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Background:Melanoma, as one of the most aggressive and malignant cancers,

ranks first in the lethality rate of skin cancers. Cuproptosis has been shown to

paly a role in tumorigenesis, However, the role of cuproptosis in melanoma

metastasis are not clear. Studying the correlation beteen the molecular

subtypes of cuproptosis-related genes (CRGs) and metastasis of melanoma

may provide some guidance for the prognosis of melanoma.

Methods: We collected 1085 melanoma samples in The Cancer Genome Atlas

(TCGA) and Gene Expression Omnibus(GEO) databases, constructed CRGs

molecular subtypes and gene subtypes according to clinical characteristics,

and investigated the role of CRGs in melanomametastasis. We randomly divide

the samples into train set and validation set according to the ratio of 1:1. A

prognostic model was constructed using data from the train set and then

validated on the validation set. We performed tumor microenvironment

analysis and drug sensitivity analyses for high and low risk groups based on

the outcome of the prognostic model risk score. Finally, we established a

metastatic model of melanoma.

Results: According to the expression levels of 12 cuproptosis-related genes,

we obtained three subtypes of A1, B1, and C1. Among them, C1 subtype had the

best survival outcome. Based on the differentially expressed genes shared by A1,

B1, and C1 genotypes, we obtained the results of three gene subtypes of A2, B2,

and C2. Among them, the B2 group had the best survival outcome. Then, we

constructed a prognostic model consisting of 6 key variable genes, which

could more accurately predict the 1-, 3-, and 5-year overall survival rates of

melanoma patients. Besides, 98 drugs were screened out. Finally, we explored

the role of cuproptosis-related genes in melanoma metastasis and established

a metastasis model using seven key genes.
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Conclusions: In conclusion, CRGs play a role in themetastasis and prognosis of

melanoma, and also provide new insights into the underlying pathogenesis of

melanoma.
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Introduction

Melanoma is a malignant tumor caused by aberrant

melanocyte proliferation. It has a high fatality rate and is

prone to metastasis. According to the 2020 global cancer

statistics, skin melanoma ranks 19th among the most common

cancers in the world (1), with the number of new cases rising to

324,635 and the number of deaths rising to 57,043. Melanoma is

one of the malignant tumors with an extremely high metastasis

rate. Its metastasis is characterized by local metastasis through

lymphatics first, and then systemic metastasis through blood.

Local surgery is the main treatment for early melanoma, while

palliative remission is the main treatment for aggressive

metastatic melanoma due to poor treatment effects (2).

Second, as the most heterogeneous tumor, melanoma is prone

to misdiagnosis and treatment failure (3). Melanoma can be

classified into nine types according to epidemiology, clinical and

histologic morphology, and genomic characteristics, namely low-

cumulative solar damage (CSD) melanoma, high-CSDmelanoma,

Desmoplastic melanoma, Spitz melanomas, Acral melanoma,

Mucosal melanomas, Melanomas arising in congenital nevi,

Melanomas arising in blue nevi, Uveal melanoma (4).

Characteristics of precursor lesions of different subtypes play a

certain role in the prevention and early treatment of melanoma.

Ultraviolet radiation is one of the main risk factors for the

formation of melanoma, and sun exposure is also an important

criterion for classifying melanoma types (5). However, little

research has been done on melanoma subtypes. Due to the high

mortality rate of melanoma, subtyping studies are also extremely

important for the individualized treatment of patients.

Cuproptosis is a novel form of cell death induced by copper

ionophores (6, 7). Under normal circumstances, cells maintain a

relatively low level of intracellular copper through homeostatic

mechanisms to prevent excessive copper accumulation leading

to cellular damage. Copper ions in the body combine with

enzymes and play a major role in blood coagulation, hormone

maturation, and energy metabolism (8–11). Within tumor

tissue, unbalanced copper levels can cause irreversible damage

to tumor tissue. It induces various forms of tumor cell death

including apoptosis and autophagy through mechanisms such as

reactive oxygen species accumulation, proteasome inhibition,
02
and anti-angiogenesis (11, 12). Studies have shown that copper

chelate, taken orally with food, has antitumor and antimetastatic

benefits in animals and humans (13). Recent studies have

identified specific roles of copper in oncogenic signaling

pathways and antitumor drug resistance (14).

In recent years, machine learning has been applied more and

more deeply in the field of life sciences, andmore andmore studies

have shown that machine learning plays an important role in

medical big data and can effectively mine new information (15–

18). With the development of microarray and sequencing

technology, the gene expression data of various diseases is also

increasing, andmachine learning has emerged in the processing of

gene expression data of various cancers (19). Machine learning can

predict the occurrence and prognosis of cancer, as well as unearth

new biomarkers of cancer (20, 21). This study aims to use machine

learning combinedwith bioinformatics to classifymelanomabased

on cuproptosis-related genes (CRGs) and to establish melanoma

prognosis and metastasis models.

In this study, we combined the transcriptional information

of melanoma samples from seven GEO datasets and TCGA

datasets to screen out a total of 12 CRGs. Then the molecular

subtypes and gene subtypes of CRGs were constructed according

to clinical characteristics and gene expression. Next, we explored

the prognostic role of these CGRs between different subtypes,

performed functional analysis of differentially expressed genes

between different subtypes, and established a prognostic model.

In addition, we performed tumor microenvironment analysis

and drug sensitivity analysis. Finally, to further understand the

role of CRGs in melanoma development, we established

metastasis models based on CRGs using 9 different machine

learning algorithms. Figure 1 shows the flow chart of this study.
Methods

Patients and datasets

We screened melanoma datasets in two databases, GEO

(https://www.ncbi.nlm.nih.gov/geo/.) and TCGA (http://portal.

gdc.cancer.gov/). A total of 7 datasets related to prognosis and

metastasis were downloaded from the GEO database [datasets
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containing prognostic information: GSE19234, GSE22153,

GSE54467, GSE69504 (394 melanoma samples)]. Datasets

containing metastasis information: GSE15605, GSE22153,

GSE46517 (219 samples)). Similarly, we screened melanoma

samples in the TCGA database and found 472 samples with

prognostic information, of which 471 were melanoma samples.

We merged datasets containing prognostic information

(GSE19234, GSE22153, GSE54467, GSE69504) with the TCGA

dataset. Then, the “perl” language was used to convert the probe

matrix into a genes matrix based on the annotation information.

Next, we converted the TCGA dataset to TPM format, so that

the data form of TCGA was more similar to that of GEO. The

“merge” package was used to merge the TCGA dataset with the

GEO dataset, and the “sva” package in the R language was used

to do a batch correction. Finally, we obtained 862 melanoma

samples containing prognostic information and 628 samples

containing metastasis information, respectively. In subsequent

analyses, we used these combined datasets to build melanoma

prognostic models and metastasis models.
Expression of CRGs in melanoma

In the TCGA cohort, “maftools” was used to map the

mutation frequencies of CRGs, shown as waterfall plots.

Likewise, we analyzed the copy number of CRG in melanoma.
Frontiers in Immunology 03
The “RCircos” package was used to draw copy number circle

diagrams. Next, we constructed a prognostic model based on 12

CRGs (7) in the combined TCGA and GEO cohort. First, we

extracted the expression levels of CRGs in datasets with

prognostic information and then merged clinical data. The

“survival” package was used for survival analysis, cox analysis

was used for univariate analysis, and KM analysis was used for

survival status analysis.
Construction of molecular subtypes
of CRGs

We obtained 13 CRGs (Supplementary Table 1) from

previous studies, and after deleting unexpressed CRGs in some

samples, we finally selected 12 CRGs for model construction.

Consensus Clustering is an unsupervised clustering method and

a common research method for cancer subtype classification. It

can differentiate samples into different subtypes based on

different omics data sets, so as to discover new disease

subtypes or perform a comparative analysis of different

subtypes. The “ConsensusClusterPlus” R package was used to

perform consensus clustering to distinguish different molecular

subtypes based on the mRNA expression levels of 12 CRGs.

Next, to further analyze the differences between subtypes. We

adopted the t-distributed stochastic neighbor embedding (t-
FIGURE 1

Article framework and workflow.
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SNE) method to explore the distribution of different subtypes,

and the “R t sne” R package was used to estimate the effect of

classification. Furthermore, we analyzed the extent of immune

cell infiltration between different subtypes. The “heatmap” R

package was used to analyze the expression levels of CRGs,

tumor grade, gender, and age among different subtypes. Finally,

the “GSVA” R package was used to analyze the enriched

pathways between different subtypes and displayed as heatmaps.
Survival analysis of gene subtype and
differential expression analysis of CRGs

To further understand the correlation between molecular

subtypes and differentially expressed genes, we performed gene

subtypes. The “limma” R package was used to analyze the

differentially expressed genes between different subtypes (logfc >

0.585, p-value < 0.05). After obtaining the differentially expressed

genes between each subtype, we took the intersection genes for

subsequent analysis. “clusterPrfiler” was used to perform GO

enrichment analysis (p-value < 0.05). Similarly, Metascape

website (http://metascape.org) (version 2022-04-22) was used to

perform enrichment analysis of 71 intergenes.Terms with a P

value1.5 are collected and grouped into clusters depended on

their membership similarities. The “limma” and “survival”

packages were used to analyze the differentially expressed genes

associated with prognosis. The Univariate cox regression analyses

were used to find intersecting genes associated with prognosis (p-

value<0.05). Next, we used the Consensus Clustering method to

type the samples according to the expression levels of the

intersecting genes. After finding the subtype with the highest

internal correlation, survival analysis and clinical trait analysis

were performed on different subtypes. We show the above

analysis results with KM curve and heat map respectively. Finally,

the “limma” package was used to analyze the expression levels of

CRGs in different gene types and displayed as boxplots.
Construction of the prognostic model

Wedivide the samples into training and validation sets in a 1:1

ratio. In the training set, differentially expressed genes associated

with prognosis were used to performLeast Absolute Shrinkage and

Selection Operator (LASSO) Cox regression analysis through the

“glmnet” R package. The risk score was equal to the LASSO

regression coefficient for each mRNA multiplied by the sum of

the normalized expression levels for each mRNA. Next, we

analyzed the AUC of the training set, the validation set, and all

samples. Then, based on the samples with survival information,

nomogram plots were constructed using the “rms” R package to

predict the 1-, 3-, and 5-year survival probabilities of patients. A

calibration plot was constructed to assess the agreement of the

probabilities predicted by the nomogram with the actual values.
Frontiers in Immunology 04
Tumor microenvironment and drug
sensitivity analysis

The “CIBERSORT” package was used to perform immune cell

infiltration analysis. We analyzed the correlation between 6 key

variablegenes (AIM2,EDNRB, SLC39A6,TMEM117,PTPRC, and

KIF14) and immune cells. At the same time, we also analyzed the

correlation between the two prognostic risk groups and the tumor

microenvironment. The “estimate” package was used to score the

tumormicroenvironment in the high-risk and low-risk groups and

displayed in a violin plot. Then, we performed a drug sensitivity

analysis based on the risk score results. We combined the sample’s

risk score and drug sensitivity. Then, the high-risk and low-risk

groups were analyzed for their sensitivity to the drug, and results

with significant differences (p-value > 0.001) were represented

by boxplots.
Construction of metastasis model

We integrated all GEO datasets (GSE15605, GSE21153,

GSE46517) with melanoma metastasis information. 70% of the

samples were set as the training set, and the remaining 30% of the

samples were set as the validation set.We used the REFCVmethod

to screen out keymetastatic variables by python 3.7. Themain idea

of recursive feature elimination (REF) is to build the model

iteratively and then select the best (or worst) features (selected

according to the coefficients). Set the selected features aside and

repeat the process on the remaining features until all features are

traversed.Theorder that is eliminated in thisprocess is the ordering

of features. REFCV is REF + CV (cross-validation). Its operating

mechanism is first to use REF to obtain the ranking of each feature,

and then based on the ranking, select [min_features_to_select, len

(feature)] feature subsets for model training in turn and cross-

validation, and finally select the feature subset with the highest

average score. (python 3.7 sklearn 0.22.1 package).

We then use these key variables to build models using 9

different machine learning algorithms (XGBoost’, ‘Logistic’,

‘LightGBM ’ , ‘RandomFores t ’ , ‘AdaBoostClass ifier ’ ,

‘GaussianNB’, ‘ComplementNB’, ‘SVC’ ‘, ‘KNeighbors). Using

the cross-validation method, the random seed is set to 1 and the

fold is 15. The performance of each model was compared using

multi-model forest plots, AUC, accuracy, and F1 values to screen

out the best performing models. All Statistical analyses in the

process of construction of the metastasis model were performed

using python version 3.7 and the Extreme Smart Analysis

platform (https://www.xsmartanalysis.com/) (22).
Interpretability of the metastasis model

After filtering out the best performingmodels, use the “SHAP”

package (version 0.39.0, python 3.7) to explain the importance and
frontiersin.org
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contributionof key variables to themodel.At the same time, use the

force diagram to illustrate 2 samples to showhowdifferent variables

contribute in different samples (“SHAP” package version 0.39.0,

python 3.7). All Statistical analyses in this part were performed

using python version 3.7 and Extreme Smart Analysis platform

(https://www.xsmartanalysis.com/).

Statistical analysis

The “survival” package was used for survival analysis, cox

analysis was used for univariate analysis, and KM analysis was

used for survival status analysis. Principal Component Analysis

(PCA) was used to demonstrate the differences between CRG

subtypes.The “ConsensusClusterPlus” package was used for the

subtyping of CRG subtypes and gene subtypes. Lasso regression

was used to screen for genes associated with prognosis, and

prognostic models were developed using multivariate regression

analysis. Wilcoxon rank sum test was used to compare TME

scores between the high-risk and low-risk groups. The ROC

curve was used to assess the predictive power of the prognostic

model. There are several R packages, including “RCircos”,

“heatmap”, and “ggplot” packages for generating graphs. P <

0.05 is considered statistically significant.The python software

(version 3.7) used in the establishment of the melanoma

metastasis model was used for statistical analysis. The REFCV

method of the sklearn 0.22.1 package was used to screen key

variables in the melanoma metastasis model. In the modeling

process of various machine learning algorithms, the xgboost

1.2.1 package was used to perform the XGBoost algorithm, the

lightgbm 3.2.1 package was used to perform the LightGBM

algorithm, and the sklearn 0.22.1 package was used Used to

run other machine learning algorithms. The shap 0.39.0 package

was used to demonstrate model interpretability (SHAP graph,

feature importance ranking graph, force graph).

Cell lines and constructs for transfection

Human malignant melanoma cell line A375 were cultured in

Dulbecco’s modified Eagle’s medium (DMEM, Gibco),

supplemented with 10% (v/v) heat-inactivated fetal bovine serum

(FBS,Gibco) at 37°C inahumidified incubator containing5%CO2.

FDX1 siRNAs (1#: 5’-CAUUAACAACCAAAGG AAA-3’, 2#: 5’-

CAUCUUUGAAGAUCACAUA-3’) and control siRNA (5’-UUC

UCCGAACGU GUCACGU-3’) were obtained from Sangon

(Shanghai, China). Transfection of siRNAs was performed with

Lipofectamine RNAiMAX Transfection Reagent (Thermo Fisher)

as recommended.

Western blot analysis

The protein was extracted using RIPA buffer (Beyotime) and

the protein concentration was determined using the BCA Protein

Assay Kit (Pierced, Grand Island, NY). Protein samples were
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separated by 12% SDS-PAGE and transferred onto polyvinylidene

difluoride membranes ((PVDF, Millipore). To assess the protein

expression, the blots were incubated with the primary rabbit

antibodies against FDX1 (Abcam) and anti-rabbit secondary

antibodies (Cell Signaling Technology) at a dilution of 1:2000

for 1 h at room temperature. b-Actin(Cell Signaling Technology)
served as an endogenous control for equal loading.
CCK-8 experiment

The CCK-8 reagent was purchased from GLPBIO

(GK10001). Briefly, A375 cells transient transfecting FDX1

siRNA (siFDX1) or the control siRNA (siNC) were seeded at

2x104 cells per well in 96-well plates in quintuplicate, the

number of viable cells in each well was measured at 0, 12, 24,

and 36 hours according to the manufacturer’s instructions.
Wound healing

For wound healing assay, when the cells were grown to 90%

confluence after transfection, a straight scratch in the cell

monolayer was created by a 10mL pipette tip. A375 cells were

incubated with 2% FBS. Images of the scratched area (wound)

were taken at the time point of 0h, 24 h, 36 h, and 48 h under a

microscope. Wound closure= (original wound area - existing

wound area)/original wound area. The area of wound healing

was calculated by Fiji (version Fiji for Mac OS X).
Vitro experiment statistical analysis

Statistical analysis was performed using software of Graph

Pad Prism 5 (GraphPad, La Jolla, CA). Student’s t-tests were

used to evaluate significant differences between any two groups

of data. All data are represented as means ± SEM. Differences

were considered significant if p < 0.05.
Results

Article framework and workflow

Flow chart of data collection and data analysis for the

article (Figure 1).

Mutation frequency and prognostic value of
CRGs in melanoma

Among the 467 patients in the TCGA dataset, 56 patients had

CRGs mutations (S1 A). Meanwhile, CRGs chromosome positions

are shown as copy number variant plots (S1 B). Besides, the

frequency of CRGs copy number variation in the samples is
frontiersin.org
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shown graphically (S1 C), with red representing an increase in copy

number and green representing a decrease in mutation. The graphs

show a significantly reduced number of mutations in DBT, FDX1,

and DLA. Next, we analyzed the association of CRGs with

prognosis after combining the TCGA and GEO datasets. 9 of the

13 CRGs were associated with prognosis (S2 A-I). Moreover,

Kaplan–Meier analysis results revealed that a higher expression

of LIPT1, FDX1, LIAS, and DBTwas associated with a better OS (P

< 0.05), and a lower expression of ATP7B, SLC31A1, PDHA1,

DLD, and DLST was associated with a better OS (P < 0.05).
Construction of CRGs molecular
subtypes of melanoma

To obtain the melanoma subtypes of CRGs, we performed a

consensus clustering analysis on the expression level of CRGs on

the combined GEO and TCGA datasets. In the cluster analysis of

862 samples, K = 3 was the optimal number of clusters. When

K=3, the difference between groups was the smallest, and the

difference outside the group was the largest. Therefore, we

accurately divided melanoma patients into 3 subtypes, namely

A1, B1, and C1 (Figure 2A). When dividing melanoma patients

into 3 subtypes, the relative change in the area under the CDF

curve indicated that the stable distribution of melanoma patients

was close (Figure 2B, C). In the Kaplan Meier analysis of A1, B1,

and C1 subtypes, the survival outcome of the C1 subtype was the

best, followed by the B1 subtype, and the worst survival outcome

of the A1 subtype (Figure 2D).
Comparative analysis between three
CRGs molecular subtypes

We present the expression level of CRGs and clinical traits,

such as Stage, Gender, and Age of the A1, B1, and C1 subtypes in a

heat map. CRGs were expressed at the highest level in the B1
subtype, followed by the C1 subtype, and lowest in the A1 subtype.

Then, GSVA enrichment pathway analysis was performed on three

different subtypes (Figures 2F–H). Comparing the A1 subtype and

the B1 subtype, it was found that the B1 subtype was significantly

more enriched than the A1 subtype in cell cycle, non-homologous

end linkage, and ubiquitination-mediated hydrolytic protein

action. A1 subtype showed significantly higher levels of

enrichment in pathways such as neuroactive ligand receptor

interactions, cytochrome p450 effects on foreign biometabolism,

and drug metabolism of cytochrome p450 than B1. Comparing the

A1 and C1 subtypes, the A1 subtype showed significantly higher

levels of enrichment in the drug metabolism cytochrome p450,

glycerolipid, and tyramine metabolism pathways than the C1

subtype. The C1 subtype was slightly more enriched than the A1

subtype in pathways such as trap interactions in vesicle transport,

ubiquitin-mediated protein hydrolysis, and protein efflux.
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Comparing the B1 subtype and C1 subtype, the enrichment level

of the C1 subtype is higher than that of the B1 subtype in pathways

such as neuroactive ligand receptor interaction, complement

system, and leukocyte endothelial migration. The B1 subtype was

significantly more enriched in ubiquitin-mediated protein

hydrolysis, aminyl biosynthesis, and citric acid cycle TCA cycle

pathways than the C1 subtype.

Further, we analyzed the level of immune cell infiltration

between three CRGs subtypes. Among the 23 immune cells,

most of them differed in their degree of infiltration in the A1, B1,

and C1 subtypes. Among them, Myeloid-derived suppressor cells

(MDSC), Immature B cells, and active B cells had the highest

difference in the degree of infiltration, and only Eosinophilna

cells had no difference in the degree of infiltration. Overall, the

highest level of immune cell infiltration was found in the C1

subtype and the lowest in the B1 subtype.
Enrichment analysis of genes with
intersections of CRGs subtypes

t-distributed stochastic neighbor embedding(tSNE) analysis

showed that the A1, B1, and C1 subtypes are distinguishable from

each other. This indicates that our subtype analysis based on

CRGs has better typing ability (Figure 3A). Next, we analyzed

the differentially expressed genes between A1, B1, and C1

subtypes. There were 1090 differentially expressed genes

between A1 and B1 subtypes, 117 differentially expressed genes

between A1 and C1 subtypes, and there are 219 Differentially

expressed genes between the B1 and C1 subtypes. We intersected

the differentially expressed genes of the three subtypes and

obtained 71 differentially expressed genes that were co-

expressed in the three subtypes (Figure 3B). Enrichment

analysis in Metascape showed that differentially expressed

genes were mainly associated with Signaling by Rho GTPases,

Miro GTPases and RHOBTB3, MHC class II antigen

presentation, and Platinum drug resistance (Figure 3C). GO

(Gene ontology) enrichment analysis indicates the results of

intersecting genes in BP (Biological Process), CC (Cellular

Component), MF (Molecular Function) respectively

(Figure 3D). BP is primarily associated with the establishment

of organelle localization, mitotic cell cycle phase transitions, and

cytoskeletal-intracellular transport dependence. CC is associated

with cell cortex, cell division sites, and membrane

microstructure domains. MF is mainly associated with the

guanosine triphosphatase binding region, ATP hydrolysis

activity, and microtubule binding proteins.
Construction of gene subtypes

To further understand the correlation between CRGs

subtypes and differentially expressed genes, we constructed
frontiersin.org
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gene subtypes. We performed univariate regression analysis

on 71 differentially expressed genes co-expressed in the three

CRGs subtypes, and obtained 16 differentially expressed genes

associated with survival. In the cluster analysis, when K=3, we

can see that the difference between groups is small, and the

difference outside the group is large (S3 A). The

comprehensive analysis of the consistent cumulative

distribution function (S3 B) and Delt area(S3 C) also shows

that K=3 is more suitable. Kaplan Meier analysis was
Frontiers in Immunology 07
performed on the three gene subtypes, with B2 having the

best survival outcome, A2 having the second worst survival

outcome, and C2 having the worst survival outcome (S3 D) (P-

value<0.001). Then, we illustrate the clinical traits (stage,

gender, age)of both gene subtypes and CRGs molecular

subtypes in a heat map (S3 E). Besides, we explored the

differences in the expression levels of CRGs among the A2,

B2, and C2 subtypes. We found that the expression of CRGs

was different in A2, B2, and C2 subtypes (p<0.001) (S3 F).
B C

D E

F G

H I

A

FIGURE 2

Classification of melanoma based on CRGs. (A) Molecular subtypes based on CRGs obtained under unsupervised consensus clustering. (B) The
empirical cumulative distribution function (CDF) plot depicts the consistent distribution of different K values. (C) Relative increase in cluster
stability by delta area fraction. (D) Comparison of the degree of immune cell infiltration of the three molecular subtypes*, P<0.05; **, P<0.01;
***, P<0.001. (E) Kaplan Meier analysis results of three molecular subtypes based on 12 CRGs. (F, G, H) pictures show the enriched pathways of
differentially expressed genes obtained by comparing A1, B1, and C1 molecular subtypes with each other using the GSVA method. (I) Heatmap of
clinical information and gene expression profiles of the three molecular subtypes based on 12 CRGs.
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Construction of the prognostic model

A Sankey diagram was used to show our flow chart for two

types of melanoma (Figure 4A). AIM2, EDNRB, SLC39A6,

TMEM117, PTPRC, and KIF14 were screened out by the LASSO

regression algorithm to construct a prognostic model (Figures 4B,

C). In the training set, there was a significant difference in

prognostic value between the high-risk and low-risk groups

(Figure 4D). Survival time was significantly lower in the high-risk

group than in the low-risk group. The areas under the time-

dependent ROC of the train set are 0.670, 0.662 and 0.683 for 1-,

3-, and 5-year survival. (Figure 4G). Next, the prognostic model was

applied to the validation set and to the total sample. In the

validation set and in the total sample, the prognostic value of the

high-risk group was significantly lower than that of the low-risk

group (Figures 4E, F). The areas under the time-dependent ROC of

the validation set are 0.587, 0.620, and 0.601 for 1-, 3-, and 5-year
Frontiers in Immunology 08
survival (Figure 4H). In the total sample, The areas under the time-

dependent ROC are 0.626, 0.640 and 0.643 (Figure 4I). The ROC of

each group shows that our model has better prediction accuracy.

Finally, we used nomograms to predict patient survival (Figure 4J).

Calibration curves showed that our model had high accuracy in

predicting patient survival at 1, 3, and 5 years (Figure 4K).
Risk curve and tumor microenvironment

We arranged the training set, validation set, and all samples

according to the prognostic risk model from low to high risk

scores, and obtained the risk curve (Figures 5A–C).Similarly, we

obtained the survival status map between risk scores and death

samples (Figures 5D–F), and finally, we used heatmaps to show

the expression of the model’s key variable genes (AIM2, EDNRB,

KIF14, PTPRC, SLC39A6, and TMEM117) in the training set,
B

C

DA

FIGURE 3

Differentially expressed genes of three CRGs molecular subtypes. (A) VENN plot showing 71 intersecting differentially expressed genes across
three molecular subtypes. (B) t-distributed Stochastic Neighbor Embedding (tSNE) analysis of three CRGs molecular subtypes. (C) Metascape
enrichment analysis of DEGs with intersections of the three molecular subtypes. (D) GO enrichment analysis of DEGs with intersections of the
three molecular subtypes.
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validation set and all sample (Figures 5G–I). Next, we performed

tumor microenvironment analysis on 6 key variable

genes (Figure 5J).

The key variable genes were mainly associated with the degree

of infiltration of M1 macrophage, M0 macrophage, and memory B

cells. KIF14, SLC39A6, TMEM117, and EDNRB, as high-risk genes,

were negatively correlated with the degree of infiltration of memory

B cells and regulatory T cells, and positively correlated with the
Frontiers in Immunology 09
degree of infiltration of M1 macrophage, T follicular helper. AIM2

and PTPRC, as low-risk genes, showed a significant positive

correlation with the degree of infiltration of memory B cells,

activated memory CD4(+) T cells, and CD8(+) T cells, and a

significant negative correlation with the degree of infiltration of M0

macrophage. The stromalscore , immunescore , and

ESTIMATEscore scores in the high-risk group were significantly

lower than those in the low-risk group (Figure 5K).
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FIGURE 4

Construction of the prognostic model. (A) Sankey diagram to describe the process of constructing a prognostic model based on CRGs-
subtypes and gene subtypes. (B, C) Prognostic genes were screened using LASSO regression. (D, G) Kaplan Meier analysis of OS in melanoma
patients in the training set; ROC curves for 6 key variable genes. (E, H) OS of melanoma patients in Kaplan Meier analysis validation set; ROC
curves of 6 key variable genes. (F, I) Kaplan Meier analysis of OS in all melanoma patients; ROC curves of 6 key variable genes. (J) Nomograms
predicting 1-, 3-, and 5-year OS probabilities in melanoma patients. (K) Calibration plots of the nomograms.
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Comparison of drug sensitivity, subtypes
and expression levels of CRGs between
high and low risk groups

We divided the high-risk group and the low-risk group

according to the model. Screening of sensitive drugs was carried

out according to the difference in IC50 concentration between the

twogroups.A total of98drugs (S2)were screened, andwe selected3

high-sensitivity drugs in the low-risk group (Figures 6A–C) and 3

high-sensitivity drugs in the high-risk group (Figures 6D–F).

Among the CRG subtypes, B1 has the lowest risk score and
Frontiers in Immunology 10
subtype C1 has the highest risk score (Figure 6G). Among the

genesubtypes, C2 had the highest risk score and B2 had the lowest

risk score (Figure 6H). Among the CRGs genes with differential

expression in the high-risk and low-risk groups, only FDX1

expression was decreased in the high-risk group (Figure 6I).
Construction of metastasis model

We used the REFCV method to filter out key metastatic

variables: ‘FDX1’, ‘LIPT1’, ‘LIAS’, ‘DLD’, ‘DBT’, ‘DLAT’,
B C
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G H I
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A

FIGURE 5

Risk curve and immune microenvironment analysis between high and low immune groups. (A) Risk curve in the training set. Take the median of
the risk scores and use the median to divide the samples into high-risk and low-risk groups. (B) Risk curve in the validation set. (C) Risk curves
of all samples. (D) Survival state diagram of the training set, red for dead and blue for survival. (E) The living state diagram of the validation set.
(F) Survival state diagram of all samples. (G–I) Heat map showing the expression of 6 key variable genes in training set, validation set and all
samples. (J) Correlation of 6 key variable genes with immune cells, red represents positive correlation and blue represents negative correlation.
(K) Correlation of stroma score, immune score, and ESTIMATE with immune microenvironment.
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‘PDHB’. From Figures 7A, B we can see that LightGBM has the

highest AUC in both training and validation sets, 1 and 0.750,

respectively. The values of LightGBM and XGBoost in the multi-

model forest graph in Figure 7C are also the highest at 0.748.

Tables 1 and 2 show that the AUC, cutoff, accuracy, sensitivity,

specificity, positive predictive value, negative predictive value, F1

score, Kappa value of LightGBM are 1.000, 0.637, 0.995, 1.000,

1.000, 1.000, 0.986, 1.000, 0.989. In conclusion, LightGBM is the
Frontiers in Immunology 11
best performing model, and we choose this model to establish a

melanoma metastasis model.
Interpretability of the metastasis model

After filtering out the best performing LightGBM model,

we used the “SHAP” package to explain the importance of key
B C

D E F

G H I

A

FIGURE 6

Drug Sensitivity Analysis. (A–C) The sensitivity of the low-risk group to Sunitinib, VX.702, AZD6482 was higher than that of the high-risk group.
The abscissa is the low-risk group and the high-risk group, and the ordinate is the value of the drug IC50. (D–F) The high-risk group had higher
sensitivity to OSI.906, FH535, and Bryostatin.1 than the low-risk group. (G) Risk scores for A1, B1, and C1 subtypes in CRGs molecular subtypes.
(H) Risk scores for A2, B2, C2 subtypes in genotyping. (I) Expression levels of CRGs in high and low risk groups.
B CA

FIGURE 7

Construction of metastasis model. (A) REFCV method to filter out key metastatic variables in train set. (B) REFCV method to filter out key
metastatic variables in validation set. (C) Multi-model forest graph.
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TABLE 1 Multi-model comparison, training set results.

Model AUC
(SD)

cutoff
(SD)

accuracy
(SD)

sensitivity
(SD)

specificity
(SD)

positive predictive
value (SD)

negative predictive
value (SD)

F1 score
(SD)

Kappa
(SD)

XGBoost 1.000
(0.000)

0.863
(0.025)

0.995(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 0.986(0.000) 1.000(0.000) 0.989
(0.000)

logistic 0.749
(0.009)

0.656
(0.018)

0.712(0.018) 0.709(0.045) 0.730(0.042) 0.828(0.015) 0.572(0.024) 0.763(0.023) 0.406
(0.026)

LightGBM 1.000
(0.000)

0.637
(0.019)

0.995(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 0.986(0.000) 1.000(0.000) 0.989
(0.000)

RandomForest 1.000
(0.000)

0.623
(0.048)

0.988(0.006) 0.999(0.003) 0.999(0.004) 0.999(0.002) 0.969(0.017) 0.999(0.002) 0.974
(0.014)

AdaBoost 0.980
(0.004)

0.504
(0.001)

0.918(0.014) 0.894(0.025) 0.976(0.017) 0.986(0.010) 0.825(0.031) 0.938(0.012) 0.828
(0.028)

GNB 0.783
(0.008)

0.629
(0.032)

0.744(0.014) 0.772(0.033) 0.706(0.029) 0.828(0.010) 0.620(0.025) 0.798(0.015) 0.456
(0.022)

CNB 0.700
(0.008)

0.495
(0.001)

0.728(0.013) 0.849(0.023) 0.519(0.026) 0.763(0.008) 0.640(0.030) 0.803(0.011) 0.376
(0.027)

SVM 0.815
(0.006)

0.686
(0.014)

0.764(0.010) 0.744(0.024) 0.814(0.025) 0.880(0.011) 0.627(0.016) 0.806(0.012) 0.515
(0.016)

KNN 0.856
(0.014)

0.760
(0.080)

0.610(0.052) 0.688(0.104) 0.853(0.115) 0.982(0.037) 0.478(0.040) 0.802(0.052) 0.315
(0.066)
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variables to the model. As shown in Figure 8A, the importance

of 7 variables from high to low is: ‘FDX1’, ‘ DBT’, ‘LIPT1’,

‘PDHB’ , ‘DLD’ , ‘DLAT’, ‘LIAS’. Figure 8B shows the

contribution of each variable to the model. The red dots

indicate positive contributions, and the blue dots indicate

negative contributions. A point closer to the left indicates a

smaller value and a point closer to the right indicates a larger

value. For example, the higher the FDX1 value, the higher the

probability of death from heart failure; the lower the FDX1

value, the lower the probability of heart failure death. At the
TABLE 2 Multi-model comparison, validation set results.

Model AUC
(SD)

cutoff
(SD)

accuracy
(SD)

sensitivity
(SD)

specificity
(SD)

p

XGBoost 0.743
(0.130)

0.863
(0.025)

0.647(0.150) 0.706(0.192) 0.853(0.225)

logistic 0.726
(0.130)

0.656
(0.018)

0.680(0.094) 0.838(0.143) 0.720(0.138)

LightGBM 0.746
(0.126)

0.637
(0.019)

0.703(0.101) 0.720(0.178) 0.844(0.181)

RandomForest 0.763
(0.115)

0.623
(0.048)

0.699(0.097) 0.707(0.150) 0.842(0.149)

AdaBoost 0.701
(0.116)

0.504
(0.001)

0.668(0.125) 0.712(0.170) 0.804(0.216)

GNB 0.737
(0.112)

0.629
(0.032)

0.703(0.092) 0.782(0.167) 0.782(0.128)

CNB 0.676
(0.140)

0.495
(0.001)

0.693(0.144) 0.736(0.253) 0.798(0.184)

SVM 0.737
(0.115)

0.686
(0.014)

0.689(0.085) 0.768(0.165) 0.789(0.136)

KNN 0.686
(0.186)

0.760
(0.080)

0.561(0.110) 0.540(0.254) 0.882(0.175)
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same time, we use the force diagram to illustrate 2 samples to

show how different variables contribute to different samples.

Figures 8C, D show the model predicts that these two samples

are likely to metastasize and not metastasize, respectively, and

show the contribution of each gene’s expression to the sample

prediction. Red indicates a positive contribution. Blue

represents a negative contribution. If f(x) is greater than the

cut-off value, the tumor sample is more likely to metastasize; if f

(x) is less than the cut-off value, the tumor sample is less likely

to metastasize.
ositive predictive
value (SD)

negative predictive
value (SD)

F1 score
(SD)

Kappa
(SD)

0.801(0.159) 0.511(0.135) 0.731(0.139) 0.309
(0.275)

0.800(0.089) 0.554(0.120) 0.813(0.099) 0.343
(0.180)

0.809(0.118) 0.561(0.126) 0.753(0.142) 0.367
(0.227)

0.844(0.075) 0.575(0.121) 0.760(0.101) 0.403
(0.166)

0.766(0.115) 0.537(0.158) 0.727(0.120) 0.296
(0.255)

0.794(0.087) 0.612(0.186) 0.778(0.121) 0.362
(0.196)

0.742(0.101) 0.597(0.348) 0.725(0.178) 0.291
(0.346)

0.843(0.097) 0.551(0.108) 0.793(0.109) 0.375
(0.165)

0.896(0.172) 0.446(0.075) 0.629(0.239) 0.232
(0.170)
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Knockdown of fdx1 inhibits the
proliferation of melanoma cells

We used specific FDX1-targeting siRNAs to knockdown

the expression levels of FDX1 in the A375 cells (Figure 9A).

siNC was used as a control group for subsequent comparative

analysis. CCK-8 assay results showed that the proliferation of

FDX1 knockdown cells at 12h, 24h, and 36h was significantly

higher than that of the control group (Figure 9B). Wound

healing assay results showed that FDX1 knockdown inhibited

wound healing (Figure 9C). siNC group healed slightly faster

than the siFDX1 group. However, this result is not

statistically significant.
Discussion

As one of the deadliest tumors in skin cancer, melanoma is

characterized by high invasiveness and high mortality (1).

Therefore, a large body of literature has explored the

prognosis and metastasis of melanoma. At present, the

literature has predicted the prognosis of melanoma patients

based on the expression levels of pyroptotic genes, tumor
Frontiers in Immunology 13
microenvironment status, or m6a-regulated methylation

patterns (23–30). Although many bioinformatics studies are

predictingognosis of melanoma, the existing cuproptosis-

related melanoma research is not abundant.

Recently, Tsvetkov et al. discovered a novel apoptosis-

independent cell death pathway, copper-dependent cell death

(termed cuproptosis) (7). They proved that copper ions bind

directly to the lipoylated components of the tricarboxylic acid

cycle. Then, proteotoxic stress and unique cell death were

induced. At the same time, the role performed by cuproptosis

in tumours is gradually being understood. Zhong Hao et al.

discovered that 6 CRGs had good diagnostic efficacy in kidney

renal clear cell carcinoma (31). Besides, Liyang et al. developed a

safe, mitochondria-targeted, copper-depleted nanoparticle

(CDN) and tested its efficacy against triple-negative breast

cancer (TNBC) (32). Injection CDN into mice with triple

negative breast cancer resulted in a significant reduction in

tumour growth and a significantly longer survival time for the

mice. Zhang Zheng et al. constructed a prognostic model of

HCC using the expression levels of ferredoxin 1 (FDX1) in

hepatocellular carcinoma (HCC). They found that the

expression level of FDX1 was significantly lower in HCC

patients than in the non-HCC population (33). At the same
B

C
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FIGURE 8

Interpretability of the metastasis model. (A) “SHAP” package to explain the importance of key variables to the model. (B) Contribution of each
variable to the model. (C, D) Prediction of model.
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time, survival time was significantly higher in patients with high

expression of HCC than in those with low expression of

HCC.These studies suggest that cuproptosis has implications

for the clinical diagnosis and treatment of tumours.

Therefore, CRGs were used to construct molecular subtypes

of melanoma and to construct metastasis models in this

research. The molecular subtypes of melanoma based on

CRGs can give us a more comprehensive understanding of

melanoma. At the same time, the metastasis model established

based on CRGs can also fi l l the gap in melanoma

bioinformatics research.

In this study, we explored the effects of CRGs on both

survival and metastasis in melanoma patients. We analyzed the

expression of 12 CRGs in TCGA and GEO cohorts. First,

through bioinformatics analysis, we constructed molecular

subtypes of 3 CRGs (A1, B1, C1) based on 12 CRGs. Among

the three molecular subtypes of CRGs, the C1 subtype had the

best survival outcome, and the A1 subtype had the worst survival

outcome. Next, we obtained 71 Differentially expressed genes

that were co-expressed by all three subtypes. Based on 71

Differentially expressed genes, we genotyped melanoma and

obtained 3 gene subtypes (A2, B2, C2). Among them, the B2
type had the best survival outcome, and the C2 type had the

worst survival outcome. Then, we screened prognosis-related

genes from 71 co-expressed Differentially expressed genes. After

obtaining 16 prognosis-related genes, the LASSO algorithm was

used to screen out 6 key variable genes(AIM2, EDNRB,

SLC39A6, TMEM117, PTPRC, and KIF14) for model

construction and validation. Ultimately, our risk score model
Frontiers in Immunology 14
can distinguish between high-risk and low-risk groups. And KM

analysis, AUC analysis, nomogram, and calibration curve

indicated that our model could predict the prognosis of

melanoma patients more accurately. Finally, in the analysis of

metastasis, we used the LightGBM machine learning algorithm

to screen out 7 CRGs to establish the metastasis model

of melanoma.

In the TCGA cohort, we found that 9 out of 13 CRGs had an

impact on the prognosis of melanoma patients. Therefore, this

sparked our interest in investigating the role of CRGs in

melanoma prognosis and metastasis. The degree of immune

cell infiltration was also significantly different among the three

molecular subtypes of CRGs. We selected 23 immune cells for

analysis, except for Eosinophilna cells, the other 22 immune cells

had significantly different infiltration degrees in the three

subtypes. This suggests that immune cells play different roles

in different subtypes. In many tumors, the immune

microenvironment plays an important role in tumor

angiogenesis, tumor invasion, and metastasis. Patients with

high expression of CXCL9, CXCL10, CXCL13, CCL4, and

CCL5 in SKCM (Skin cutaneous melanoma) had better overall

survival (27). Some studies have constructed risk models based

on immune-related genes and found that immune cell

infiltration is different between patients with high and low

immune scores, and the survival time of patients with high

immune scores is significantly lower than that of patients with

low immune scores. Other studies have shown that in melanoma

patients, IL27 is closely related to CD8+ cells, and is related to

the treatment effect and prognosis of patients (34–36).
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FIGURE 9

Knockdown of fdx1 inhibits the proliferation of melanoma cells. (A) FDX1-targeting siRNAs to knockdown the expression levels of FDX1. (B) The
proliferation of FDX1 knockdown cells at 12 h, 24 h, and 36 h. (C) Wound healing assay at 12 h, 24 h, 36 h, and 48 h.
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Enrichment analysis of Metascape shows 71 intergenes were

mainly enriched in MHC class II antigen presentation and

platinum resistance pathways. Melanoma-specific MHC-II

expression predicted anti-pd-1/PD-L1 treatment efficacy (37).

Overexpression of BCL2L10 in melanoma has also been shown

to promote cisplatin and ABT-737 resistance (38). In a case

report, a patient with metastatic melanoma was also associated

with hyperprolactinemia (39). Next, we used cox regression

analysis and the LASSO algorithm to screen out 6 key variable

genes(AIM2, EDNRB, SLC39A6, TMEM117, PTPRC, and

KIF14) to construct a risk model. Absent in melanoma 2

(AIM2) is a cytoplasmic sensor that recognizes double-

stranded DNA derived from viruses, bacteria, or the host itself,

and is a member of the interferon inducible p200-protein (IFI-

P200) family of immune-related proteins. AIM2 plays a

significant role in autoimmune diseases (40) and the activation

of inflammasome (41–44). In the melanoma-related literature,

patients with melanoma whose dendritic cells express AIM2

have a significantly lower prognosis than patients with

melanoma whose dendritic cells do not express AIM2 (45). In

breast cancer treatment, Dihydroartemisinin induces pyroptosis

in breast cancer cells by promoting the AIM2/caspase-3/DFNA5

(gasdermin E) axis (46). Endothelin Receptor type B (EDNRB) is

widely expressed in vascular endothelial cells of the

cardiovascular system, gastrointestinal tract, lung, kidney,

adrenal gland, uterus, prostate, and brain. In melanoma-

related studies, the prognostic value of patients with high CD8

(+) T cell subpopulations expressing EDNRB was significantly

reduced (47). This suggests that EDNRB could be a potential

therapeutic target for melanoma. Solute carrier family 39

member 6(SLC39A6) is also known as LIV-1, ZIP-6, and Zinc

transporter ZIP6. May act as a zinc-influx transporter. Solute

Carrier Family 39 Member 6 (SLC39A6) is also known as LIV-1,

ZIP-6, and Zinc transporter ZIP6. May act as a zinc-influx

transporter. In studies of esophageal cancer, SLC39A6

increases the invasiveness of esophageal cancer cells and

reduces patient prognosis by increasing the level of Zinc

expression in esophageal cancer cells (48). SLC39A6 can also

be used as an indicator for early diagnosis of esophageal cancer

(49). However, in luminal breast cancer, the Oestrogen-

regulated protein SLC39A6 acts as a benign prognostic

indicator (50). One study reported that transmembrane

protein 117 (TMEM117) was associated with endoplasmic

reticulum stress-mediated mitochondrial-mediated cell death

(51). Studies have shown that in primary liver cancer, miR-631

can target the receptor protein tyrosine phosphatase gene

(PTPRE) to inhibit the intrahepatic metastasis of liver cancer

(52). In kras mutant lung adenocarcinoma, the PTPRE is highly

expressed, which can be used as a novel therapeutic target in kras

mutant lung adenocarcinoma (53). The kinesin family member

14 (KIF14), is a novel oncogene located on chromosome 1q.

When it malfunctions, it can affect the development of the brain

and kidneys, and it can lead to many types of cancer (54, 55). In
Frontiers in Immunology 15
breast cancer, high expression of KIF14 can promote breast

cancer metastasis and is associated with poor prognosis of breast

cancer patients (56, 57). Similarly, studies have shown that in

gastric cancer, when KIF14 mRNA is highly expressed, the

prognosis is significantly lower than that with low KIF14

mRNA expression (58). However, the above two genes have

not been deeply studied in melanoma research, and the specific

functions of PTPRE and KIF14 in melanoma need to be

further explored.

Among these CRGs, we also screened out 7 key genes

(FDX1, DBT, LIPT1, PDHB, DLD, DLAT, LIAS) as variables

in the metastasis model. In other tumor metastasis models, the

roles of some of these genes in tumor metastasis have also been

found. Chen found that LIPT1 may be a prognostic-related gene

for bladder cancer, and then found that this gene has a certain

degree of inhibitory effect on the migration ability of bladder

cancer cells by transwell method (59). Zhao found that PDHB is

associated with ovarian cancer growth and metastasis, and miR-

203 can target the 3’-UTR of PDHB to promote glycolysis.

Meanwhile, overexpression of PDHB could abolish the

promoting effect of miR-203 on ovarian cancer cell growth

(60). Regarding the role of these genes in tumor metastasis, we

still need further functional tests to verify.

During the occurrence and development of tumor tissue,

there are a large number of gene mutations. Mutated genes can

provide tumor antigens that can be recognized by the immune

system as non-self tissues, inducing immune cells to respond

(61). Immunotherapy takes advantage of the fact that immune

cells can recognize and eliminate tumor cells, which plays a great

role in the treatment of tumors (62, 63). However, tumors

effectively suppress immune responses (immune escape) by

activating negative regulatory pathways associated with

immune homeostasis (checkpoints) or by adopting features

that allow them to actively evade detection (64, 65). Effective

immunotherapy drugs have been approved in preclinical and

clinical phase I-III trials for highly aggressive, highly refractory,

and advanced and metastatic melanoma (66). For example, the

ant i -PD-1 monoc lona l ant ibodies n ivo lumab and

pembrolizumab and the anti-CTLA-4 antibody ipilimumab are

being tested in clinical trials to treat melanoma (67). Studies have

shown that commonly used immune checkpoint inhibitors

(ICIs) can improve progression-free survival and overall

survival in melanoma patients (68, 69). In our study, the risk

score model showed that the degree of immune cell infiltration

in the high-risk group was significantly lower than that in the

low-risk group. Interestingly, the survival time of the high-risk

group was significantly lower than that of the low-risk group. In

other melanoma studies, the survival time of the high immune

score group was significantly higher than that of the low immune

score group (70, 71). We also propose a hypothesis here, in

melanoma, is the degree of immune cell infiltration positively

correlated with the survival time of patients? This problem also

needs more clinical data or experiments to confirm. It is worth
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mentioning that in this study, we also analyzed the drug

sensitivity between high and low risk groups. We screened 98

drugs (Supplementary File 1) with significant differences in IC50

concentrations between high and low risk groups. Among them,

worthy of our attention are Sunitinib, VX-702, and Bryostatin.1.

Sunitinib is a new class of drugs that can selectively target

multiple receptor tyrosine kinases, and is now being used

alone or in combination with other antitumor drugs to treat

many solid tumors, including liver cancer, renal cancer, and

gastric cancer (72–74). VX-702 is a highly selective p38aMAPK

inhibitor targeting nimokinase for the treatment of primary and

acquired endocrine-resistant breast cancer (75). Bryostatin-1 is a

protein kinase C (PKC) inhibitor that inhibits cell entry into

mitosis, lowers pH and energy metabolism, and reduces tumor

blood flow, thereby inhibiting tumor cell growth (76, 77). We

screened 98 drugs to guide the development of melanoma drugs.

Furthermore, our in vitro experiments showed that FDX1

promoted the growth, and migration of melanoma cells.

Therefore, we speculate that FDX1, as a CRG, is a marker of

melanoma. People with high expression of this gene need to be

more alert to the occurrence of melanoma. At the same time, it is

also a prognostic marker for melanoma patients. The prognosis

of cancer patients may be better than that of other patients.

Taken together, our results suggest that FDX1 is aberrantly

expressed in melanoma and may be associated with patient

prognosis. In the future, we need to conduct more in-depth

functional experiments to explore how this gene acts on the

occurrence and development of melanoma.

This study established prognostic and metastatic models of

CRGs in melanoma. But there are still some limitations.

Although the sample size of our sequencing data is relatively

large, it is mainly based on the data of the network database, and

we also need our own sequencing data to verify. In our in vitro

experiments, knockdown of FDX1 reduced the ability of cells to

migrate, but there was no difference compared to the control

group. However, this gene was selected in our model, which may

be due to the joint effect of multiple genes in the establishment of

the metastasis model. In the future, we will conduct more in-

depth experiments to explore its transfer mechanism. We

analyzed the enriched pathways and functions of these key

genes, and functional assays are needed to verify them. Finally,

the drugs we screened also need to be verified by drug

resistance experiments.
Conclusion

In this study, melanoma was classified based on 12 CRGs

and clinical features, and three subtypes, A1, B1, and C1, were

established. Among them, the C1 subtype had the best survival

outcome and the highest immune cell infiltration. Then, A2, B2,

and C2 subtypes were established based on genotyping, with
Frontiers in Immunology 16
the B2 subtype having the best survival outcome. We

performed functional analysis on the intergenes between

different types, and the results showed that these intergenes

were mainly enriched in cell cycle and drug metabolism

pathways. We also established a prognostic model using 6

key variable genes and analyzed the tumor microenvironment

according to the high and low risk scores of prognosis. In

addition, we screened drugs for high and low risk groups and

found that 98 drugs had significant differences in IC50

concentrations in high and low risk groups. Finally, we used

the LightGBM algorithm to screen out 7 CRGs to build the

transfer model of melanoma. These results help us to

understand the role of CRGs in the occurrence and

development of melanoma, and provide us with new

therapeutic ideas and potential treatment methods.
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SUPPLEMENTARY FIGURE 1

Mutations and copy number variations of CRGs in the TCGA cohort. (A)
The proportion of mutation frequency of CRGs in melanoma. (B) The
chromosome where the mutated CRGs are located. Red represents an
increase in copy number and green represents a decrease in copy

number. (C) CRGs copy number variation graph. The ordinate of the red
circle is the number of samples with increased copy number, and the

ordinate of the green circle is the number of samples with reduced
copy number.

SUPPLEMENTARY FIGURE 2

9 CRGs associated with prognosis. (A–I) Comparison of the overall

survival time of samples with high expression of CRGs genes (indicated

in red) and samples with low expression of CRGs (indicated in blue).

SUPPLEMENTARY FIGURE 3

Melanoma gene subtypes constructed based on prognostic-related

intersection differentially expressed genes. (A) Three gene subtypes

obtained by unsupervised consensus clustering method. (B) Consistent
distribution of different K values described by a consistent cumulative

distribution function (CDF) plot. (C) The delta area score displayed the
relative growth in cluster stability. (D) Kaplan Meier analysis results of three

gene subtypes. (E) Comparison of CRGs expression levels among the
three gene subtypes. (F) Heatmap showing clinical information and gene

expression profiles for the three gene subtypes.

SUPPLEMENTARY TABLE 1

Names of 13 cuproptosis-related genes

SUPPLEMENTARY FILE 1

98 drugs were with significant differences in IC50 concentrations

between high and low risk groups.
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