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Abstract

Motivation: Recent experimental studies have suggested that proteins fold via stepwise assembly

of structural units named ‘foldons’ through the process of sequential stabilization. Alongside, latest

developments on computational side based on probabilistic modeling have shown promising dir-

ection to perform de novo protein conformational sampling from continuous space. However,

existing computational approaches for de novo protein structure prediction often randomly sample

protein conformational space as opposed to experimentally suggested stepwise sampling.

Results: Here, we develop a novel generative, probabilistic model that simultaneously captures

local structural preferences of backbone and side chain conformational space of polypeptide

chains in a united-residue representation and performs experimentally motivated conditional con-

formational sampling via stepwise synthesis and assembly of foldon units that minimizes a com-

posite physics and knowledge-based energy function for de novo protein structure prediction. The

proposed method, UniCon3D, has been found to (i) sample lower energy conformations with

higher accuracy than traditional random sampling in a small benchmark of 6 proteins; (ii) perform

comparably with the top five automated methods on 30 difficult target domains from the 11th

Critical Assessment of Protein Structure Prediction (CASP) experiment and on 15 difficult target do-

mains from the 10th CASP experiment; and (iii) outperform two state-of-the-art approaches and a

baseline counterpart of UniCon3D that performs traditional random sampling for protein modeling

aided by predicted residue-residue contacts on 45 targets from the 10th edition of CASP.

Availability and Implementation: Source code, executable versions, manuals and example data of

UniCon3D for Linux and OSX are freely available to non-commercial users at http://sysbio.rnet.mis

souri.edu/UniCon3D/.

Contact: chengji@missouri.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Computationally predicting protein structure from its amino acid

sequence, the so called ‘de novo’ structure prediction problem, re-

mains to be largely unsolved owing to the challenges associated

with efficiently navigating huge conformational space accessible to

proteins as well as due to the difficulties in accurately capturing

physical forces behind protein folding in silico (Bradley et al.,

2005).

Recent experimental studies based on equilibrium and kinetic

hydrogen exchange (Hu et al., 2013; Maity et al., 2005) have theor-

ized that protein folding proceeds by stepwise assembly of protein

structural units known as ‘foldons’. Previously formed foldon units

cooperate to sequentially stabilize subsequent foldons to gradually

build the native structure in a process known as sequential stabiliza-

tion (Rumbley et al., 2001). Alongside, encouraging process has

been made on computational side with development of probabilistic
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graphical models (Bhattacharya and Cheng, 2015; Bhuyan and Gao,

2011; Boomsma et al., 2008; Boomsma et al., 2014; Hamelryck

et al., 2006; Harder et al., 2010; Zhao et al., 2008) to perform con-

formational search from a continuous space that is free from discre-

tized database-driven search strategies as employed in fragment

assembly based structure prediction methods (Simons et al., 1997;

Xu and Zhang, 2012). These methods adopt different representa-

tions to parameterize protein conformational space and employ a di-

verse set of machine learning methods to model it. For instance,

FB5-HMM (Hamelryck et al., 2006) adopts a coarse-grained (Ca
only) representation and trains a generative Hidden Markov Model

(HMM) to capture local structural preferences. A discriminative

learning method CRFSampler (Zhao et al., 2008), on the other

hand, trains a Conditional Random Field (CRF) by utilizing Ca only

representation. TorusDBN (Boomsma et al., 2008) and CS-TORUS

(Boomsma et al., 2014) uses Dynamic Bayesian Network (DBN) to

capture structural bias of proteins’ backbone whereas FUSION

(Bhattacharya and Cheng, 2015) relies on Input-Output Hidden

Markov Model (IOHMM) for modeling local preferences of back-

bone conformational space. Furthermore, methods relying on

Markov random field (MRF) have been proposed (Bhuyan and Gao,

2011) to generate protein side chain rotamer library (v dihedral

angles) conditioned on backbone conformation. DBN based models

such as BASILISK (Harder et al., 2010) also exist to capture

backbone-dependent and backbone-independent structural prefer-

ences of side chain v angles. Despite showing promising direction,

these approaches follow several conventions that can be circum-

vented. First, starting from an extended polypeptide conformation

of the whole protein, these approaches attempt to predict the folded

structure by replacing random stretches of the chain using probabil-

istic sampling and optimizing a potential energy function. These

probabilistic graphical model methods, like current fragment assem-

bly based methods, therefore, do not apply experimentally suggested

stepwise protein folding paradigm during structure prediction.

Second, these methods do not consider the influence of side chains

during structure modeling and typically add side chain conformation

conditioned on backbone after the backbone geometry is predicted.

Motivated by experimental hypothesis, we develop UniCon3D, a

de novo protein structure prediction method that performs stepwise

synthesis and assembly of foldon units via conditional sampling from a

novel united-residue probabilistic model, which captures local con-

formational bias of backbone and side chain simultaneously in a united

residue representation. The rationale for choosing united-residue repre-

sentation is to integrate both backbone and side chain during structure

modeling. It is found that (i) stepwise sampling produces lower energy

conformations with higher accuracy than random sampling when

everything else remains the same; (ii) UniCon3D attains comparable

performance with top five automated methods of CASP11 and

CASP10 in a dataset of 30 and 15 difficult target domains, respectively;

and (iii) UniCon3D outperforms a baseline counterpart of UniCon3D

that performs traditional random sampling as well as GDFuzz3D

(Pietal et al., 2015) and FT-COMAR (Vassura et al., 2008), two state-

of-the-art approaches for de novo protein structure prediction aided by

residue-residue contacts in a dataset containing 45 CASP10 targets.

2 Methods

2.1 Parameterization of united-residue model of poly-

peptide chains
We adopt a united-residue representation, similar to that used in the

UNRES model (Liwo et al., 1997), in order to parameterize the

conformational space associated with protein molecules. In a

united-residue model, the geometry of a polypeptide chain is repre-

sented by sequence of alpha-carbon (Ca) atoms linked by virtual

bonds with attached united side chains (SC) and united peptide

groups (p) located in the middle of two consecutive Ca atoms. The

united peptide groups and the united side chains serve as interaction

sites, while Ca atoms assist in defining the geometry (Fig. 1a). We

parameterize the alpha-carbon positioning of residue i (Cai) in a

polypeptide chain using virtual bond length (bcai) between Cai-1–Cai

atoms, virtual bond angle (hi) formed by Cai-1–Cai–Caiþ1 atoms,

and virtual dihedral angle (si) formed by Cai-1–Cai–Caiþ1–Caiþ2

atoms. The united side chain positioning of residue i (SCi) is speci-

fied using virtual bond length (bsci) between Cai–SCi atoms, virtual

bond angle (di) formed by Cai-1–Cai–SCi atoms, and virtual dihedral

angle (ci) formed by SCi–Cai–Cai-1–Caiþ1 atoms. The united peptide

group corresponding to residue i (pi) can be derived using the Ca
geometry. In order to compute the geometry of the terminal resi-

dues, we extend the chain by adding dummy residue(s) to the ter-

minal amino (N-terminus) and carbonyl groups (C terminus).

Following UNRES model, we used orientation dependent aniso-

tropic side chains (Liwo et al., 1997), represented by ellipsoids of

revolution with the centers of the ellipsoids at the centers of mass of

the side chains, the long axes being assumed to be collinear with the

Ca-SC axes. It should be noted that our model, unlike earlier

approaches based on a united-residue representation (Levitt, 1976;

Liwo et al., 1993, 1997), does not assume ideal values for virtual

bond lengths or bond angles and therefore captures united-residue

polypeptide geometry in the highest possible granularity.

Fig. 1. Parameterization and modeling of united-residue polypeptide con-

formational space. (a) United-residue polypeptide chain parameterized using

virtual lengths and virtual angle pairs for backbone and side chain. (b)

Conditional dependency graph of UniCon IOHMM. Circular nodes represent

stochastic variables and arrows in the graph specify the conditional inde-

pendence relationships among variables
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2.2 Formulating a generative, probabilistic model of

united-residue polypeptide conformational space
We encapsulate the abovementioned parameterization into the

framework of a Markovian model to formulate UniCon3D, a gen-

erative, probabilistic model to capture the local preferences of the

united-residue conformational space accessible to protein. In par-

ticular, we use Input-Output Hidden Markov Model (IOHMM)

(Bengio and Frasconi, 1996) in conjunction with statistical distribu-

tions to describe the united-residue protein geometry in a natural,

continuous space. A slice of the proposed model is presented in

Figure 1b. For each slice, an input node (I) indicates whether back-

bone or side chain geometry is being modeled. It is a discrete vari-

able that can adopt only two values (0 for backbone, 1 for side

chain). The internal structural states of the backbone and side chain

geometry are represented by two hidden nodes H, respectively. Two

discrete emission nodes, A and S, represent twenty standard amino

acid residue types and eight-class secondary structure types (a-helix,

isolated b-bridge, extended strand, 310 helix, p-helix, hydrogen

bonded turn, bend and random coil) respectively, while two con-

tinuous emission nodes, B and V, specify virtual bond lengths and

pairs of virtual angles and virtual dihedral angles respectively. All

the discrete nodes are modeled using conditional probability tables.

We use mixture of Gaussian distributions to capture the preferences

of the virtual bond lengths and mixture of bivariate von Mises distri-

butions (Mardia et al., 2007) to model the virtual angles and virtual

dihedral angles pairs. The dependencies between the input nodes

(which alternates between backbone and side chain as indicated by

I) and the output emission nodes (which specify the conformational

features as indicated by A, S, B and V) are mediated by a sequence

of interconnected, discrete hidden nodes H. Its purpose is to model

the dependencies between the input and output nodes and the se-

quential dependencies between the features. In other words, depend-

ing on the value of the input node I, the hidden node H specifies

which mixture component is chosen among the possible emission

distributions. The optimal number of hidden nodes is found to be

115 after parameter estimation and model selection as described in

next section. The values of these hidden nodes are never observed:

their sole purpose is to model the dependencies between the input

and output nodes in addition to capturing the sequential dependen-

cies between the output nodes. The hidden nodes are, therefore, the

so-called nuisance variables that are integrated during parameter es-

timation, sampling and inference. It should be noted that the hidden

nodes introduce dependencies between all residues by means of a

transition probability matrix, and not just between two consecutive

residues (Harder et al., 2010).

UniCon3D has several advantages over other recently developed

probabilistic models (Bhattacharya and Cheng, 2015; Boomsma

et al., 2008, 2014; Hamelryck et al., 2006; Harder et al., 2010; Zhao

et al., 2008) for capturing local structural bias of protein conform-

ational space. First, it combines backbone and side chain

conformational space in a single framework using united-residue rep-

resentation that allows simultaneous sampling of backbone and side

chain conformation. The presence of side chains enables any folding

simulation to account for the energetic contribution of hydrophobic

(hydrophilic) interactions between side chains as well as interactions

of side chains with solvent, which is believed to be one of the major

driving forces behind protein folding (Dill, 1990). Second, UniCon3D

adopts eight-class secondary structure categorization that is more in-

formative than three-class secondary structure grouping. Third, the

model makes it possible to condition side chain sampling upon back-

bone conformation, which has been shown to have strong influence

on side chain’s conformation (Dunbrack and Karplus, 1993).

Modeling backbone and side chain in continuous space also avoids

the problems associated with discretized libraries of fragments

(Hegler et al., 2009; Kim et al., 2009) or rotamers (Petrella and

Karplus, 2001; Schrauber et al., 1993). Additionally, like other gen-

erative model, UniCon3D can be used to generate a sequence of vir-

tual bond lengths and pair of virtual bond angles of any length (even

for the whole protein sequence) given an amino acid sequence and

secondary structure sequence using the forward-backtrack (FwBt) al-

gorithm (Cawley and Pachter, 2003; Hamelryck et al., 2006). The

FwBt algorithm can also be used to conditionally resample any seg-

ment of the polypeptide chain given a previously sampled conform-

ation, thereby rebuilding part of a previously generated structure

seamlessly.

2.3 Training data, parameter estimation and

optimal model selection
UniCon model is trained on a large dataset of protein structures using

a training dataset curated to train SSpro/ACCpro 5 (Magnan and

Baldi, 2014) containing 5772 nonredundant, high-resolution protein

chains. We exclude 240 proteins from training that have more than

25% sequence identity with any of the test proteins used during

benchmark experiment using Blastclust (Altschul et al., 1997). The

training set finally contains 5532 proteins with sequence lengths rang-

ing from 30 residues to 1264 residues. Amino acid sequences, virtual

bond lengths and virtual bond angle pairs are derived directly from

the protein structures, whereas eight-class secondary structures are as-

signed using DSSP (Kabsch and Sander, 1983). The training dataset

contains 1 932 712 observations corresponding to 966 356 residues

(two observations per residue: one for backbone and the other for

side chain).

Parameter learning for UniCon is done via stochastic expectation

maximization (S-EM) algorithm (Nielsen, 2000) as implemented in

the Mocapyþþ toolkit (Paluszewski and Hamelryck, 2010) using the

aforementioned training dataset. In order to determine the number of

hidden node values (i.e. the size of the hidden node), a crucial hyper-

parameter that governs the tradeoff between underfitting and overfit-

ting and hence influences the performance of the model, we perform

the training by varying hidden node size from 10 to 120 (with a step

size of 5). On one core of an Intel E7-L8867 (2.13 GHz), training one

model takes between 10 and 96 h for hidden node size 10 and 120, re-

spectively. Since the nature of the S-EM algorithm is stochastic, par-

ameter estimation for each hidden node size is repeated four times

with different starting conditions to lower the chance of selecting a

model that got stuck in a local optima. The ideal hidden node size is

estimated using Akaike Information Criterion (AIC) (Burnham and

Anderson, 2003), a widely used model selection measures. For a

model with hidden node size 115, AIC value reaches the minimum

value (Supplementary Fig. S1), indicating optimal model. We select

this model as the optimal one with 30 707 parameters.

2.4 Conformational sampling via stepwise synthesis

and assembly of foldon units
Motivated by recent experimental studies (Hu et al., 2013; Maity

et al., 2005) hypothesizing that protein folds by stepwise addition of

foldon units (roughly corresponding to one or more secondary struc-

tural elements of the native structure), we use conditional resam-

pling capability of UniCon model to simulate stepwise buildup

of protein structure (Fig. 2). Starting from a target protein

sequence, we first predict eight-class secondary structure using
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SSpro 5 (Magnan and Baldi, 2014) and locate the secondary struc-

ture elements (SSE) comprising of a-helix, isolated b-bridge, ex-

tended strand, 310 helix and p-helix. Starting from the N-terminus,

we sequentially define foldon units that terminate at the end of SSEs

until we reach the C-terminus. We also require that the size of a fol-

don unit should be at least 20 residues. The minimum size of foldon

unit is chosen based on an earlier study (Hamelryck et al., 2006)

showing that majority of SSE lengths in naturally occurring proteins

are within 20 residues for strands and coils and is slightly longer for

helices. In case the size of a SSE is less than 20 residues, we extend

the foldon unit to include the following SSEs or up to the C-ter-

minus. Once the foldon units are identified, conformational sam-

pling is performed sequentially from N to C-terminus in a stepwise

manner with each step aiming to stabilize one foldon unit at a time.

This is achieved via two stages: synthesis and assembly.

In the synthesis stage, which corresponds to the extrusion of a

foldon unit at the C-terminal end of an existing polypeptide con-

formation, the emission nodes of the already formed structure is

marked as observed in addition to fixing the sequence and secondary

structure of the extruded foldon unit to specific values. The FwBt al-

gorithm (Cawley and Pachter, 2003; Hamelryck et al., 2006) is sub-

sequently used to sample the virtual bond lengths and virtual angle

pairs of backbone and side chain conformation for the entire stretch

of the extruded foldon unit conditioned on the existing polypeptide

geometry using the trained UniCon model. For the synthesis of the

first foldon unit, the sampling is performed solely based on its

sequence and secondary structure.

The next stage is the assembly stage that stabilizes the nascent

foldon unit with respect to the rest of the structure. First, amino acid

sequence and secondary structure emission nodes are marked as

observed for both backbone and side chain for the whole structure

including the nascent foldon unit. Then, random stretches of 1–15

residues are resampled from the existing polypeptide conformation

by flagging all the backbone emission nodes as observed for all the

SSEs (i.e. helices and strands) except for those present in the current

foldon unit. Emission nodes for virtual bond lengths and virtual

angle pairs of the backbone conformation for the rest of the struc-

ture (e.g. coils/loops) are marked as hidden. Side chain virtual bond

lengths and virtual angle pairs are flagged as hidden for the whole

structure. This allows side chain sampling conditioned on backbone

for the previously stabilized SSEs, while simultaneously sampling

backbone and side chain conformation for the nascent foldon unit

as well as for the linker regions (e.g. coils/loops) between previously

stabilized SSEs (hydrogen bonded turn, bend and random coil).

Flexible backbone conformation in the linker regions may help the

conformation to come out of a false local entrapment that may have

been caused by premature folding of earlier foldon units before the

rest of the foldons have emerged. In order to allow further flexibil-

ity, each of the virtual angles associated with the backbone conform-

ation for the previously stabilized SSEs are perturbed randomly by

up to 1�.

2.5 Energy function by combining united-residue

physics-based force field with knowledge-based

information
We use a basic implementation of UNRES physics-based force field

(Liwo et al., 1993, 1997) aided by knowledge-based information on

residue–residue contacts. The energy of a united-residue polypeptide

chain is calculated as:

E ¼ wSC

X
i< j

ESCiSCj
þwSCp

X
i 6¼j

ESCipj
þwel

X
i< j�1

Epipj
þwrr

X
i< j

Erirj

The term ESCiSCj
accounts for the mean free energy of the hydro-

phobic (hydrophilic) interactions between the side chains and impli-

citly includes the energetic contributions from the interactions of the

side chain with the solvent. The term ESCipj
represents excluded-

volume potential of the side chain and peptide groups interactions.

The term Epipj
denotes the peptide-group interaction potential and

primarily accounts for the electrostatic interactions (i.e. propensity

to form backbone hydrogen-bonds) between peptide groups pi and

pj. The details of the parameterization of these terms are provided in

the earlier publications of UNRES (Liwo et al., 1997). The final

term Erirj accounts for energetic contribution due to residue-residue

contacts adopted from previously published FRAGFOLD with

RRCON methodology (Kosciolek and Jones, 2014). This is a square

well function with exponential decay and is defined as:

Erirj
¼

�P if d � d0

�P � e� d�d0ð Þ2 þ P � d � d0

d
if d > d0

8<
:

where P is the probability of residue i and residue j to be in contact.

In united-residue representation, we consider a contact is fully

formed when the distance d between the united side chains of the

participating residues (SCi–SCj) are within a cutoff distance of d0.

We fix d0 at 8 Å. This function strives to avoid false positives by

penalizing non-satisfied contacts proportional to P with the penalty

decaying with d. It should be noted that the source of residue-

residue contact is not fixed in our study. Contacts can be experimen-

tally derived or predicted from the sequence using evolutionary se-

quence variation (Jones et al., 2012; Marks et al., 2011; Seemayer

et al., 2014; Skwark et al., 2013) or machine learning based meth-

ods (Cheng and Baldi, 2007; Eickholt and Cheng, 2012; Tegge

et al., 2009; Wang and Xu, 2013) or a combination of both covari-

ation techniques and machine learning (Jones et al., 2015; Kosciolek

and Jones, 2015). When true contacts are known, all P values can be

set to 1. On the other hand, to exclude the influence of contact en-

ergy altogether, all P values can be set to 0.

We set the weights of the UNRES energy terms in accordance

with the 4P force field (Oldziej et al., 2004; Oldziej et al., 2004),

Fig. 2. Visualization of stepwise sampling protocol. Foldon units are identified

from the SSEs with a size restriction of at least 20 residues. Each foldon unit

is then sequentially synthesized and assembled from N to C-terminus via

probabilistic sampling conditioned on previously formed conformation
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where wSC¼1.00000, wSCp¼2.73684 and wel¼0.06833. The

value of wrr depends on the accuracy of residue-residue contacts and

should be weighted higher for experimentally derived contacts or

contacts predicted using covariation techniques with deep multiple

sequence alignment than contacts predicted using pure machine

learning methods. After experimenting with several weights for wrr,

we select wrr¼3.00000.

2.6 Energy minimization
Simulated annealing (SA) algorithm (Aarts and Korst, 1988) is em-

ployed to minimize the potential energy of a united-residue polypep-

tide conformation. The conformational sampling proceeds by

stepwise synthesis and assembly. Given the conformation of an

extruded foldon unit generated in the synthesis stage, we propose a

new conformation in the assembly stage and accept it with a prob-

ability proportional to:

a ¼ min 1; e
�DE

t

� �

where DE is the difference between energy of the new conformation

and the energy of the old conformation and t is the annealing tem-

perature. We set the initial temperature to 1000 K based on earlier

studies of UNRES force field (Liwo et al., 1993) and gradually

decrease it to 298 K using an exponential cooling schedule.

2.7 UniCon3D and B03D
We combine the stepwise sampling and composite energy function

to devise UniCon3D, a united-residue de novo protein structure pre-

diction protocol. Given a protein sequence, predicted secondary

structure and optionally residue-residue contacts, foldon units are

sequentially synthesized and assembled using simulated annealing

energy minimization. The number of Monte Carlo (MC) cycles for

each step in the stepwise sampling is set to the number of residues

times 100. At the end of MC cycles, the lowest-energy conformation

is selected as the prediction to be used in the next step or as the final

predicted structure (a.k.a. decoy) if all the foldon units are con-

sumed. The procedure can be repeated multiple times in order to

generate multiple decoys for the target protein. It should be noted

that we set all parameters related to UniCon3D using the training

proteins only.

We also implement a baseline sampler (B03D) that does not per-

form stepwise sampling. It first samples the conformation for the en-

tire polypeptide chain from amino acid and predicted secondary

structure sequence using UniCon3D IOHMM model and subse-

quently resamples the conformation of random stretches of 1–15

residues using FwBt algorithm. This kind of random conformational

sampling strategy resembles discretized fragment assembly

approaches (Simons et al., 1997; Xu and Zhang, 2012) or their

probabilistic equivalents using generative models (Bhattacharya and

Cheng, 2015; Boomsma et al., 2008; Hamelryck et al., 2006; Zhao

et al., 2008). Using the same energy function and simulated anneal-

ing energy minimization with the same number of MC cycles and

temperature schedule as used in UniCon3D, the baseline sampler

gives rise to a comparable structure prediction approach, which we

name B03D. A direct comparison between UniCon3D and B03D

may, therefore, reveal the strengths and weaknesses of stepwise sam-

pling over traditional random sampling.

2.8 Ranking decoys and performance assessment
In addition to internal UniCon3D scoring, we also use two external

single model quality assessment programs (MQAPs): ProQ2 (Ray

et al., 2012) and Qprob (Cao and Cheng, 2016); and two clustering-

based MQAPs: APOLLO (Wang et al., 2011) and MUFOLD-CL

(Zhang and Xu, 2013) in order to rank decoys produced by

UniCon3D. ProQ2 uses support vector machine to predict the quality

of a decoy based on its structural features and evaluated to be the best

single-model method in CASP11 (Uziela and Wallner, 2016). Qprob

predicts a decoy’s quality by estimating the errors of structural,

physiochemical and energy-based features using probability density

distributions and shown to have achieved state-of-the-art performance

in CASP11 (group name MULTICOM-NOVEL). APOLLO is based

on full pair-wise comparison approach after optimal structural super-

position between each pair of decoys. MUFOLD-CL uses a

superposition-independent distance matrix comparison strategy for

clustering decoy population. Since both ProQ2 and Qprob require

full-atom representation of decoys, we convert united-residue decoy

pools produced by UniCon3D into all-atom level using PULCHRA

software (Rotkiewicz and Skolnick, 2008). APOLLO and MUFOLD-

CL, on the other hand, requires only Ca atoms. We select top 100

decoys by UniCon3D energy function and re-rank them using

APOLLO while all decoys produced by UniCon3D are supplied dir-

ectly for clustering to MUFOLD-CL. After ranking all decoys using a

specific MQAP, the top-ranked decoy (or the centroid of the largest

cluster in case of MUFOLD-CL) is subsequently selected and com-

pared with its native structure using TM-score program (Zhang and

Skolnick, 2004) to compute its Ca-rmsd and TM-score. Residues pre-

sent in the sequence but not observed in the experimental structure,

although modeled, are ignored during the comparison.

3 Results and discussion

3.1 UniCon3D versus B03D
In order to compare UniCon3D with our baseline approach, B03D,

we collect six small proteins ranging in length from 43 to 76 residues

that have been subject of previous studies (Simons et al., 1997; Zhao

et al., 2008). We then predict eight-class secondary structure using

SSpro 5, extract true residue-residue contacts from the native struc-

tures, and employ UniCon3D and B03D protocol to generate 100

decoys for each protein. The rationale for using true contacts as

opposed to predicted contacts is to ensure that the contact energy

Erirj during sampling is not dominated by the presence of false posi-

tive contacts since the sole purpose of this experiment is to compare

stepwise sampling performed in UniCon3D with traditional random

sampling done in B03D. Table 1 reports the average energy of the

decoy population and the TM-score of the lowest-energy decoy for

each protein in the dataset along with energies of the native state.

The average energy sampled by UniCon3D (�449.18) is 4.9% lower

than the average energy sampled by B03D (�428.25); albeit the

average energy of the native state is significantly lower (�723.58).

The difference between sampled and native energy indicates that the

composite physics and knowledge-based energy function used in

UniCon3D is able to distinguish native state from decoys. The en-

ergy distributions produced by UniCon3D is consistently skewed to-

wards lower energy regions compared to B03D (Supplementary Fig.

S2). This generally results in a higher accuracy decoy compared to

its native structure with average TM-score of the lowest-energy

decoy for UniCon3D (0.57) outperforming that of B03D (0.53) by

7.5%, demonstrating superiority of stepwise sampling protocol

compared to traditional random sampling.

We also calculate the Mean Absolute Error (MAE) of virtual

backbone angles of the lowest-energy decoys (Adecoy) generated by

UniCon3D and B03D with respect to that of the native
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conformation (Anative). Due to the periodicity of angles, we consider

the smaller value of (d¼ jAdecoy � Anativej) and (360 – d) when calcu-

lating MAE. Furthermore, we use SPIDER2 (Heffernan et al., 2015;

Lyons et al., 2014) to predict the virtual backbone angles from se-

quence using machine learning in order to compare MAE of sampled

decoy to sequence-based prediction. SPIDER2 employs an iterative

deep learning methods and is shown to achieve state-of-the-art per-

formance (Heffernan et al., 2015). Although a reduced MAE in

backbone virtual angle pair does not necessarily guarantee a better

structure, the comparison offers some interesting insights. Average

MAE of the virtual bond angles formed by Cai�1�Cai�Caiþ 1 atoms

of the decoys produced by UniCon3D is 8.7�, slightly higher than

that of B03D (7.8�) and SPIDER2 (6.8�). Average MAE of the vir-

tual dihedral angle for UniCon3D (29.7�) is lower than that of B03D

(33.2�) and slightly higher than that of SPIDER2 (26.7�). Overall,

average MAE of backbone virtual angle pair for the lowest-energy

decoys produced by UniCon3D is 6.5% lower than that of B03D

and 14.5% higher than that of SPIDER2. In terms of the ability to

sample more accurate backbone virtual angle pairs UniCon3D out-

performs B03D, underlining the effectiveness of stepwise sampling.

On the other hand, higher average MAE compared to SPIDER2 in-

dicates that UniCon3D sampling could be further improved, pos-

sibly by generating more number of decoys or by carrying out longer

simulation. It should be noted that SPIDER2 predicts virtual dihe-

dral angle formed by Cai�2�Cai�1�Cai�Caiþ1 atoms and we adopt

the same definition during MAE calculation for fair comparison.

3.2 Performance of UniCon3D in CASP11 free modeling

targets
We assess the performance of UniCon3D using 24 single or multi-

domain protein targets released during CASP11 experiment with

length from 110 to 470 residues with at least one domain classified

as free modeling (FM) targets (Kinch et al., 2016). To replicate a

blind de novo prediction scenario, we first obtain the sequences of

these proteins from CASP11 and predict their eight-class secondary

structures using SSpro 5. We choose to use residue-residue contacts

submitted by the CONSIP2 predictor (group 021) during CASP11, a

method combining both covariation techniques and machine learn-

ing techniques (Jones et al., 2015; Kosciolek and Jones, 2015) and

evaluated to be the top performing contact predictor during

CASP11(Monastyrskyy et al., 2015). For each target, we run

UniCon3D using 20 threads in parallel with independent random

seeds to generate a decoy pool with a maximum of 2000 decoys

within 48 h, thereby adhering to blind prediction mode as performed

in CASP. Decoy with the lowest energy in the decoy pool is subse-

quently predicted to be top-ranked model. After the prediction

phase, we evaluate the accuracy of top-ranked model after filtering

them based on 30 native domains as defined by CASP11 assessors

(Kinch et al., 2016). We also compare the accuracy of UniCon3D

with five top-performing servers participated in CASP11 namely

QUARK and Zhang-Server (Zhang et al., 2015), RBO_Aleph

(Mabrouk et al., 2015), nns (Joung et al., 2015) and BAKER-

ROSETTASERVER (Kinch et al., 2015).

In Table 2, we show the average TM-score and Ca-rmsd over the

entire dataset for these methods along with P-value of a one-sample t-

test of TM-score and Ca-rmsd difference of each method compared to

UniCon3D (Supplementary Table S1). In terms of TM-score, Table 2

reveals that UniCon3D is comparable to the state-of-the-art servers

with an average TM-score of 0.25; 0.04 and 0.03 TM-score points

worse than the best serves QUARK and Zhang-Server respectively.

Average TM-scores of UniCon3D is same as RBO_Aleph and 0.

02TM-score points better than nns and BAKER-ROSETTASERVER

although their difference is statistically insignificant. With respect to

Ca-rmsd, however, UniCon3D performs 10 and 12% better than nns

and BAKER-ROSETTASERVER respectively within 95% signifi-

cance interval while being comparable with other top-performing ser-

vers. The results demonstrate that UniCon3D attains performance

comparable to the top automated methods worldwide. It should be

noted that unlike top-performing servers, UniCon3D operates at

coarse-grained representation with a very simple energy function and

does not employ any expensive all-atom refinement or relaxation

step. Moreover, the stepwise sampling circumvents the error-prone

domain splitting and recombination step, typically used in most top-

performing methods.

To further investigate whether the performance of UniCon3D

can be improved by using other MQAPs, we use ProQ2, Qprob,

APOLLO and MUFOLD-CL to re-rank the whole decoy pool and

identify top-ranked decoys for each target to compute their accura-

cies compared to the native domains. Table 3 summarizes the aver-

age TM-scores and Ca-rmsds of the top-ranked decoys selected by

different MQAPs (Supplementary Table S2). UniCon3D’s energy

function performs best as indicated by 0.01, 0.01, 0.02 and 0.02

higher average TM-score compared to APOLLO, Qprob, ProQ2

and MUFOLD-CL respectively and 0.06, 0.46, 0.52 and 0.81 Å

lower average Ca-rmsd compared to APOLLO, ProQ2, Qprob and

MUFOLD-CL respectively. The comparable performance of the in-

ternal energy function of UniCon3D with the state-of-the-art single

Table 1. Average energy of 100 decoys and TM-scores of lowest-

energy decoy for six small proteins

Native UniCon3D B03D

Protein, PDB code Energy Energy TM-score Energy TM-score

Protein A, 1FC2 �459.03 �419.99 0.66 �403.61 0.63

Homeodomain,

1ENH

�550.08 �473.70 0.73 �446.61 0.67

Protein G, 2GB1 �688.10 �479.72 0.50 �453.39 0.51

Cro repressor,

2CRO

�794.04 �454.45 0.51 �432.18 0.44

Protein L7/L12,

1CTF

�899.18 �447.23 0.41 �430.11 0.43

Calbidin, 4ICB �951.04 �419.99 0.62 �403.61 0.54

Mean �723.58 �449.18 0.57 �428.25 0.53

Table 2. Comparison between UniCon3D and top-performing ser-

vers based on average TM-scores and Ca-rmsds of top-ranked

model in 30 CASP11 FM domainsa

Group name TM-score (P-value*) Ca-rmsd (P-value**)

QUARK 0.29 (0.015) 14.83 (0.102)

Zhang-Server 0.28 (0.014) 15.39 (0.563)

UniCon3Db 0.25 (–) 15.82 (–)

RBO_Aleph 0.25 (0.306) 16.67 (0.198)

nns 0.23 (0.372) 17.41 (0.003)

BAKER-ROSETTASERVER 0.23 (0.181) 17.71 (0.001)

*P-value of a one-sample t-test of TM-score difference to UniCon3D TM-

scores.

**P-value of a one-sample t-test of Ca-RMSD difference to UniCon3D Ca-

rmsds.
aThe groups are sorted by descending TM-scores then by ascending Ca-

RMSD.
bNot a participating group in CASP11 experiment.
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model and clustering-based MQAPs demonstrates the effectiveness

of the composite physics and knowledge-based energy function used

in UniCon3D.

3.3 Performance of UniCon3D in CASP10 free modeling

targets
We further access the performance of UniCon3D using 14 single or

multi-domain protein targets released during CASP10 experiment

with length varying from 165 to 770 residues with at least one do-

main classified as free modeling (FM) target (Taylor et al., 2014).

We follow the same modeling protocol as described for CASP11 by

first predicting eight-class secondary structures using SSpro 5 and

residue-residue contacts using MetaPSICOV (Jones et al., 2015;

Kosciolek and Jones, 2015) and subsequently executing 20 parallel

threads of UniCon3D simulations to generate up to 2000 decoys

within 48 hours. The lowest-energy decoy is then compared to 15

native domains as defined by CASP10 assessors after filtering. Just

like CASP11, we compare the accuracy of UniCon3D with five top-

performing CASP10 servers namely Zhang-Server and QUARK

(Zhang, 2014), PMS (Joo et al., 2014), MUFold_CRF (Zhang et al.,

2010) and BAKER-ROSETTASERVER.

Table 4 reports the average TM-score and Ca-rmsd together

with P-value of a one-sample t-test of TM-score and Ca-rmsd differ-

ence of each method compared to UniCon3D (Supplementary Table

S3). With respect to TM-score, UniCon3D is 0.03 TM-score points

worse than both Zhang-Server and QUARK, same as PMS, 0.

01 TM-score points better than both MUFold_CRF and BAKER-

ROSETTASERVER. Nevertheless, except for the top-performing

method Zhang-Server, TM-score difference between UniCon3D and

other methods are statistically insignificant at 95% significance

interval. Likewise, in terms of Ca-rmsd, UniCon3D performs

slightly worse than Zhang-Server and QUARK and better than

PMS, MUFold_CRF and BAKER-ROSETTASERVER; although

their difference is statistically insignificant. Once again, UniCon3D

achieves performance comparable to the top groups worldwide

underscoring its consistency and robustness.

3.4 De novo prediction of CASP10 template-based mod-

eling targets using UniCon3D
Next, we examine the performance of UniCon3D’s de novo struc-

ture prediction protocol coupled with a machine learning based con-

tact predictor in the context of template based modeling (TBM).

This is done using a dataset containing 45 single-domain protein tar-

gets from CASP10 experiment (Moult et al., 2014) that are classified

as TBM or TBM-hard targets with sequence length from 71 to 390

residues. We select residue–residue contacts generated by

MULTICOM predictor (group 489), the top contact predictor ac-

cording to CASP10 assessment (Monastyrskyy et al., 2014).

MULTICOM employs a conformation ensemble approach (Eickholt

et al., 2011) to combine different machine learning based contact

predictors (Cheng and Baldi, 2007; Eickholt and Cheng, 2012;

Tegge et al., 2009). The average sensitivity of predicted contact map

by MULTICOM over the entire dataset is 0.3 with 10 targets having

sensitivity >0.5. Once again, we replicate a blind prediction scen-

ario and generate up to 2000 decoys for each target using 20 parallel

threads within a limited time of 48 hours. The same dataset with the

same contact maps produced by MULTICOM has been recently

used to evaluate the performance of GDFuzz3D (Pietal et al., 2015).

The method predicts distance maps from predicted contact maps

using graph distance map coupled with multidimensional scaling

and subsequently employ coarse-grained modeling followed by all-

atom refinement for de novo structure prediction. GDFuzz3D is

compared with FT-COMAR (Vassura et al., 2008), a popular

method to predict 3D structures from noisy contact maps, and

shown to predict more accurate models. This dataset, therefore,

allows a head-to-head comparison between UniCon3D with

GDFuzz3D as well as with FT-COMAR. Furthermore, the realistic

accuracy of predicted contact maps in this dataset permits a fair per-

formance comparison between UniCon3D and B03D in a large data-

set. We compute the accuracy of predictions made by UniCon3D

and B03D by comparing them directly with the native structures

while the accuracy of GDFuzz3D and FT-COMAR is adopted from

the published work of GDFuzz3D method (Pietal et al., 2015).

As reported in Table 5, on an average over the entire dataset,

decoys generated by UniCon3D are more accurate with an average

TM-score of 0.45 compared to 0.41 and 0.31 for GDFuzz3D and

FT-COMAR respectively (Supplementary Table S4). Average Ca-

rmsd of UniCon3D is 10.73 Å, comparable to GDFuzz3D (10.75 Å)

and lower than FT-COMAR (14.81 Å). Considering the 10 tar-

gets with reasonably accurate contact maps (sensitivity>0.5),

UniCon3D generates 8 models with TM-score>0.5 indicating cor-

rect folds (Xu and Zhang, 2010), while GDFuzz3D produces 6 mod-

els with TM-score>0.5 and FT-COMAR returned only 4 models

(Supplementary Table S5). The average TM-score for UniCon3D for

these targets is 0.54 compared to 0.51 for GDFuzz3D and 0.39 for

FT-COMAR (average Ca-rmsd of UniCon3D is 5.66 versus 6.15 Å

for GDFuzz3D and 11.02 Å for FT-COMAR). The results suggest

the ability of UniCon3D to more consistently predict the correct

fold of a protein given reasonably accurate contact maps than

GDFuzz3D and FT-COMAR. Furthermore, the higher average ac-

curacy of UniCon3D demonstrates that stepwise sampling combined

with united-residue composite energy function can outperform a

Table 3. Average TM-scores and Ca-rmsds of top-ranked decoys

based on different MQAPs in 30 CASP11 FM domains*

MQAP TM-score Ca-rmsd

UniCon3D 0.25 15.82

APOLLO 0.24 15.88

Qprob 0.24 16.34

ProQ2 0.23 16.28

MUFOLD-CL 0.23 16.63

*MQAPs are sorted by descending TM-scores then by ascending Ca-rmsd.

Table 4. Comparison between UniCon3D and top-performing ser-

vers based on avarage TM-scores and Ca-rmsds of top-ranked

model in 15 CASP10 FM domainsa

Group name TM-score (P-value*) Ca-rmsd (P-value**)

Zhang-Server 0.25 (0.035) 16.14 (0.164)

QUARK 0.25 (0.056) 16.42 (0.226)

UniCon3Db 0.22 (–) 17.45 (–)

PMS 0.22 (0.981) 18.04 (0.565)

MUFold_CRF 0.21 (0.565) 18.70 (0.365)

BAKER-ROSETTASERVER 0.21 (0.393) 22.09 (0.103)

*P-value of a one-sample t-test of TM-score difference to UniCon3D TM-

scores.

**P-value of a one-sample t-test of Ca-RMSD difference to UniCon3D Ca-

rmsds.
aThe groups are sorted by descending TM-scores then by ascending Ca-

RMSD.
bNot a participating group in CASP10 experiment.
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modeling protocol such as GDFzz3D that integrates coarse-grained

modeling with all-atom refinement or a fault tolerant 3D structure

reconstruction algorithm from noisy contact map like FT-COMAR.

It should be noted, however, that the accuracy of UniCon3D is

much worse compared to the best CASP10 server prediction (meas-

ured by highest TM-score model among all submitted server models)

that leverages available template information via homology model-

ing or threading techniques. This is expected because UniCon3D is a

de novo modeling approach that neither employs template identifi-

cation nor incorporates template-derived restraints during structure

modeling. Nevertheless, the best CASP10 server prediction serves as

reference and reveals the gap between TBM and FM when template

information is available.

Table 5 (Supplementary Table S5) also shows that UniCon3D

outperforms B03D over the entire dataset in terms of both average

TM-score (0.45 for UniCon3D versus 0.42 for B03D) and average

Ca-rmsd (10.73 Å for UniCon3D versus 11.86 Å for B03D). Out of

the 10 targets with reasonably accurate contact maps (sensitiv-

ity>0.5), B03D is able to generate only 5 models with TM-score

>0.5 compared to 8 in case of UniCon3D (Supplementary Table

S5). Moreover, average TM-score and Ca-rmsd for these targets are

0.5 and 7.26 Å for B03D respectively, worse than that of UniCon3D

(average TM-score and Ca-rmsd are 0.54 and 5.66 Å respectively).

Better accuracy of UniCon3D over B03D once again demonstrates

that average accuracy of models produced via stepwise sampling is

better than traditional random sampling strategy even with sequence

based predicted contact map that is inherently noisy. Furthermore,

when reasonably an accurate contact map is available, stepwise sam-

pling consistently predicts correct fold compared to random sam-

pling, underscoring superiority of stepwise sampling.

4 Conclusion

Here, we show that experimentally motivated stepwise, probabilistic

sampling can lead to improvements during de novo conformational

sampling of united-residue polypeptide chains by generating lower

energy conformation with higher accuracy than traditional random

sampling approaches. Moreover, stepwise sampling strategy natur-

ally avoids domain splitting and reassembly during multi-domain

protein modeling and can be directly applied to predict structures of

relatively larger proteins. Combined with a basic implementation of

united-residue physics based force field aided by predicted residue–

residue contacts, the method attains accuracy comparable with the

top automated approaches worldwide in a dataset of difficult pro-

tein targets. Furthermore, with sufficiently accurate predicted con-

tacts, the method can consistently predict correct overall folds of

proteins with higher average accuracy than two state-of-the-art

approaches. Our results, obtained purely based on coarse-grained

sampling and scoring, could be further enhanced by focusing future

work on all-atom refinement and improved scoring function.
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