Erosions and enthesophytes are
found in the extraarticular entheses, such as Achilles’ tendon
and plantar fascia bone attachments (Figure 2). MRI shows
bone edema, synovial sheath and bursae swelling, and abundant
synovial fluid in the joint space (Figure 3).

The most severe cases are those evolving into ankylosing
tarsitis (AT), a condition characterized by a partial or complete
fusion of the tarsal bones and by the formation of bone bridges
resembling in certain aspects the long-term changes of the
sacroiliac and particularly the spine of AS patients (Figure 2).

Besides our descriptions of Mexicans with JoSpA, there are
sporadic descriptions of tarsal involvement in other geographic
localization and ethnic groups. For example, unilateral ankylosis
of the tarsal bones was described in a 19 year-old male with AS
diagnosed at the age of 15 who had several mid-foot episodes
of arthritis; unilaterality was attributed to radiotherapy (47). In
another report, 15 of 40 patients with JoSpA that underwent
therapeutic immobilization of the feet developed tarsometatarsal
fusion (48).

Chinese and French large cohorts of patients with JoSpA have
shown tarsitis in around 6 to 9% (49, 50). Data from India
indicate that involvement of the mid-foot is common and severe
(17). Likewise, tarsal bone ankylosis was seen in patients with
oligoarticular juvenile rheumatoid arthritis and back pain from
India (51) and Turkey (52, 53).

Based on the New York classification of sacroiliitis (5, 54),
our group has developed an equivalent grading of radiographic
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FIGURE 2 | Chronic changes in a patient with JoSpA. Lateral view showing complete tarsal ankylosis and plantar enthesophytosis. Courtesy of Dr. Rubén

Burgos-Vargas.

FIGURE 3 | T-2 weighted-fat suppressed MR imaging showing edema in various tarsal bones, joint spaces and soft tissues in a 16 year old boy with chronic

ankylosing tarsitis [Modified from Burgos-Vargas (46)].

parameters of classification and interpretation of tarsitis (39). As
a result, the Spondyloarthritis Tarsal Radiographic Index (SpA-
TRI) has good sensitivity and specificity to evaluate structural but
no inflammatory changes (39, 48).

Tarsal ankylosis (defined as tibiotarsal, intertarsal, or
tarsometatarsal ankylosis) occurred in 18% of patients with
juvenile rheumatoid arthritis (JRA) and 23% of adult-onset
patients with rheumatoid arthritis. In another study, tarsal
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ankylosis accounted for 25% of the seropositive and seronegative
polyarticular JRA, 9 and 19% of the pauciarticular and systemic
(51). Interestingly, most of these cases also had carpal ankylosis,
and none had SpA. In addition, Tarsal and carpal ankylosis
occurred in adult patients with JRA from India (51). Compared
with patients without radiographic sacroiliitis, around 40% of
such patients with radiographic tarsitis graded 3 or 4 with the
SpA tarsal radiographic index (55).

THE TARSITIS LINK WITH SpA

The characteristics of SpA in adults are inflammation and
enthesitis, followed by bone proliferation and ankylosis involving
the sacroiliac and spinal joints (56). While the cause and
mechanisms involved in inflammation are partially known,
those participating in bone proliferation remained unidentified.
Research advances are associated with new treatment forms,
which may induce remission of inflammation but not halter bone

formation (57). Additionally, many studies focus on the axial
skeleton and very little on peripheral sites. In contrast, striking
findings occur in the mid and hindfoot in many animal models,
highlighting a window of opportunity to study human samples
from peripheral joints.

Unfortunately, pediatric and adult rheumatologists in our
clinic and probably from other centers have neglected midfoot
involvement despite its severity and consequences. Most people
think of the ankle and metatarsophalangeal joints when children
and even adults complain of midfoot/tarsus pain and swelling.
The connection between the exacerbated inflammatory responses
and the abnormal residual ossification remains a potential field
to improve our therapeutic approach. Blocking the mechanisms
subjacent to bone proliferation could improve the overall
prognosis significantly in our patients.

Interest in peripheral arthritis as a critical manifestation of
SpA developed in parallel with studies on psoriasis and psoriatic
arthritis (PsA) and descriptions of enthesitis and dactylitis (24,

FIGURE 4 | Stages in the development of foot affection in juvenile-onset spondyloarthritis. We proposed three stages to approach the early symptoms of foot

affections in patients with JoSpA. The duration of each of the stages is certainly unknown since information is scarce. Few symptoms, such as isolated, sporadic,

short duration, episodes of joint pain often considered growing pains, characterize the prodrome stage. Around the age of 8 years starts the inflammatory stage of the

disease, which is mostly characterized by arthritis, enthesitis, and axial involvement; this is the disease “continuum” stage, which merged with tarsal ankylosis in the

adolescent years or sacroiliac and spinal ankylosis in early adulthood. This is a clinical picture needing differentiation from other diseases, particularly from subgroups

of juvenile idiopathic arthritis. At the same time, the relation between children and adult diseases should be established via de sacroiliac and spinal demonstration in

children. These events take place when there are several changes in growth and development in childhood and adolescence.
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58, 59). Dactylitis often occurred in single toes as a companion
to nail psoriasis. Recently, peripheral arthritis appeared again
in clinical descriptions (48). An international study of 4,465
patients with SpA found that nearly 70% of the participants had
at least one episode of peripheral arthritis (48, 60). Data splitting
yielded 57% with arthritis, enthesitis in 44%, and dactylitis in
15%. The study confirmed the highest percentage of peripheral
manifestations in around 80% of patients in Latin America,
dactylitis in 37% of PsA, and enthesitis in 65% of JoSpA.Mid-foot
involvement or tarsitis occurred in rank order in 13% of pSpA,
10% of PsA, 9% of reactive arthritis (ReA) and inflammatory
bowel disease (IBD), and 5% of axSpA. The proportion of tarsitis
in JoSpA was 19%. Per geographic region, tarsitis occurred in
24% of patients from Latin America. In children, inflammatory
clinical events may progress throughout the years and end in
bone ankylosis. We proposed three stages to approach the very
early symptoms of the “Prodrome” stage, which evolve and
progress in a rather slow and recurrent “continuum” of disease,
ending up with bone ankylosis (Figure 4).

INSIGHTS INTO THE PATHOGENESIS OF
ANKYLOSING TARSITIS

There is very scarce information addressing the pathogenesis
of peripheral and foot affection on SpA; nonetheless,
genetic association studies have revealed that the HLA-B27
predisposition is shared with axSpA and that other genes
like LMP2 (61), ERAP-1, ERAP-2 (62) and class II MHC are
involved (63).

Although peripheral osteoproliferation seems to be the main
problem in these patients, very few studies focus on the
pathogenesis of tissue inflammation and proliferation (2). We
have previously analyzed tendon, enthesis, and joint samples
from the midfoot of Mexican patients with ankylosing tarsitis
(AT) (64). Our results revealed a scarce leukocyte infiltration
accompanied by an osteoid intrusion in the extracellular matrix
(ECM), suggesting that, probably, intramembranous ossification
of the enthesis and subchondral osteoproliferation could take
place. We also found an important expression of bone lineage
proteins like osteopontin (OPN) and osteocalcin (OCN) in
mesenchymal tissues as well as parathyroid hormone-related
protein (PTHrP) and basic sialoprotein on bone tissues. The role
of osteocalcin in physiological and pathological bone formation
remains an important question in SpA (65, 66); however, its
expression on entheseal cells might involve its participation in
inducing an osteoblastic phenotype (67).

CONTRIBUTION OF ANIMAL MODELS

Remarkably, in different animal models of SpA, midfoot arthritis
and ossification are the main clinical features that can happen
either before or simultaneously that axial arthritis. Animal
models of transgenic animals like the HLA-B27-transgenic rats
develop spontaneous arthritis in the hind paws accompanied
by spondylitis, uveitis, and gut inflammation, resembling
human disease (68). Interestingly, a transgenic model of TNF

overexpression in mice (TNF1ARE) is characterized by Crohn’s-
like ileitis, midfoot ossification and inflammation, sacroilitis,
and spinal ossification (69, 70) that worsens with increased
mechanical stress and can develop in the absence of mature
T or B cells (71). A more recently described model involves
the transmembrane expression of TNF; in this model, animals
develop a disease characterized by axial and peripheral enthesitis
with abundant leukocyte infiltration (72). These experimental
approaches resemble human disease and point to the importance
of peripheral arthritis and enthesitis in the onset of the disease
with an interesting involvement of immune pathways and
mechanical forces.

Another noteworthy model of SpA is induced after the
transgenic edition of ZAP70 in SKG (Sakaguchi) mice, which
develop SpA and Crohn’s-like ileitis after the injection of
microbial compounds like curdlan or zymosan (73, 74). In
addition, the animals of other induced models like proteoglycan-
induced arthritis (PGIA) (75–77), collagen-antibodies induced
arthritis (CAIA) (70, 71, 78, 79), and DBA mice (80–85) also can
show a certain degree of midfoot inflammation and, in chronic
models, a severe ossification, accompanied by overexpression of
inflammatory cytokines like IL-1B, IL-12B, IL-17A, and IL-6.

Experimental evidence from the IL-23 minicircle
overexpression model points to an essential involvement of
tendon and ligaments through altered stromal cell function,
myeloid cell responsiveness, or gamma delta (γδ) T cell-
dependent mechanisms (78). Furthermore, firm evidence
for a link with mechanical stress has arisen from hind limb
unloading vs. voluntary running experiments that decreased
or increased mechanical stress. The studies firmly showed that
both in the TNF1ARE model (70) and CAIA (71), unloading
prohibits arthritis onset, whereas the reverse was observed
under voluntary running conditions. Intriguingly, while
unloading prohibited the onset of arthritis in collagen-induced
arthritis (CIA), it did not interfere with the development
of anti-collagen antibodies, indicating that mechanostress
regulates joint inflammation but uncouples it from induction of
autoantibodies (71). The mechanostress effect is also apparent
in the absence of adaptive immunity, suggesting that tissue-
resident stroma may account for it. This is intriguing as several
studies have pointed to a crucial role for entheseal and skin
γδ T cells in the onset of IL-23-driven PsA both on skin and
joints (86–88).

Several animal models point that canonical T cells
appear not to be indispensable for mechanostress induced
inflammation. In line with this, in vitro stretch of tendon and
ligament-stromal cells induce an array of pro-inflammatory
mediators, several of which are shared with skin keratinocytes.
They include chemokines, cytokines, and several danger-
associated molecular patterns (DAMPs). The induction
of CCL2, for example, was shown to recruit classical
monocytes. Mechanostress also led to a marked activation
of complement, which attenuated mechanostress induced
inflammation (89).

A summary of the characteristics of animal models that can
present midfoot inflammation and ossification is showed in
Table 1. Interestingly, many mechanisms can be involved in the
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TABLE 1 | Foot and axial involvement in animal models of SpA.

Experimental

model

Pathogenic mechanisms Foot involvement Axial involvement Role of mechanical

stress

Inflammatory

pathways

Ref.

Collagen-

antibodies induced

arthritis (CAIA)

Passive transfer of anti-type

II collagen antibodies

induces polyarthritis and

synovitis

Enthesitis can be found

on paws after 7 days of

induction

Cartilage hypertrophy,

bone damage, and

kyphosis can be

observed

Mechanical stress

drives osteophyte

formation and size

Inflammation in this

model is dependent on

IL-23

(65, 66,

73, 74)

SKG mice SKG (Sakaguchi) mice have

a defect on the SH2 domain

of ZAP70 and develop

SpA-like disease after the

injection of microbial

components like Curdlan

and Zymosan

Mice develop progressive

ankle arthritis and

swelling of the foot soft

tissue. Foot arthritis and

enthesitis precede axial

affection

Sacroiliitis, tail, and

lumbar arthritis appear

after around 10 weeks

of induction

Unknown IL-23 mediates

inflammation and bone

proliferation. Also,

extra-articular

manifestations like ileitis

and uveitis are involved

(68, 69)

Proteoglycan-

induced

spondyloarthritis

The injection of bovine

proteoglycan and adjuvant

induces T cell-induced

synovitis with progressive

ankylosis

A progressive

polyarthritis with synovitis

and cartilage destruction

is evident in the initial 8

weeks after proteoglycan

injection, followed by

osteoproliferation and

ankylosis of frontal and

hind limbs

Spinal arthritis starts

weeks after peripheral

arthritis and ankylosis,

followed by

intervertebral ankylosis

and bone proliferation

Unknown T-cell induction of

arthritis and TNF

involvement

(70–72)

HLA-B27

transgenic rats

Transgenic expression of

human HLA-B27 and

β2-microglobulin in rats

induces spontaneous

arthritis, spondylitis,

ankylosis, and gut

inflammation

Tarsal affection is

classically described as

tenderness, swelling, and

inflammation of one or

two hind limbs

Axial bone proliferation

and sacroiliitis are

present

Unknown Several mechanisms

have been described,

including HLA-B27

misfolding, homodimer

formation, gut

dysbiosis, and type 3

immunity pathways

(63)

TNF1ARE Mice A deletion in the regulators

of TNF (AU-rich elements, or

ARE) induces a prolonged

overexpression of TNF,

inducing gut inflammation,

and a SpA-like phenotype

Arthritis initiates at

enthesis in

interphalangeal joints and

Achilles’ tendon

Radiographic spinal

inflammation and

sacroiliitis are evident

after 4 months of

development

Tail unloading

experiments

demonstrated that

mechanical stress is an

essential driver of

arthritis

The model can be

induced in the absence

of mature T and B cells

so that stromal cells

might drive the

mechanisms leading to

arthritis and enthesitis

(64–66)

Transmembrane

TNF

A defect in the cleavage site

for ADAM17 drives

overexpression of

membrane-bound but not

soluble TNF

Peripheral enthesitis and

osteitis are accompanied

by bone proliferation with

entheseal and synovial

leukocyte infiltration

Animals develop tail

deformities and

spondylitis with

deformation with focal

joint destruction. Also,

inflammation of the

spinal ligaments and

bone marrow is present

Unknown The inflammation is

driven by TNF-receptor

I and can be induced

with the TNF

overexpression of only

stromal cells

(67)

Spontaneous

arthritis in DBA

Mice

Hormonal, aging, and

behavioral factors are

involved in the spontaneous

development of arthritis,

enthesitis, and ankylosis of

4 month old DBA/1 male

mice

Initial signs are detected

in interphalangeal,

metatarsophalangeal,

and ankle joints with

further swelling of tarsal

joints. Enthesitis,

dactylitis, and

psoriasiform nail changes

are frequently observed

Scarce evidence of

axial ankylosing or

enthesitis

An aggressive behavior

related to mice fight

and microtrauma is

involved; nevertheless,

the specific role of the

mechanical load has

not been explored

There is evidence of a

role of testosterone,

BMP signaling, and

inflammatory cytokines

like IL-1, IL-12, IL-6,

and IL-17. Arthritis and

enthesitis can be

induced in the absence

of alpha-beta or

gamma-delta T cells

(75–80)

development of SpA, and although animal models have provided
much of the current information, several studies on human
samples reveal a complex immune network that modulates the
response to risk factors and enhancing elements toward the onset
of the disease (Figure 5).

INFLAMMATORY PATHWAYS IN AXIAL
AND PERIPHERAL SpA

Genetic studies have provided a significant step in the discovery
of potential triggers of SpA pathogenesis. The most studied
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FIGURE 5 | Inflammatory and mechanical factors in the onset of enthesitis: Genetic predisposition for enthesitis can be represented by HLA-B27 and its role in the

endoplasmic reticulum (E.R.) stress, autophagy, and homodimer formation, and also by other polymorphisms in genes like ERAP-1 and IL-23R. Further enhancing

elements involved in the onset of enthesitis include the role of the “leaky gut” syndrome, intestinal dysbiosis, and the activation of gut-homing lymphocytes.

Additionally, mechanical stress can play a key role in enhancing inflammation and osteoproliferation through injury repair mechanisms, production of chemokines like

CCL2, and the activation of stromal cells like tenocytes. The previous can be added to the potential role of osteogenic pathways like Wnt, BMP, and Runx2. This figure

was done with biorender (Biorender.com).

gene for SpA susceptibility is the class I histocompatibility
molecule HLA-B27 (90, 91), which, previously was considered as
a potential link with “arthritogenic peptides” presented to self-
reactive lymphocytes; nevertheless, this has not been proven,
and current theories postulate other roles like the induction
of endoplasmic- reticulum (ER) stress (92) and homodimer
formation (93).

Studies in animal models of transgenic HLA-B27 rats and
mice (68) revealed that this molecule tends to misfold during
its synthesis in the endoplasmic reticulum (ER) (94), causing
ER stress, activation of the unfolded protein response (UPR)
(95) and the induction of the inflammatory cytokine IL-23 (92).
However, UPR activation has not been proven in humans, as UPR
markers are not increased in samples of patients of SpA (96),
and instead, some reports suggest that IL-23 production could
be related to an increase of autophagy markers in the gut (97).
Furthermore, killer immunoglobulin receptors (KIR) expressed
on NK and Th17 cells can recognize aberrant B27 homodimers
(98, 99), and therefore, induce IL-17 production. Remarkably,
heavy chain homodimers have been found in patients’ gut and
vertebral joints (100).

Although most of the cellular and molecular mechanisms
related to the initial triggers and the amplification of

inflammation in SpA are known for animal models and in
vitro research, the use of bDMARDs has allowed basic and
clinical researchers to study the role of several cytokines in the
human SpA. The first and most known biologic target is the
pro-inflammatory cytokine TNF, and TNF inhibitors (TNFi) are
currently the most used treatment for the disease. The use of
TNFi confirmed its therapeutic effect in adult patients with AS
(38) and prevented proliferation and structural progression after
8 years (101). Although JoSpA patients can also benefit from
TNFi (102), there are no reports of osteoproliferation in these
patients’ peripheral joints.

Type 3 immunity (mediated by IL-23, IL-17, and IL-22) also
plays an essential role in the pathogenesis of SpA. IL-17 is a
pro-inflammatory cytokine involved in animal models of SpA
(74, 78, 99) and increased in patients’ blood and synovial fluid
(103–106). The pro-inflammatory and destructive effects of IL-
17 have been associated with synovitis, enthesitis, and bowel
inflammation (107–109). Also, animal models of IL-23 minicircle
injection (78) and SKG mice (74) mainly depend on IL-17.
The therapeutic inhibition of this cytokine has significant effects
on disease activity and vertebral inflammation (110), although,
again, few reports focus on peripheral symptoms, and the existing
ones only evaluate PsA patients (111, 112).
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IL-23 is a cytokine involved in the differentiation and
maintenance of the Th17 phenotype (113). Its role in SpA has
become highly relevant for the scientific community since, in
2012, it was published that the over-expression of this cytokine
with DNA minicircles in mice could induce a spontaneous
model of SpA-like disease (78). In the report by Sherlock et al.,
this cytokine could act on a previously undescribed population
of entheseal resident CD3+, RORγt+, Sca1+, CD4–, CD8–,
IL−23R+ T cells. Several groups around the world have tried to
identify such entheseal, IL-23 responsive cells, and it has been
suggested that invariant-receptor natural-killer T cells (iNKT)
(114), Th17 (99), mucosal-associated invariant T (MAIT) cells
(107), Tγδ (103), and type 3 innate lymphoid (ILC3) cells (104)
could be responsible for the IL-23 role on inflammation and
osteoproliferation. Strikingly, when the inhibition of IL-23 was
taken to the clinics, it did not result in any therapeutic benefit
(115), suggesting that probably, there are IL-17 producing cells
independently of the IL-23 status (116, 117) or that IL-23 is
involved in very early steps of SpA induction (118).

Almost half of the patients with SpA have microscopical
subclinical gut inflammation (119), and there is a strong
association of IBD with SpA. Whether or not this relationship
is involved in the foot involvement of JoSpA remains unknown.
Nonetheless, the increased severity and frequency of tarsitis
in developed countries is probably associated with a higher
incidence of intestinal infections. The relationship between gut
inflammation and arthritis or enthesitis is a challenging research
topic that includes intestinal dysbiosis and cell migration (120–
122). It has been suggested that some inflammatory mediators
like cytokines and leukocytes can be originated in the gut,
and such could be the case of ILC3 cells (104) or Tγδ

cells (123).
Recently, our group described that a population of Tγδ cells

expressing the gut-homing integrin a4β7 is enriched in the
peripheral blood of patients with axSpA and that this population
has an increased expression of TLR2 and TLR4, which might
induce them to a pre-activation state and an enhanced response
to pathogenicmolecular patterns (123). The characteristics of this
population are still unknown; nevertheless, further studies are
needed to address a possible migration phenomenon.

SpA has been linked to a strong genetic predisposition
(124, 125) and certain micro-organisms interplay with the
immune system (126, 127), with reactive arthritis as a prototypic
example, although this association is not always that clear in
a significant fraction of patients. Similarly, what drives the
joint-centered inflammation in this spectrum of diseases has
been a longstanding enigma in the field. Previous work from
our group has revealed an interplay between infections and
SpA (128). Specifically, we described the presence of bacterial
DNA in synovial macrophages (129) and antibody and cellular
immune response against the enterobacterial heat shock protein-
60 (HSP60) in blood and synovial fluid samples (127).

While many residual questions remain to date, some
recent concepts have arisen that at least partially address
why some joints or joint structures is typically associated
with spondyloarthritis. Spondyloarthritides is notoriously known

to affect enthesis, particularly those of lower limbs such as
Achilles Tendons or fascia plantaris (130, 131). This is a
feature that at least clinically is considered a hallmark of
the spondyloarthritides spectrum. These clinical concepts are
supported by a large body of imaging data demonstrating not
only soft tissue swelling but also associated osteitis. These
observations highlight the importance of the functional unit
formed between muscle, tendons, the entheseal part, and
the underlying bone. The tissues connecting muscle to bone
(tendons) or bone to bone (ligaments) are specialized to
permit the transmission of mechanical forces. Despite this, few
mechanistic studies have addressed how mechanical forces may
drive the onset of joint inflammation.

MECHANICAL FORCES MIGHT DRIVE
ENTHESEAL AND ARTICULAR
INFLAMMATION

Healthy tendons and ligaments contain several unique cell types
to ensure their homeostasis. They contain stromal cells, referred
to as tenocytes, that constitute the majority of cell types within
healthy tendons and ligaments. Their primary role is to control
the extracellular matrix synthesis by producing collagen or
degrade them by releasing proteases (132, 133). Tenocytes are
notoriously mechanosensitive cells mediated at least in part by
the transcription factors scleraxis (Scx) and mohawk (Mkx),
which drive the expression of mechanical stress-activated genes,
extracellular matrix genes (e.g., collagen) or adhesion molecules.
These elements can interact with the circulating or resident
immune system, and although enthesis resident immune cells
are scarce, there are rare T cell subsets such as γδT cells and
ILC3s, also, IL-23 producing CD14+ myeloid cells have been
described (133).

The role of these immune cells in a steady state is relatively
poorly understood but is thought to play a role in tendon
and ligament repair. Despite the undeniable role of mechanical
loading on tendon and ligament homeostasis in health, several
observations have indicated that mechanical stress also leads
to inflammation. Thus, healthy individuals exposed to intense
physical activities (athletes, military recruits) may often develop
bone marrow edema on sacroiliac joint imaging with many
resemblances to acute inflammatory lesions noted in SpA
patients (134, 135). Not surprisingly, mechanical stress has also
been linked to inflammatory rheumatic diseases such as RA, PsA,
and AS (136). Here, physical trauma has been associated with
disease initiation and structural progression (137, 138).

In sum, mechanical forces display a myriad of effects on
skin, tendon, and ligaments, reflecting a crosstalk between
stromal and immune cells. However, there are still several
outstanding questions. The threshold between normal
mechanical loading and pathological stress is poorly defined,
and whether mechanostress-induced inflammation in PsA
reflects altered response to normal or rather exposure to
supraphysiological levels of mechanical stress is currently
unclear (139). Alternatively, the resolution of inflammation

Frontiers in Medicine | www.frontiersin.org 8 October 2021 | Volume 8 | Article 730273

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Romero-López et al. Inflammatory Foot Involvement in SpA

induced by mechanostress may also be impaired, although the
underlying mechanisms are still relatively unclear.

Anatomically, the foot has 28 bones and 31 joints into three
large areas: the forefoot (metatarsals and phalanges), themid-foot
(cuboid, navicular, and cuneiforms), and the hindfoot (calcaneus
and talus). The foot and the pelvis are themost important weight-
bearing structures in spreading loads through the spine, lower
limbs, the tarsal areas, and the foot arches. Therefore, mechanical
forces could drive structural damage in a similar way to the
experimental models described before.

Certainly, future studies are pointing to a potential role
of mechanical stress and microtrauma on inflammation and
bone formation; However, some questions remain open about
the interaction of these elements in the initiation of tissue
repair mechanisms and ossification, there is a need to explore
if inflammation and mechanostress act as sequential factors,
enhancing elements or independent pathways.

BONE FORMATION IN SpA

Although little is known regarding the specific mechanisms of
osteoproliferation in SpA, this phenomenon is probably derived
from inflammation, according to radiographic studies. It has
been postulated that HLA-B27 homodimers can be recognized
by killer immunoglobulin-like receptors (KIR) expressed on
Th17 and NK cells and that these cells can produce IL-17
mediated responses that link HLA-B27 with inflammation (91,
140). These homodimers have been found in spinal joints;
nevertheless, it has not been explored if they can be found in
peripheral joints.

The cytokine IL-22 is a master regulator of epidermal
proliferation and barrier integrity, both in the gut and the
skin; this capacity to induce proliferation is not restricted
to epidermal tissues, as it has shown to interact with joint
stromal cells. In the mice model of IL-23 overexpression (78),
it has been reported that IL-22 (which can be either produced
downstream of the IL-23 effect or independently) can induce
the expression of bone growth molecules such as Akp3, Cebpb,
Wnt10b, Wnt3a, and Gli1. This cytokine can also induce
the mineralization and ossification of mesenchymal stem cells
(141) and induce keratinocyte and fibroblast proliferation in
psoriasis (142). IL-22 can become a potential therapeutic target to
prevent the bone formation in the spondyloarthritides, although
its effect on barrier integrity and host defense make this a
difficult step.

Remarkably, there are two pathways of bone formation,
endochondral and pseudomembranous ossification, and both
can participate in the pathogenic bone formation of SpA patients
(67, 143–145). Intense research has elucidated some pathways
related to bone formation in SpA, such as the Wnt and bone
morphogenetic protein (BMP) pathways (84, 146, 147). Results
from the animal model of aging DBA/1 mice showed that the
injection of the BMP-inhibitor nogging significantly decreases
ossification and entheseal cell formation at peripheral joints. The
role of BMP in peripheral SpA is also reinforced by the evidence

of smad 1/5 activity in Achilles tendon’s enthesis samples of SpA
patients (84).

The Wnt signaling pathway is a key regulator of bone
formation that can be altered in diseases like osteoarthritis
(OA), rheumatoid arthritis (RA), and SpA (146). Remarkably,
the Wnt inhibitor Dickkopf-1 (Dkk-1) is downregulated in
patients with AS (148); therefore, a higher Wnt activity
has been related to a pro-osteogenic phenotype as reviewed
elsewhere (146, 149).

Sclerostin (encoded by the sost gene) is another Wnt inhibitor
that can also inhibit BMP function (150) with an important
role in SpA pathogenesis. Immunohistochemical analysis of
zygapophyseal joints of SpA patients has revealed a very low
sclerostin expression compared to samples from OA and RA
patients or healthy subjects (151). The levels of sclerostin and
anti-sclerostin antibodies can be useful as biomarkers for axial
disease (152). However, there are no reports of its involvement in
peripheral affection and tarsal ankylosis.

Although the question about the effect of inflammation and
biologic therapy in bone formation is a controversial topic (153),
preclinical studies revealed that TNF inhibitors could modulate
Dkk-1 activity (148) and strikingly, recent studies suggest that the
inhibition of the IL-12 and IL-23 pathway with Ustekinumab can
increase Wnt activity (154).

The potential role of inflammation and mechanical stress in
the onset of peripheral enthesitis is shown in Figure 5.

CONCLUDING REMARKS AND FUTURE
DIRECTIONS

Even though peripheral symptoms of SpA and, particularly those
of juvenile-onset patients, are widely recognized, there are still
many questions regarding the behavior of structural evolution,
bDMARD response, association with gut dysbiosis/microbiota,
and immune-mediated pathogenesis. There is a current need
for more profound studies in all these fields, considering that
demographic and clinical characteristics might be recognized
and considered as core manifestations of the disease. In this
review, we emphasized the critical role of foot affection in JoSpA
patients. We attempted to focus on these manifestations as
potential early diagnostic elements and on these manifestations
as potential early diagnostic elements and prospective sites for
translational studies.

The peripheral approach of areas in which physiopathological
events occur warrants a potential site for in-situ study of the
SpA, providing a remarkable opportunity to deepen on the
mechanical triggers that influence the proliferation of what can
be considered as a dynamic anatomic-functional “foot unit.” The
relationship between gut dysbiosis and peripheral SpA is still
poorly understood. Although many reports analyze these factors
separately, there is a lack of integrating elements that explain this
interaction. Moreover, the effect of mechanical stress probably
acts as an enhancing factor for previously primed immune and
environmental elements.
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