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Abstract

In several author name disambiguation studies, some ethnic name groups such as

East Asian names are reported to be more difficult to disambiguate than others.

This implies that disambiguation approaches might be improved if ethnic name

groups are distinguished before disambiguation. We explore the potential of ethnic

name partitioning by comparing performance of four machine learning algorithms

trained and tested on the entire data or specifically on individual name groups.

Results show that ethnicity-based name partitioning can substantially improve dis-

ambiguation performance because the individual models are better suited for their

respective name group. The improvements occur across all ethnic name groups

with different magnitudes. Performance gains in predicting matched name pairs

outweigh losses in predicting nonmatched pairs. Feature (e.g., coauthor name) sim-

ilarities of name pairs vary across ethnic name groups. Such differences may enable

the development of ethnicity-specific feature weights to improve prediction for spe-

cific ethic name categories. These findings are observed for three labeled data with a

natural distribution of problem sizes as well as one in which all ethnic name groups

are controlled for the same sizes of ambiguous names. This study is expected to

motive scholars to group author names based on ethnicity prior to disambiguation.

1 | INTRODUCTION

A big challenge in managing digital libraries is that
author names in bibliographic data are ambiguous
because many authors have the same names (homonyms)
or variant names are recorded for the same authors (syn-
onyms). One study estimates that about two-thirds of
author names in PubMed, the largest biomedicine digital
library, are vulnerable to either or both of these two
ambiguity types (Torvik & Smalheiser, 2009). Research
findings obtained by mining bibliographic data can be
distorted by merged and/or split author identities due to
incorrect disambiguation (Fegley & Torvik, 2013; Kim &
Diesner, 2015, 2016; Schulz, 2016). In addition, digital

library users query author names most frequently
(Islamaj Dogan, Murray, Névéol, & Lu, 2009). This means
that the users will receive inaccurate information about
research production, citation, and collaboration for
authors if author name ambiguity is not properly
resolved (Harzing, 2015; Strotmann & Zhao, 2012).

To address the challenge, researchers have proposed a
variety of author name disambiguation (AND) methods.
Some scholars have used heuristics such as string-based
matching (e.g., names that have the same full surname and
forename initials are assumed to represent the same author),
which is the most widely used approach in bibliometrics
(Milojevi�c, 2013). Others have developed rule-based program-
ming and supervised/unsupervised machine learning
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techniques, as systemically reviewed in several papers
(Ferreira, Gonçalves, & Laender, 2012; Hussain &
Asghar, 2017; Sanyal, Bhowmick, & Das, 2019; Smalheiser &
Torvik, 2009). In industry, several bibliographic data pro-
viders such asDBLP, Scopus, andWeb of Science have disam-
biguated author names to improve their service quality
(Kawashima & Tomizawa, 2015; Kim, 2018; Ley, 2009; Zhao,
Rollins, Bai, & Rosen, 2017), while others still rely on the
name stringmatching to output author-related search results.

Despite the differences in methods and datasets, a
few AND studies have observed that some ethnic name
groups (ENGs) (e.g., Chinese names) are more difficult to
disambiguate than others (Deville et al., 2014; Kim &
Diesner, 2016; Strotmann & Zhao, 2012; Torvik &
Smalheiser, 2009; Wu & Ding, 2013). This implies that
author names may be better disambiguated if their asso-
ciated ethnicities are considered as inputs in disambigua-
tion models. But this possibility has been little explored.
First, the observations made in several studies that cer-
tain ethnic names are harder to disambiguate are based
on post hoc evaluations of AND results. In other words,
many of those studies did not integrate ethnic name
partitions during machine learning. A very small number
of studies have divided names into subgroups in their dis-
ambiguation model building (Chin et al., 2013; Louppe,
Al-Natsheh, Susik, & Maguire, 2016) and evaluation pro-
cess (Lerchenmueller & Sorenson, 2016). But their ethnic
name categories are limited in number (e.g., dichotomy
of Chinese vs. non-Chinese; Caucasian, Asian, and His-
panic) or mixed up with racial distinctions based on the
U.S. Social Security information (e.g., White, Black, His-
panic, Asian, etc.). Such racial classifications can be inap-
propriate for bibliographic data in which author names
come from diverse regions around the world. In addition,
those studies have typically used a single labeled data
source, which makes it hard to expand and generalize
their findings to other AND scenarios.

This study aims to empirically evaluate the effect eth-
nic name partitioning has on AND. In this study, AND is
a task to assign either “match” or “nonmatch” label to a
pair of author name instances. For this, specifically,
name instances are grouped into a block that share the
same first forename initial and full surname and
pairwisely compared within the block for their similari-
ties over a set of features (e.g., coauthor name) to produce
similarity scores. Machine learning algorithms combine
the scores to learn weights of each feature to decide if a
given pair of instances to refer to the same author or not.
Although our work is motivated by the studies reviewed
above and follows their common data preprocessing,
blocking and machine learning steps, this paper differs
from them in three important ways. First, this study evalu-
ates AND performance by four different machine learning
algorithms applied to four different labeled datasets before

and after inclusion of a standard ENGpartition. Here, a name
instance is assigned to an ENG based on a name ethnicity
classification system, Ethnea. Second, unlike traditional
labeled data in which a specific ENG (i.e., Chinese) domi-
nates, this study disambiguates new labeled data in which all
ENGs are controlled to have the same numbers of instances,
to demonstrate that performance changes induced by ethnic
name partitioning may not be solely due to the well-known
relationship between the number of cases and their ambiguity
(more names, more ambiguity). Third, this study shows that
different combinations of features (e.g., coauthor name and
title words) appear to be related to AND performance for dif-
ferent ENGs suggesting future directions to further improve
AND performance with ambiguous ethnic names. The find-
ings of this study can provide practical insights to researchers
and practitioners who handle authority control in digital
libraries. In the following sections, details on labeled data and
setups formachine learning are described.

2 | METHOD

2.1 | Labeled data and preprocessing

To measure the effect of ethnic name partition on machine
learning for AND, this study disambiguates names in four
labeled datasets—KISTI, AMiner, GESIS, and UM-IRIS. The
first three datasets have been used in many AND studies to
train and test machine learning algorithms (Cota, Ferreira,
Nascimento, Gonçalves, & Laender, 2010; Ferreira, Veloso,
Gonçalves, & Laender, 2014; Hussain & Asghar, 2018;
Kim & Kim, 2018, 2020; Momeni & Mayr, 2016; Santana,
Gonçalves, Laender, & Ferreira, 2017; Shin, Kim, Choi, &
Kim, 2014; Wu, Li, Pei, & He, 2014; Zhu et al., 2018). The
last one is added to investigate how the ethnic name parti-
tion affects AND under the condition in which all ENGs are
constrained to have the same numbers of ambiguous name
instances.1

2.1.1 | KISTI

Scientists at the Korea Institute of Science & Technology
Information (KISTI) and Kyungsung University in Korea
constructed this labeled dataset. It is made up of 41,673
author name instances that belong to 6,921 unique
authors (Kang, Kim, Lee, Jung, & You, 2011).2

2.1.2 | AMiner

Researchers in China and U.S. collaborated to create this
labeled data to build and evaluate AND models for a com-
puter science digital library, AMiner (Tang et al., 2008;
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Wang, Tang, Cheng, & Yu, 2011).3 It consists of 7,528 author
name instances that refer to 1,546 unique authors.

2.1.3 | GESIS

Scholars at the Leibniz Institute for the Social Sciences
(GESIS) in Germany produced this labeled data. It con-
tains author name instances of 5,408 unique authors
(Momeni & Mayr, 2016).4 This study reuses the “Evalua-
tion Set” (29,965 author name instances of 2,580 unique
authors) but with a few enhancements (Kim &
Kim, 2020). Each author name instance is converted into
the “surname, forename” format and, through linking
GESIS to its base DBLP data, is associated with the title
of the paper in which it appears and the name of the
conference or journal where the paper is published.

2.1.4 | UM-IRIS

This dataset was generated by the researchers at the Uni-
versity of Michigan Institute for Research on Innova-
tion & Science (UM-IRIS) through matching selected
name instances in publication records to an authority
database, ORCID (Kim & Owen-Smith, 2021). First,
author full names (e.g., “Brown, Michael”) that appear
50 times or more in MEDLINE-indexed publications pub-
lished between 2000 and 2019 were listed.5 Then, all
instances of each selected full name (e.g., 158 instances of
“Brown, Michael” in MEDLINE) and their associated
publication metadata were compared to 6 million
researcher profiles in ORCID.6 If an instance had a single
match in the publication list of an ORCID researcher pro-
file (matching on full name, paper title, and publication
venue), the matched researcher's ORCID id was assigned
as an author label to the instance. Next, among the
ORCID id-linked instances, those whose full names are
associated with five or more ORCID ids (e.g., six unique
ORCID researchers share the name “Brown, Michael”
which appear 158 times in MEDLINE) were randomly
selected to produce 1,000 name instances for each of six
ENGs. The resulting data contain 6,000 instances of
822 authors.

Four features—author name, coauthor name(s),
paper title, and publication venue—are used as machine
learning features because they have been widely used in
algorithmic AND studies (Schulz, 2016; Song, Kim, &
Kim, 2015) and are commonly available in the four
labeled datasets. The string of each feature is stripped of
nonalphabetical characters, converted into ASCII format,
and lowercased. For title words, common English words
like “the” and “to” are removed (i.e., stop-word listed)

using the dictionary in Stanford NLP7 and stemmed
(e.g., “solution” ! “solut”) using the Porter's algorithm.8

Name instances in KISTI are converted into the full sur-
name and first forename initial format (“Wang,
Wei” ! “Wang, W”) to make them more ambiguous (see
Kim & Kim, 2020).

2.2 | ENG tagging

This study assigns an ENG tag to a name instance in each
labeled dataset using the author name ethnicity classifi-
cation database, Ethnea, developed by Torvik and
Agarwal (2016).9 Ethnea is a collection of more than
9 million author name instances that are tagged one of
26 ENG classes based on the name's association with
national-level geo-locations.10 For example, “Wang, Wei”
is classified as “Chinese” as it is most frequently associ-
ated with organizations in China. However, Ethnea
makes no distinctions based on any anthropological, cul-
tural, or linguistic characteristics of authors. Instead it
relies entirely on observations of names and geo-locations
of their frequently associated institutions so an author
named “Wang, Wei” who was born in the United States
and has never visited China would still be assigned a
“Chinese” tag. We link all four labeled datasets to
Ethnea and, if a matched name is found, assign that
name's ENG tag to all its observed instances. If a que-
ried name does not have a match in Ethnea, we search
again using only the surname and assign the modal
Ethnea ENG tag associated with it to all its instances.
Table 1 summarizes the frequencies and ratios of ENG
tags assigned by Ethnea to author name instances in
each labeled dataset.

Table 1 shows the list of ENGs in each labeled data.
Small-sized ENGs are excluded from analysis because
most name instances in those ENGs tend to belong to a
single author while a few instances referring to other
author(s). When randomly split into training and test
subsets for machine learning, these instances do not pro-
duce negative pairs at all.

Chinese names represent the majority of ENGs in
three labeled data. This is because these labeled data
were created from computer science papers where Chi-
nese researchers are particularly large contributors. In
addition, as the three datasets were designed to collate
challenging names to disambiguate, Chinese names that
tend to be more ambiguous than other ENGs were over-
sampled (Müller, Reitz, & Roy, 2017). In contrast, 6,000
instances in UM-IRIS are evenly distributed over six
ENGs. For validation and reuse, these labeled data with
ENG tags are publicly available.11 Note that the original
KISTI contains 41,673 name instances, whereas the
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ENG-tagged KISTI has 41,605 instances. Such discrep-
ancy occurs because this paper uses the revised version of
KISTI that corrects record errors and duplicates in the
original data (Kim, 2018).

2.3 | Machine learning process

Machine learning methods for AND can be divided into two
groups: author assignment and author grouping (Ferreira
et al., 2012). While the former aims to assign an author name
instance to one of pre-disambiguated author name clusters,
the latter aims to group all and only instances that belong to
the same authors. This study takes the latter approach in
evaluating the effect of ENG on AND. Specifically, author
name instances in each labeled dataset are pairwise com-
pared to assess whether a given instance pair plausibly repre-
sents the same author (a match) or not (a nonmatch).
Although some scholars take a further step to cluster pairwise
comparisons (e.g., Kim & Kim, 2018; Levin, Krawczyk,
Bethard, & Jurafsky, 2012; Louppe et al., 2016; Santana
et al., 2017), this study only evaluates disambiguation

performance at a pair level (i.e., classification), follow-
ing the practice of previous AND studies (e.g., Han,
Giles, Zha, Li, & Tsioutsiouliklis, 2004; Song et al.,
2015; Treeratpituk & Giles, 2009; Vishnyakova,
Rodriguez-Esteban, Ozol, & Rinaldi, 2016).

As the first machine learning step, author name
instances in each labeled dataset are randomly divided into
training (50%) and test (50%) subsets. Then, instances in
each subset are put into blocks in which all member
instances share the same full surname and first forename
initial (e.g., “Wang, W”). Only instances in the same block
are compared for disambiguation. This blocking is typical
in AND studies because it reduces computational complex-
ity with only slight performance degradation (Kim, Sefid, &
Giles, 2017; Torvik & Smalheiser, 2009). Next, instance pairs
in the same block are compared to establish their similarity
over four other data features: author name, coauthor
name(s), paper title, and publication venue. To quantify
how much a pair is similar over a feature, this study calcu-
lates the cosine similarity of term (n-gram) frequency for
each feature (Han, Zha, & Giles, 2005; Kim & Kim, 2020;
Levin et al., 2012; Louppe et al., 2016; Santana, Gonçalves,

TABLE 1 Summary of ethnic name group (ENG) frequencies in labeled data

Labeled data (no. of instances)

KISTI (41,605) AMiner (7,528) GESIS (29,965) UM-IRIS (6,000)

ENG Ratio (%) ENG Ratio (%) ENG Ratio (%) ENG Ratio (%)

Chinese 50.1 Chinese 64.2 Chinese 56.2 Chinese 16.67

English 15.6 English 17.0 German 14.8 English 16.67

Indian 9.5 Indian 6.3 English 7.0 German 16.67

Korean 8.0 German 5.6 Indian 4.3 Hispanic 16.67

German 3.3 Hispanic 3.1 Hispanic 3.6 Indian 16.67

Israeli 2.2 Sum 96.2 Korean 3.5 Korean 16.67

Italian 2.0 Excluded ENGs (3.8%):
Japanese, Nordic,
Korean, Arab

Japanese 2.8 Sum 100.00

Hispanic 1.7 Italian 1.7 Excluded ENGs (0%):
None

Japanese 1.1 Arab 1.6

Dutch 1.0 French 1.3

Arab 0.9 Sum 96.8

French 0.9 Excluded ENGs (3.2%): Nordic,
Hungarian, Dutch, Vietnamese,
Slav, Romanian, Greek, Israeli,
Turkish, Indonesian

Sum 96.3

Excluded ENGs (3.7%): Nordic, Slav,
Greek, Romanian, Vietnamese,
Null, African, Turkish, Hungarian
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Laender, & Ferreira, 2015; Treeratpituk & Giles, 2009).
Specifically, the string of a feature is converted into an
array of 2–4-grams (e.g., author name “Wang, Wei” !
“wajanjngjgwjwejeijwanjangjngwjgwejweijwangjangwjng-
wejgwei”). After the conversion, two n-gram arrays of an
instance pair are compared to produce a cosine similarity
score for the feature.

Besides the four basic features, ENGs are used as a
feature set for ENG-aware disambiguation. For this, espe-
cially, an instance pair's ENG is encoded into a binary value
(i.e., one-hot encoding) for a predefined set of ENGs.12 For
example, in AMiner, a pair of name instances (“Wang,
Wei” and “Wang, W.”) is assigned either “Yes” or “No” for
each of five ethnicities—Chinese (“Yes”), English (“No”),
Indian (“No”), German (“No”), and Hispanic (“No”)—as
shown in Table 1. Table 2 shows examples of the cosine
similarity scores calculated over four features and ENG
encoding results for instance pairs.

We focus on four algorithms—gradient boosting (GB),
logistic regression (LR), naïve Bayes (NB), and random for-
est (RF)—for supervised machine learning that have been
widely used as baselines or best performing methods in
AND studies (e.g., Han et al., 2004; Kim & Kim, 2020; Kim,
Sefid, Weinberg, & Giles, 2018; Louppe et al., 2016; Song
et al., 2015; Torvik & Smalheiser, 2009; Treeratpituk &
Giles, 2009; Vishnyakova et al., 2016; Wang et al., 2012). In
the first scenario, they are trained on the list of similarity
scores and labels, as shown in Table 2 to learn relative
weights for features and an absolute weight or threshold for
instance pairs to be disambiguated without considering
ENGs (! ENG-ignorant learning). In the second scenario,
the same algorithms are trained on the list of similarity
scores, ENGs, and labels (! ENG-aware disambiguation).
Here, the ethnic name partition adds more features (dimen-
sions) to each instance pair's feature set, allowing algo-
rithms to combine the similarities of the expanded features.
The machine learning procedure is implemented using the
python Scikit-learn package. For GB, 500 estimators are
used with max depth = 9 and learning rate = 0.125. For
LR, L2 regularization with class weight = 1 is used. Gauss-
ian NB with maximum likelihood estimator is used for
NB. For RF, 500 trees are used after a grid search.

Trained algorithmic models are applied to the
instance pairs in test subsets in which the cosine simi-
larity is calculated for the four basic features and, in the
second scenario, ethnicities are encoded in the same
fashion but explicitly include ENG information. As in
Table 2, an algorithmic model receives a set of feature
similarity scores and, if ENG-aware disambiguation is
conducted, a list of encoded ENGs for an instance pair
to output a binary classification decision (match or non-
match). Once trained, each algorithm produces a single
score that predicts the probability of an instance pair
being negative (nonmatch). If the predicted probability
is above a certain threshold (>0.5), the pair is decided
to be a nonmatch, whereas if below the threshold, a
match.

2.4 | Performance evaluation

We evaluate each algorithm's classification results on
reserved test subsets of each labeled dataset by calculat-
ing precision and recall for positive (P; match) and nega-
tive (N; nonmatch) pairs, respectively. In addition, we
calculate the F1 score as a harmonic mean of precision
and recall.

Specifically, precision for positive pairs (PrecPos)
measures how many predicted match pairs are correct
ones (true positives [TP]) over the total number of
predicted match pairs that may contain correct match
pairs (TP) and incorrect match pairs (false positives
[FP]). In contrast, recall for positive pairs (RecPos) mea-
sures the ratio of correct match pairs (TP) over the total
number of true match pairs that may be predicted cor-
rectly as match pairs (TP) or incorrectly as nonmatch
pairs (false negatives [FN]),

Precision positive PrecPosð Þ
=
Number of correctly predicted match

Number of predicted match

=
TP

TP+FPð Þ ,
ð1Þ

TABLE 2 A mock-up example of cosine similarity scores for instance pairs over four features and ethnic name group (ENG) encoding

Pairs

Feature

LabelAuthor name Coauthor name Paper title Pub. venue ENG 1 ENG 2 ENG 3

Pair 1 0.97 0.89 0.67 0.12 Yes No No Match

Pair 2 1.00 0.24 0.46 0.00 No Yes No Nonmatch

Pair 3 0.65 0.07 0.00 0.80 No No Yes Nonmatch

Pair 4 0.58 0.08 0.00 0.00 Yes No No Nonmatch
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Recall positive RecPosð Þ
=
Number of correctly predicted match

Number of true match

=
TP

TP+FNð Þ ,
ð2Þ

F1positive =
2× PrecPos×RecPos
PrecPos+RecPos

: ð3Þ

Likewise, precision for negative pairs (PrecNeg)
measures how many predicted nonmatch pairs are
correct ones (true negatives [TN]) over the total number
of predicted nonmatch pairs that may contain correct
nonmatch pairs (TN) and incorrect nonmatch pairs (FN).
In contrast, recall for negative pairs (RecNeg) measures
the ratio of correct nonmatch pairs (TN) over the total
number of true nonmatch pairs that may be predicted
correctly as nonmatch pairs (TN) or incorrectly as match
pairs (FP),

Precision negative PrecNegð Þ
=
Number of correctly predicted nonmatch

Number of predicted nonmatch

=
TN

TN+FN
,

ð4Þ

Recall negative RecNegð Þ
=
Number of correctly predicted nonmatch

Number of true nonmatch

=
TN

TN+FP
,

ð5Þ

F1negative=
2× PrecNeg×RecNeg
PrecNeg+RecNeg

: ð6Þ

The metrics are calculated on the entire set of test
results for each labeled dataset. We separately calculate
performance measures for different ENGs rather than
averaging them across multiple ethnicity groups.

3 | RESULTS

3.1 | Cross-data performance evaluation

Figure 1 shows disambiguation results on KISTI,
reporting precision and recall before and after ENG-aware
disambiguation by four algorithms—GB, LR, NB, and
RF. Figure 1a shows that when ENGs are included as fea-
tures, the algorithms tend to produce better precision in
the prediction of positive (match) pairs than when they
are not considered. This is shown by black bars (“After”)
being higher than stripped bars (“Before”) in Figure 1a.

FIGURE 1 Disambiguation performances “Before” versus “After” ethnic name group (ENG)-aware disambiguation on KISTI
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This observation indicates that ethnic name partitioning
helps algorithms increase the ratio of TP among
predicted positive pairs (= TP + FP). This can be con-
firmed by checking the numbers of TP and FP pairs in
Table 3. For example, when trained only on the four
basic (non-ENG) features, LR predicts that 76,201 (= TP
+ FP = 55,998 + 20,203) pairs refer to the same authors
(match) and 73.49% of the predictions are right [= TP/
(TP + FP)]. After trained on the same but ENG-tagged
data, however, it predicts 170,432 pairs to be match sets,
increasing its prediction accuracy this time to 77.08%.

Ethnic name partitioning also reduces the number of
falsely predicted nonmatch cases (FN), increasing recall
in Figure 1b. Performance gains by ENG-aware disambig-
uation are more pronounced for recall than for precision,
as evidenced by larger differences between “Before” and
“After” bars for recall (Figure 1b) than those for precision
(Figure 1a). In other words, ENG-aware disambiguation
across four common algorithms appears to reduce FN
predictions more than TP predictions, potentially provid-
ing better performance for applications (such as network
analysis) that are particularly sensitive to biases due to

TABLE 3 Numbers of correctly or incorrectly predicted pairs for positive and negative pairs by four algorithms on KISTI test data

Algorithm ENGs considered No. of pairs TP FN FP TN

LR Before 483,029
(P: 189,375)
(N: 293,654)

55,998 133,377 20,203 273,451

After 131,364 58,011 39,068 254,586

NB Before 50,782 138,593 14,267 279,387

After 71,020 118,355 8,775 284,879

RF Before 82,727 106,648 57,532 236,122

After 128,105 61,270 40,479 253,175

GB Before 75,195 114,180 24,725 268,929

After 136,859 52,516 39,888 253,766

Abbreviations: FN, false negatives; FP, false positives; GB, gradient boosting; LR, logistic regression; N, negative; NB, naïve Bayes; P, positive; RF, random

forest; TN, true negatives; TP, true positives.

FIGURE 2 Disambiguation performances “Before” versus “After” ethnic name group (ENG)-aware disambiguation on AMiner
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erroneous “lumping” of name instances that actually
refer to different individuals. The improvements in
precision and recall together increase the F1 scores by
ENG-aware disambiguation (Figure 1c).

ENG-aware disambiguation also does a better job of
accurately predicting nonmatch (negative pair) cases.
The “After” bars are taller than those of “Before” in
Figure 1d. Unlike the positive pair prediction in which

FIGURE 3 Disambiguation performances “Before” versus “After” ethnic name group (ENG)-aware disambiguation on GESIS

FIGURE 4 Disambiguation performances “Before” versus “After” ethnic name group (ENG)-aware disambiguation on UM-IRIS
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ENG-aware disambiguation works in favor of both preci-
sion and recall by all algorithms, however, the performance
gains in precision for negative pairs come with slightly
decreased recall by GB and LR in Figure 1e. This means
that while disambiguation models by GB and LR trained
on ENG-added features are good at increasing the numbers
of true nonmatch pairs among predicted nonmatch pairs
(= TN + FN), they incorrectly predict that true nonmatch
pairs match (FP predictions) more frequently than when
they are trained on the four basic features alone. Reduced
recall for negative pair prediction is, however, offset by
increased precision, leading to the F1 scores by ENG-aware
disambiguation being better than those by ENG-blind one
in Figure 1f. Meanwhile, NB and RF still obtain improve-
ments in both precision and recall as well as F1.

Algorithmic performances are also enhanced by
ENG-aware disambiguation on AMiner, GESIS, and
UM-IRIS. Figures 2–4 report that the algorithms
trained on ENG-tagged data perform better than those
trained only on the basic features across almost all
metrics for both positive and negative pairs. NB
models prove the exception, producing worse results
in recall for positive pairs and in precision for nega-
tive pairs after ethnic name partitioning. However,
this degraded performance is offset by increased preci-
sion for positive pairs and increased recall for nega-
tive pairs, respectively, so the overall performance
metric (F1), which equally weights precision
and recall, indicates an overall improvement due to
the inclusion of ENG features.

FIGURE 5 Disambiguation performances per ethnic name group (ENG) “Before” versus “After” ENG-aware disambiguation by random

forest on GESIS
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3.2 | Performance evaluation per ENG

ENG-aware disambiguation produces substantial
improvements in both precision and recall for predicting
match and nonmatch instance pairs in different labeled
datasets. But are those improvements uniform across dif-
ferent ENGs? If not, a more nuanced approach to model

evaluation may be necessary. To answer this question,
we compare performance changes due to ENG-aware dis-
ambiguation within ENG groups. For this, precision,
recall, and F1 scores for positive and negative pairs
predicted by four algorithms are calculated separately for
instance pairs that belong to the same ENG in each of
four labeled data: 4 algorithms × 4 data = 16 evaluations.

FIGURE 6 Feature similarity score

distributions per ethnic name group

(ENG) for positive and negative pairs in

GESIS test data [Color figure can be

viewed at wileyonlinelibrary.com]
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Presenting all the results at the same time would
consume too much space in this paper. So, we present RF
predictions on the GESIS dataset as an illustration for the

purposes of this discussion. Reports of other algorithms
and data are presented in Supporting Information
attached to this paper.

Figure 5 shows the by ENG performance metrics for
the RF algorithm trained on GESIS with and without
ENG-aware disambiguation. The ENG-aware disambigu-
ation leads to better precision (positive pairs; Figure 5a)
and recall (negative pairs; Figure 5e) for Chinese names
but worse precision (positive pairs) and recall (negative
pairs) for other ethnicities. In contrast, name disambigua-
tion for Chinese names results in lower recall (positive
pairs; Figure 4b) and precision (negative pairs; Figure 4d)
than those for other ENGs. Similar patterns are observed
for other algorithms tested on GESIS (see Figures S5–S8,
Supporting Information). This suggests that the effect of
ENG-aware disambiguation occurs in different ways for
different ENGs. Thus, its application can be beneficial in
some instances but detrimental in others. Variations in
the effects of ENG-aware disambiguation on precision
and recall for positive and negative pair prediction
across ethnicity groups suggest that care must be taken to
design disambiguation strategies that fit particular
analytic or empirical needs.

These observations can be explained as follows. ENGs
have different distributions of similarity scores over the
four basic (nonethnicity) features we use. Figure 6 pre-
sents the feature similarity score distributions per ENG
for positive (left) and negative (right) pairs in the GESIS
test data. Training and test subsets show similar distribu-
tions in each labeled dataset. For visual simplicity, a
score is rounded up into nearest bins with intervals of 0.1
on x-axis and the ratios of the numbers of scores in the
same bin over all scores are plotted on y-axis. A solid red
line represents the distribution of all instance pairs
regardless of ENG.

In Figure 6, each ENG has different distributions of,
for example, “Coauthor” similarity scores for both posi-
tive and negative pairs (Figure 6c,d). So, the four algo-
rithms come to use different “coauthor” similarity score
distributions in ENG-aware disambiguation. Such hetero-
geneous distributions also occur for other features but
with different variations of differences. For example,
“Venue” distributions in Figure 6g,h differ less across

TABLE 5 Distributions of positive and negative name instance

pairs per ethnic name group (ENG) in KISTI training data

ENG
Positive
pairs Ratios

Negative
pairs Ratios

Arab 6,015 3.21 37 0.01

Chinese 53,519 28.55 209,807 71.28

Dutch 5,448 2.91 84 0.03

English 45,054 24.04 25,137 8.54

French 2,686 1.43 625 0.21

German 11,065 5.90 4,114 1.40

Hispanic 3,729 1.99 1,680 0.57

Indian 33,742 18.00 19,043 6.47

Israeli 9,699 5.17 460 0.16

Italian 9,598 5.12 283 0.10

Japanese 1,588 0.85 580 0.20

Korean 5,284 2.82 32,474 11.03

Total 187,427 100 294,324 100

TABLE 6 Distributions of positive

and negative name instance pairs per

ethnic name group (ENG) in AMiner

training data

ENG Positive pairs Ratio (%) Negative pairs Ratio (%)

Chinese 38,958 61.88 76,781 91.26

English 13,758 21.85 2,414 2.87

German 2,603 4.13 748 0.89

Hispanic 1,933 3.07 380 0.45

Indian 5,701 9.06 3,815 4.53

Total 62,953 100 84,138 100

TABLE 4 Distributions of positive and negative name instance

pairs per ethnic name group (ENG) in GESIS training data

ENG
Positive
pairs Ratios

Negative
pairs Ratios

Arab 1,559 0.66 1,203 0.21

Chinese 145,969 62.22 551,150 93.96

English 16,020 6.83 2,147 0.37

French 1,948 0.83 3,118 0.53

German 37,373 15.93 13,092 2.23

Hispanic 5,887 2.51 1,907 0.33

Indian 6,708 2.86 2,654 0.45

Italian 3,489 1.49 686 0.12

Japanese 8,853 3.77 2,608 0.44

Korean 6,792 2.90 7,994 1.36

Total 234,598 100 586,559 100
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ENGs than do “Coauthor” distributions. Because ENG-
aware disambiguation allows training and testing on dif-
ferent feature similarity score distributions for each ENG,
the algorithms combine features using different
weightings for each ethnicity, producing different predic-
tions for name pairs with the same feature similarity
scores but different ENG tags. In other words, this
method takes into account the likelihood that researchers
in different ENGs organize their scientific work differently,
favoring distinct coauthorship and publication venue
patterns. This also occurs in disambiguation of other
labeled data, whose feature similarity score distributions
are reported in Figures S17–S20.

Figure 5 also shows that some ENGs manifest
substantial improvements in recall for positive pairs
(Figure 5b) but degraded recall for negative pairs
(Figure 5e). This might be explained in two ways. In our
“Before” (ENG-unaware) case, algorithms combine fea-
tures to produce per-feature weights for positive pairs
based on feature similarity scores aggregated across mul-
tiple ENGs that can have very different feature distribu-
tions. Such aggregated distributions cannot effectively
capture the single match patterns specific to each ENG,
which seem to lead models to falsely predict positive
pairs as negative ones (FN), reducing the recall for posi-
tive pairs. Conversely, increased recall for positive pairs
after ENG-aware disambiguation means that the algo-
rithms trained and tested on ENG-tagged data success-
fully produce per-feature weights optimized to each
ENG, thus making better predictions that push up the
recall scores for many ENGs.

Second, decreased negative pair recall after ENG-
aware disambiguation means that the algorithms trained
and tested on ENG-tagged data fail to produce proper
per-feature weights for accurately predicting nonmatch
for known negative pairs. When the algorithms are
trained only on the four basic (nonethnicity) features,
they do a better job of predicting nonmatch pairs based
on aggregated feature similarity distributions that are
invariant across particular ENGs. In other words, feature
distributions aggregated across ENGs appear to be more

effective for predicting negative case pairs while ENG-
aware disambiguation techniques more accurately
capture positive pairs.

These observations imply that disambiguation models
for positive pair prediction would be improved by ENG-
aware procedures, while nonmatch patterns for negative
pair prediction can aggregate across ENGs (Kim &
Kim, 2018). Table 4 shows that in the GESIS training
data, each ENG has different sizes of positive and nega-
tive (pairwise) pairs. Chinese name instances produce the
largest numbers of positive (≈146 K) and negative pairs
(≈551 K), while Italian name instances generate around
a few thousand positive and a few hundred negative
pairs. In other training data, Chinese pairs constitute sub-
stantially large proportions (KISTI: 71.28% and AMiner:
91.26%) or over one-third (UM-IRIS: 37.54%) of all nega-
tive pairs, while other ENG pairs make up small or less-
than-expected (approximately 17% per ENG in UM-IRIS)
proportions. In contrast, the numbers of positive pairs are
less concentrated (GESIS, KISTI, and AMiner) or more
evenly distributed (UM-IRIS) for positive pairs than those
for negative pairs.

As noted above for Figure 5 and observed in other
labeled data (see Figures S1–S16), the algorithms work
better in finding more TN pairs even for non-Chinese
name pairs when they are trained on data in which eth-
nic name partitioning is not performed (“Before”) and,
thus, negative pairs are dominated by Chinese ones as
shown in Tables 4–6. This implies that the nonmatch pat-
terns in Chinese name pairs are applicable to predicting
nonmatch pairs for other ENGs. In contrast, during
ENG-aware disambiguation, the algorithms come to rely
on the small-size negative pairs that may skew or distort
true nonmatch patterns for some ENGs. This seems to
result in the decreased recall in predicting negative pairs
(i.e., many TNs classified as FPs, which reduces precision
for positive pair prediction), while increasing slightly
precision in predicting negative pairs.

Despite the aforementioned conflicting changes in
precision and recall per ENG, the overall performance by
the four algorithms on the whole test set are shown in

TABLE 7 Distributions of positive

and negative name instance pairs per

ethnic name group (ENG) in UM-IRIS

training data

ENG Positive pairs Ratio (%) Negative pairs Ratio (%)

Chinese 1,517 10.60 7,261 37.54

English 2,185 15.26 459 2.37

German 3,673 25.66 1,917 9.91

Hispanic 2,416 16.88 970 5.01

Indian 2,080 14.53 3,803 19.66

Korean 2,445 17.08 4,933 25.50

Total 14,316 100 19,343 100

990 KIM ET AL.



Figures 1–4 to substantially increase across the four
labeled data after ethnic name partitioning is included in
machine learning. One reason would be that perfor-
mance gains outweigh losses at each ENG level overall.
Another reason would be that especially for KISTI,
AMiner, and GESIS, the improved performances in dis-
ambiguating Chinese that constitute the majority of
name instances may affect the overall evaluation results.
As shown by the case of UM-IRIS in which ENG sizes
are controlled to be equal, however, the overall perfor-
mance improvements can be observed for all the ENGs
by ENG-aware disambiguation. As such, this study illus-
trates that the ethnic name partition can be truly effective
in improving disambiguation performances.

4 | DISCUSSION

These results suggest that AND tasks may produce better
results by using ethnic name partition in machine learn-
ing. Considering that adding more features can improve
generally machine learning performances, the enhanced
disambiguation performances by ENG partitioning might
not be a surprise. With that said, the real contribution of
this study would be that it demonstrates many machine
learning based disambiguation models have a potential to
be improved by introducing ethnic name grouping into
ambiguous data without additional collection of feature
information.

To fully realize this potential, however, a few issues
need to be addressed. First, ENG tagging can be a non-
trivial task that requires an intricate algorithmic tech-
nique itself. Thanks to the ENG classification system
developed and publicly shared by Torvik and
Agarwal (2016), this study could assign ENGs to the
names in four labeled data. Although Ethnea was con-
structed based on more than 9 million author name
instances in PubMed, the world largest biomedicine
library, it is unknown how well it can help us tag ENGs
to names in other fields. Ideally, Ethnea may be updated
regularly to reflect new author names entering biblio-
graphic data in various fields. Practically, further
research may be focused on finding out a set of ENGs
that are most influential in improving disambiguation
results and thus simplifying ENG tagging for AND
(e.g., Chinese vs. non-Chinese).

Second, the findings of this study were based on three
labeled data (KISTI, AMiner, and GESIS) in which Chi-
nese names are dominant and the overall performance
improvements were heavily affected by those for Chinese
name instances. To overcome such an imbalance of
instance distribution in labeled data, a new labeled data
(UM-IRIS) were created in a way that six ENGs have the

same amount of ambiguous name instances. Disambigua-
tion results from the new labeled data were in line with
those from other three labeled data. In addition, all ENGs
including Chinese were able to obtain gains in disambig-
uation performances. But all these findings were
obtained from small-sized labeled data, whether they are
biased or controlled for ENG sizes. So, it is still unknown
whether such improvements are achievable in AND for
large-scale bibliographic data in which ENG composition
may be quite different from those in the labeled data used
in this paper.

Another issue would be that there can be other
features than the four used in this study that can lead
ethnic name partition to different AND performances.
For example, English authors may appear in publication
records that are more complete in affiliation information
and use more diverse title terms. Meanwhile, Chinese
authors may tend to work with coauthors who have simi-
lar names in same institutions. Various features need to
be explored to study further the impact of ethnic name
partition on AND.

Fourth, ENG-aware disambiguation may be beneficial
for positive pair prediction but not so much for negative
pair prediction. This was illustrated in Figures 5 and S1–
S16 by the dramatically decreased recall in negative pair
predictions for many ENGs. It was contrasted with the
substantial increase of precision in positive pair predic-
tion for those ENGs. This study speculates that by ethnic
name partitioning, classifiers become stricter for Chinese
pairs while relaxed for other ENG pairs. In other words, a
pairs of Chinese instances that would be classified as
“match” before partitioning are classified as “nonmatch”
after partitioning (PrecPos", RecPos#), while “nonmatch”
pairs of other ENG instances as matched ones (PrecPos#,
RecPos"). This might be because while some Chinese
pairs sharing coauthor names, venue names, or title
words refer to different authors, other ethnic names shar-
ing the features are more likely to represent the same
authors (see Figure 6b,d,f,h in which Chinese name pair
share is denoted in square). During training, such differ-
ent similarity patterns are mixed up before partitioning
but distinguished after it. Another conjecture is that due
to the relaxed classification after partitioning, TN pairs of
other-than-Chinese ENGs are falsely classified as FP
pairs (PrecPos#, RecNeg#). As the sizes of negative pairs
in most non-Chinese ENGs are smaller than positive
pairs (see Tables 4–7), misclassified negative pairs have
larger impacts on RecNeg than on PrecPos across the
ENGs. But these conjectures are based on the observa-
tions on labeled data in which Chinese name instances
are prevalent. Using an additional labeled data with con-
trolled ENG sizes, however, the conjecture has been con-
firmed. But only six ENGs in a small dataset were
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considered for analysis. More ENGs need to be investi-
gated to check if this conjecture holds good under the dif-
ferent combinations of ENGs.

5 | CONCLUSION

This study evaluated the effects ethnic name partitioning
has on AND using machine learning methods. For this,
author name instances in four labeled datasets were dis-
ambiguated under two scenarios. First, similarity scores
of instance pairs over four basic features—author name,
coauthor names, paper title, and publication venue—
were used to train and test disambiguation algorithms.
Second, in addition to the basic features, ENGs were
tagged to name instances to allow algorithms to build
models that are optimized to each ENG. Comparisons of
disambiguation performances before and after ENG-aware
disambiguation showed that using ethnic name partition
can substantially improve algorithmic performances. Such
performance improvements occurred across all ENGs,
although performance gains and losses at each ENG
level were observed in different ways depending on
the types of measures—precision or recall—and target
classifications—positive (match) or negative (nonmatch)
pairs.

As detailed in the discussion above, ethnic name
partition requires further research for us to better under-
stand its impact on AND and apply it to disambiguation
tasks for digital libraries that are struggling with author-
ity control over fast-growing ambiguous author names.
This study is expected to motivate scholars and practi-
tioners to study toward that direction by demonstrating
the potential of ENG-aware disambiguation in improving
disambiguation performances.
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ENDNOTES
1 This new labeled dataset was created following the idea of a
reviewer who suggested that the impact of ethnic name par-
titioning on AND may be confounded by the size differences of
ambiguous names.

2 http://www.lbd.dcc.ufmg.br/lbd/collections/disambiguation/
DBLP.tar.gz/at_download/file

3 http://arnetminer.org/lab-datasets/disambiguation/rich-author-
disambiguation-data.zip

4 https://doi.org/10.7802/1234
5 https://www.nlm.nih.gov/bsd/medline.html
6 https://orcid.org/
7 https://github.com/stanfordnlp/CoreNLP/blob/master/data/edu/
stanford/nlp/patterns/surface/stopwords.txt

8 https://tartarus.org/martin/PorterStemmer/
9 https://databank.illinois.edu/datasets/IDB-9087546
10 Twenty-six ethnicities include African, Arab, Baltic, Caribbean,

Chinese, Dutch, English, French, German, Greek, Hispanic,
Hungarian, Indian, Indonesian, Israeli, Italian, Japanese,
Korean, Mongolian, Nordic, Polynesian, Romanian, Slav, Thai,
Turkish, and Vietnamese. In Ethnea, some name instances are
assigned two ethnicities (e.g., “Jane Kim” ! Korean-English) if
the surname and forename of an author name are associated
frequently with different ethnicities.

11 https://doi.org/10.6084/m9.figshare.14043791
12 As only instances in the same block in which they share at least

the same full name and first forename initial are compared, all
the pairs in the block have the same ethnicity tag.
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