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The comprehension of the immune responses in infectious diseases is crucial for developing novel therapeutic strategies. Here, we
review current findings on the dynamics of lymphocyte subpopulations following experimental acute infection by Trypanosoma
cruzi, the causative agent of Chagas disease. In the thymus, although the negative selection process of the T-cell repertoire remains
operational, there is a massive thymocyte depletion and abnormal release of immature CD4+CD8+ cells to peripheral lymphoid
organs, where they acquire an activated phenotype similar to activated effector or memory T cells. These cells apparently bypassed
the negative selection process, and some of them are potentially autoimmune. In infected animals, an atrophy of mesenteric lymph
nodes is also observed, in contrast with the lymphocyte expansion in spleen and subcutaneous lymph nodes, illustrating a complex
and organ specific dynamics of lymphocyte subpopulations. Accordingly, T- and B-cell activation is seen in subcutaneous lymph
nodes and spleen, but not in mesenteric lymph nodes. Lastly, although the function of peripheral CD4+CD8+ T-cell population
remains to be defined in vivo, their presence may contribute to the immunopathological events found in both murine and human
Chagas disease.

1. Introduction

Trypanosoma cruzi is the causative agent of Chagas disease
affecting more than 10 million people in Latin America.
The parasite is transmitted by feces of infected insect
vectors belonging to the family Reduviidae [1–3]. After
infection, the initial acute phase of the disease progresses
to an asymptomatic indeterminate period with virtually
undetectable parasitemia and a strong humoral and cellular
anti-T. cruzi responses. Up to several years after the initial
infection, approximately 20 to 30% of all infected individuals
develop a chronic inflammatory disease primarily affecting
the heart [2–4]. Although different mechanisms have been

proposed to trigger this pathology, there is a growing body of
evidence that parasite persistence is associated with a chronic
inflammatory response, which is the primary cause of Chagas
disease [5, 6].

Experimental models of T. cruzi infection have been
widely used to study various aspects of the infection. Acute
infection in mice leads to strong activation of innate and
adaptive immune response [7, 8]. In the course of infection,
there is a fine change in the dynamics on the size of lym-
phocyte populations that contributes to regional specificities
of the immune response in central and peripheral lymphoid
organs: while there is an expansion in peripheral lymphoid
organs such spleen and subcutaneous lymph nodes due to
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T and B cell polyclonal activation, we have observed an
atrophy of the thymus and mesenteric lymph nodes in the
infection [9]. The atrophy in such lymphoid organs seems
to be associated with differences in lymphocyte proliferation
and death [10–16].

In the thymus, we and others have identified that the
severe thymic atrophy in acutely infected animals is mainly
due to apoptotic depletion of CD4+CD8+ double-positive
(DP) thymocytes undergoing differentiation [13, 14, 17–
25]. However, regardless of thymic changes promoted by the
acute T. cruzi infection, we have showed that the negative
selection remains functional [26].

In a second vein, we have showed that, in contrast with
the physiological condition, there is an abnormal release of
DP thymocytes into the periphery during the course of the
T. cruzi infection [12, 13] and that these cells acquire an
activated phenotype similar to what is described for activated
single-positive T cells [26].

The dynamics of cell populations in various lymphoid
organs during the infection may reflect differential profiles
of the adaptive immune response driving lymphocyte fluctu-
ations in distinct compartments of the immune system. The
impact of these alterations during the parasite infection is
still unknown. Yet, it is conceivable that an abnormal release
of nonselected thymocytes during acute infection may have
an impact on the host immune responses against the parasite.
In the present paper we will focus recent data concerning the
thymic atrophy during the course of acute T. cruzi infection,
as well as the dynamics of lymphocyte subsets in distinct
secondary lymphoid tissues.

2. Thymus Atrophy and the Negative Selection
of Thymocytes in Chagas Disease

Several pathogens, including T. cruzi, cause thymic atrophy
[17]. The mechanisms underlying this phenomenon are
most likely linked to a particular pathogen-host relation
established during infection. In the T. cruzi model, it has
been shown that the inflammatory syndrome mediated by
TNF-α during the acute phase of infection induces the
activation of hypothalamus-pituitary-adrenal (HPA) axis
with the consequent release of corticosterone [18, 27, 28].
The glucocorticoid rise is likely associated with profound
effects on the changes observed in the thymuses of T. cruzi-
infected mice, including the lymphoid and nonlymphoid
compartments.

Yet, the thymic atrophy triggered by T. cruzi is more
complex, with other host-derived molecules likely being
involved. For example, thymic atrophy is not seen in T.
cruzi-infected galectin-3 knockout mice [19]. On the other
hand, the parasite-derived transsialidase is involved in the
generation of intrathymic T-cell death [21, 25, 29].

The thymic microenvironmental changes seen after acute
infection comprise the enhanced expression of extracellular
matrix ligands and receptors, which correlates with a higher
fibronectin-driven migration of DP thymocytes, and the
abnormal raise of immature DP cells in lymph nodes [8, 12,
13, 30].

Recently, we have determined whether the changes of the
thymic microenvironment seen following T. cruzi infection,
would also lead to an altered intrathymic negative selection
of the T-cell repertoire. It is largely established that interac-
tions between TEC and thymocytes control the development
of the thymic microenvironment and T-cell development.
Previous studies have shown that the disruption of normal
thymic architecture is known to affect the expression pattern
of autoantigens by TEC and functionality of thymus [31–
33]. Thymic medullary atrophy and decreased expression of
Aire and TRAs have been reported in mouse models deficient
in several genes involved in the NFκB pathway, suggesting
an important role of this pathway in the development of
thymic medulla [34]. We showed that the expression of Aire
and highly selective tissue-restricted antigens was readily
detectable in whole thymus by real-time PCR analysis from
infected mice, rather similar to controls. These data suggest
that the expression of peripheral antigens in the infected
thymuses is sufficient to modulate the tolerance induction
by the negative selection process [26].

As the acute phase of infection progresses, the thymic
atrophy becomes evident, as is the increase in numbers of
apoptotic intrathymic DP cells, compared to their respective
normal counterparts. Although this phenomenon may be
a consequence of the changes observed in the organ, our
data show that along the DP depletion there is sustained
expression of Bim, proapoptotic factor essential for thy-
mocyte negative selection. Finally, by using an OTII TCR
transgenic system, we were able to demonstrate that the
administration of the cognate OVA peptide in the acutely
infected mice undergoing thymic atrophy can induce TCR-
stimulation-induced apoptosis of semimature thymocytes.
These data point out that negative selection operates
normally during infection-promoted thymic atrophy, since
the DP cells can be negatively selected in the infected
thymus by antigen-induced depletion [26]. This supports
previous work showing that intrathymic mature single-
positive CD4+ or CD8+ T cells do not bear forbidden TCR
genes as compared with their DP counterparts undergoing
intrathymic differentiation [12].

3. Dynamics of Lymphocyte
Populations in Peripheral Lymphoid
Organs in Chagas Disease

The intrinsic balance among the lymphoid organs dictating
the functional properties of the lymphocyte subsets are
critical for establishing the immune response to T. cruzi
infection [9]. Although the intrathymic checkpoints neces-
sary to avoid the maturation of T cells expressing a forbidden
T-cell receptor repertoire are present in the acute phase of
murine Chagas disease, it has been shown that significant
amounts of double-negative and double-positive thymocytes
(Figure 1) are abnormally released from infected thymus
to the periphery [12, 13, 35]. Considering that among
thymus-derived CD4+CD8+ lymphocytes exhibit potentially
autoimmune TCRs, we raised the hypothesis that they could
be activated in peripheral lymphoid organs. This prompted
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Figure 1: Lymphocyte subsets in central and peripheral lymphoid organs from T. cruzi acutely infected mice. Male BALB/c mice were infected
intraperitoneally with 102 culture-derived trypomastigotes of T. cruzi (Tulahuén strain), and 14 days after infection the subcutaneous
lymph nodes (SCLN), mesenteric lymph nodes (MLN), peritoneal cavity cells (PC), and spleen were harvested to perform flow cytometry.
Erythrocytes were previously depleted in the spleen cell suspensions by treatment with Tris-buffered ammonium chloride. The total number
of (a) double-negative CD4−CD8− T cells, (b) double-positive CD4+CD8+ T cells, (c) single-positive CD4+ T cells, and (d) CD8+ T cells,
(e) CD19+IgDlow B cells and (f) CD19+IgDhigh B cells are indicated for each histogram. Values represent the mean and standard error. The
infected group (n = 5–14) were compared to noninfected controls (n = 4–9) with t-test, using the program GraphPad Prism 5. Data were
considered significant if P values were <0.05. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

us to evaluate in acutelyinfected mice whether those cells
exhibited an activated profile similar to effector/memory
single-positive T cells. The existence of this unconventional
and rare (<5%) lymphocyte population in the periphery was
explained as a premature release of DP cells from the thymus
into the periphery, where their maturation into functionally
competent single-positive cells continues [12, 35]. There is,
however, considerable evidence of an increased frequency of
peripheral CD4+CD8+ T cells during viral infections and
during acute T. cruzi infection. For example, in human
immunodeficiency virus or Epstein-Barr virus infections, the
percentage of DP cells can increase to 20% of all circulating

lymphocytes [36, 37]. This fluctuation is also present in
the secondary lymph nodes as we demonstrated in the
experimental model of Chagas disease, in which DP cell
subset increases up to 16 times in subcutaneous lymph nodes
[12, 13].

There is an increase in IL-2 production which has
been associated with the hyperplasia in the subcutaneous
lymph nodes during T. cruzi infection [9, 10]. Peripheral
lymphoid organs play a role on the immunity against T. cruzi
infection. For instance, it has been shown that splenocytes
and mesenteric lymph nodes cells are involved in the host
immune response since splenectomy or mesenteric lymph
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Figure 2: Distinct pattern of lymphocyte fluctuations in central and peripheral lymphoid organs during acute Trypanosoma cruzi infection.
The upper panels depict thymus and peripheral lymphoid sites, in terms of T- and B-cell subsets. It is illustrated the thymic atrophy,
simultaneously with an increase in mature and immature export of cells from the organ, as well as hyperplasia of spleen and subcutaneous
lymph nodes that course in parallel with an atrophy of the mesenteric lymph nodes, whereas the peritoneal cavity remains rather unchanged
(except for the significant rise in CD4+ and CD8+ T-cell subsets). Bottom panels reveal fold changes of each T- and B-lymphocyte subsets
from acutely infected mice over the corresponding controls.

node excision prior to T. cruzi inoculum increases mice
susceptibility to infection, as ascertained by the numbers of
circulating parasites [9, 10].

The increase in cellularity of spleen and subcutaneous
lymph node is a consequence of tissue T-/B-lymphocyte
activation and expansion [9, 11, 38, 39]. Parasite-driven
proteins seem to contribute to the polyclonal activation of
lymphocytes in Chagas disease. In this regard, transsialidase
seems to contribute to lymphocyte activation and cytokine
production by interfering with interaction between dendritic
cells and T lymphocytes [40, 41]. Other parasite-derived
molecules such as racemase and T. cruzi DNA were proven to
induce B-cell proliferation [42–44]. Although there are data
showing that the polyclonal B-cell activation contributes to
the pathological alterations seen in Chagas disease, evidence

indicates that the majority of B cells are not parasite specific
during early T. cruzi infection [41, 45–52].

Limited studies of B-cell dynamics among secondary
organs during T. cruzi infection have been reported.
CD19+IgDlow and CD19+IgDhigh represent two functionally
distinct B-cell subsets [53, 54]. CD19+IgDlow are located in
the spleen and central lymphoid organs, at the marginal
zones, acting as the first line responders to pathogens in the
blood. These cells are able to migrate to germinal centers
and participate in T-cell-dependent responses. CD19+IgDhigh

cells are found in the lymph and B-cell follicles of the spleen.
We have shown that, 14 days after infection, both types of B
cells are significantly expanded in the lymphoid organs such
as spleen and subcutaneous lymph nodes (see Figures 1(e)
and 1(f)). Since these B-cell subsets have distinct roles in



Journal of Tropical Medicine 5

the development of B-cell responses, related to their different
localization, the increase of these two populations with
polarized functions suggest a polyclonal B-cell activation
during acute experimental Chagas. In agreement with this
observation, previous reports suggests that CD5+ B cells are
related to self-antigen immune response [55, 56].

In contrast to the hyperplasia seen in spleen and subcu-
taneous lymph nodes of infected mice, there is an atrophy of
the mucosal associated lymphoid organs, which is related to
a local decrease in IL-2 production, with a reduction of the
total number of T/B lymphocytes [9]. One possible mech-
anism involved in IL-2 suppression in mesenteric lymph
nodes could be associated with the differential distribution
of regulatory T cells (Treg cells) among distinct lymphoid
organs in infection, since IL-2 could be produced in normal
levels and be sequestered by CD25highCD4+FOXP3+ cells,
which have been demonstrated to be present in secondary
lymphoid organs during infection [9, 57]. In this vein, the
cytokine deprivation induced by Treg cells is one of the
mechanisms that might be associated with apoptosis in T
cells [58].

Considering that gut-associated lymphoid tissues drain
antigens from the small intestine and that chronic infection
may progress with damage to the digestive tract, mesenteric
lymph nodes and Payer’s patches might be related to gut
pathologies seen in infected patients. Lymphocytes and
dendritic cells that are primed in Payer’s patches migrate to
mesenteric lymph nodes through draining lymphatic vessels
[9, 59]. Moreover, patients with digestive forms of the disease
present high parasitemia and decreased T-/B-lymphocyte
numbers in their blood [60, 61].

4. Concluding Remarks and Perspectives

Our studies have revealed that the lymphocyte population
size displayed significant fluctuations in the lymphoid tissues
along the infection (Figure 2). Acute infection in mice leads
to strong activation of innate and adaptive immune response.
Splenomegaly and expansion in subcutaneous lymph nodes
were reported, with persistent T- and B-cell polyclonal
activation. Conversely, atrophy in mesenteric lymph nodes
(MLN) and thymus was also observed in the infection.

Our data indicate that the key intrathymic checkpoints
necessary to promote negative selection process of thymo-
cytes are effective during acute chagasic thymic atrophy.
Although the negative selection process is still functional in
the acute phase, DP cells are prematurely released to the
periphery. During the course of experimental infection, these
peripheral DP cells acquire an activated phenotype that is
correlated with the cardiac clinical form of human chronic
Chagas disease. Therefore, although the function of this DP
T-cell population remains to be defined in vivo, the presence
of peripheral activated DP cells with potentially autoreactive
TCR may contribute to the immunopathologic events found
in both murine and human Chagas disease.

Overall we believe that the dynamics of T-cell expansion
and contraction in persistent pathogen infections, herein
exemplified by Chagas disease, is not limited to the fluc-
tuations of the lymphocyte population size, but also the

redistribution of lymphocyte subsets in the lymphoid tissues
along the infection. Fluctuations in the lymphocyte cell
population may reflect specific and coordinated responses to
the parasite in the lymphoid organs.

The classical paradigm for T-cell dynamics suggests that
the resolution of a primary infection is followed by the gener-
ation of a long-lived and stable pool of memory lymphocytes.
Since the physical basis of the response is stochastic, very
limited alteration in this repertoire is expected to occur
due to alterations of the dynamics of the lymphoid tissues.
Understanding the basis of stochasticity in lymphocyte
fluctuations that occur secondary to T. cruzi infection will
hopefully improve our knowledge on the regional influences
upon the lymphocyte dynamics, and this will likely be
useful for the development of protective immune responses
necessary to control persistent infections.
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immunoglobulin secretion by B lymphocytes from Try-
panosoma cruzi infected mice after B lymphocytes-natural
killer cell interaction,” Parasite Immunology, vol. 23, no. 11,
pp. 581–586, 2001.

[48] N. Gironès, C. I. Rodrı́guez, E. Carrasco-Marı́n, R. F. Hernáez,
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“Chronic experimental Chagas’ disease: functional syngeneic
T-B-cell cooperation in vitro in the absence of an exogenous
stimulus,” Infection and Immunity, vol. 64, no. 7, pp. 2861–
2866, 1996.

[50] N. Yoshida, J. E. Araya, J. Franco Da Silveira, and S. Giorgio,
“Trypanosoma cruzi: antibody production and T cell response
induced by stage-specific surface glycoproteins purified from
metacyclic trypomastigotes,” Experimental Parasitology, vol.
77, no. 4, pp. 405–413, 1993.

[51] P. Minoprio, A. Coutinho, S. Spinella, and M. Hontebeyrie-
Joskowicz, “Xid immunodeficiency imparts increased parasite
clearance and resistance to pathology in experimental Chagas’
disease,” International Immunology, vol. 3, no. 5, pp. 427–433,
1991.

[52] A. M. Rodriguez, F. Santoro, and D. Afchain, “Trypanosoma
cruzi infection in B-cell-deficient rats,” Infection and Immu-
nity, vol. 31, no. 2, pp. 524–529, 1981.

[53] J. W. Tung and L. A. Herzenberg, “Unraveling B-1 progeni-
tors,” Current Opinion in Immunology, vol. 19, no. 2, pp. 150–
155, 2007.

[54] N. Baumgarth, M. Egerton, and A. Kelso, “Activated T cells
from draining lymph nodes and an effector site differ in their
responses to TCR stimulation,” Journal of Immunology, vol.
159, no. 3, pp. 1182–1191, 1997.

[55] W. O. Dutra, D. G. Colley, J. C. Pinto-Dias et al., “Self and
nonself stimulatory molecules induce preferential expansion
of CD5+B cells or activated T cells of chagasic patients,
respectively,” Scandinavian Journal of Immunology, vol. 51, no.
1, pp. 91–97, 2000.

[56] M. C. El Cheikh, M. Hontebeyrie-Joskowicz, A. Coutinho, and
P. Minoprio, “CD5 B cells: potential role in the (auto)immune
responses to Trypanosoma cruzi infection,” Annals of the New
York Academy of Sciences, vol. 651, pp. 557–563, 1992.

[57] F. S. Mariano, F. R. S. Gutierrez, W. R. Pavanelli et al., “The
involvement of CD4+CD25+ T cells in the acute phase of
Trypanosoma cruzi infection,” Microbes and Infection, vol. 10,
no. 7, pp. 825–833, 2008.

[58] P. Pandiyan, L. Zheng, S. Ishihara, J. Reed, and M. J. Lenardo,
“CD4+CD25+Foxp3+ regulatory T cells induce cytokine
deprivation-mediated apoptosis of effector CD4+ T cells,”
Nature Immunology, vol. 8, no. 12, pp. 1353–1362, 2007.

[59] H. H. Uhlig, C. Mottet, and F. Powrie, “Homing of intestinal
immune cells,” Novartis Foundation Symposium, vol. 263, pp.
179–188, 2004.

[60] E. M. Lemos, D. D. Reis, S. J. Adad, G. C. Silva, E. Crema, and
R. Correa-Oliveira, “Decreased CD4+ circulating T lympho-
cytes in patients with gastrointestinal Chagas disease,” Clinical
Immunology and Immunopathology, vol. 88, no. 2, pp. 150–
155, 1998.

[61] E. Crema, I. D. O. Monteiro, M. G. Z. Gomes, A. A. Silva, and
V. Rodrigues Júnior, “Evaluation of cytokines (MIG, IFN-γ,
TNF-α, IL-4, IL-5, and IL-10) during the different evolutive
phases of chagasic esophagopathy,” Clinical Immunology, vol.
119, no. 2, pp. 213–218, 2006.


	Introduction
	Thymus Atrophy and the Negative Selectionof Thymocytes in Chagas Disease
	Dynamics of LymphocytePopulations in Peripheral LymphoidOrgans in Chagas Disease
	Concluding Remarks and Perspectives
	Abbreviations
	Conflict of Interests
	Acknowledgments
	References

