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Fatty old hearts: role of cardiac lipotoxicity
in age-related cardiomyopathy
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Age-related cardiomyopathy accounts for a significant part of heart failure cases. Imbalance of the energetic

equilibrium of the heart along with mitochondrial dysfunction and impaired b-adrenergic receptor signaling

contributes in the aggravation of cardiac function in the elderly. In this review article, studies that correlate

cardiac aging with lipotoxicity are summarized. The involvement of inhibition of peroxisome proliferator-

activated receptor-a, b-adrenergic receptor desensitization, and mitochondrial dysfunction as underlying

mechanisms for the lipid-driven age-related cardiomyopathy are presented with the aim to indicate potential

therapeutic targets for cardiac aging.
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A
ge-related cardiac dysfunction is a major factor

in heart failure. The elderly accounts for at least

80% of patients with ischemic heart disease, 75%

of patients with congestive heart failure, and 70% of

patients with atrial fibrillation (1). Heart failure with

either lower or preserved ejection fraction is common for

hospitalized patients with cardiac abnormalities. Cardiac

aging, which is evident in both humans and mice, plays

an important role for both types of heart failure (2). Mouse

cardiac aging is characterized by a reduction in fractional

shortening, diastolic dysfunction, left ventricular hyper-

trophy, increased left ventricular end-diastolic pressure,

fibrosis, cardiomyocyte hypertrophy, and increased a

poptosis. Several components of cardiac function, includ-

ing energetic homeostasis, adrenergic signaling, and mi-

tochondrial dysfunction, can be compromised during

aging (3). Balanced cardiac lipid metabolism is critical

for normal function of the heart. Any deviation toward

either increased or reduced fatty acid metabolism may be

detrimental for cardiac function, primarily depending on

the type of pathophysiological challenge. Aging-related

cardiomyopathy has been associated with downregulation

of peroxisome proliferator-activated receptor (PPAR)-a
(4), which is a central regulator of cardiac fatty acid

metabolism (5) and cardiac lipid accumulation (6,7).

Thus, impairment of fatty acid metabolism may at least

partially account for the aggravation of cardiac function

that occurs with aging.

Aging-related cardiomyopathy
The cardiovascular system’s functions are altered with

aging, and a significant portion of the observed changes

affects myocardial biology. Decreased elasticity and in-

creased stiffness of the arterial system increases afterload

on the left ventricle, as well as systolic blood pressure and

leads to left ventricular hypertrophy. Although systolic

function is preserved in the older humans, diastolic dys-

function and lower exercise capacity have been reported

(2). Diastolic dysfunction accounts for the lower exercise

capacity and increased mortality (8). Mice with cardiac

aging demonstrate increased left ventricular mass with

slightly lower systolic function, diastolic dysfunction,

reduced exercise capacity, and worse myocardial per-

formance (9,10). Aged mouse hearts obtained from either

129/SvJ-C57BL/6 or C57BL/6J mice have increased fibro-

sis, hypertrophic cardiomyocytes, increased apoptosis,

and amyloid deposition (3,11). C57BL/6J mice develop

contractile dysfunction approximately at 18 months of age

(12). This is associated with increased cardiac fibrosis,

apoptosis, and inflammation-related gene expression (12).
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Cardiac fibrosis is generally associated with increased

Transforming growth factor (TGF)-b levels, which is also

thought to be a critical mediator of age-related cardiac

fibrosis (13). In addition, other proteins such as matrix

metalloproteinases (MMPs), osteopontin, and periostin

have a significant contribution in cardiac fibrosis (14).

Induction of inflammatory markers has also been asso-

ciated with aging (15), although it seems that there is a

significant mouse-strain-dependent variation on the extent

of inflammation (16). Similarly, the existence of apoptotic

cardiomyocytes seems to vary with studies showing either

increased (17) or unchanged (12) apoptosis during cardiac

aging. Also, oxidative stress has been associated with

cardiac aging and particularly with aging-related cardiac

hypertrophy (18). Finally, reduced responsiveness to

adrenergic stimulus and increased plasma catecholamine

levels have been reported with aging (3). Thus, cardiac

aging is accompanied by dysregulation of various path-

ways that have been attributed causative role in several

types of cardiomyopathy.

Therefore, the aged myocardium is more susceptible to

hemodynamic and ischemic stress compared to young

myocardium (19,20). The vulnerability of aged hearts to

stress has been correlated with increased reactive oxygen

species (ROS) levels (21) and higher susceptibility to mito-

chondrial permeability transition pore (mPTP) opening

(22). Nevertheless, mPTP opening may eventually cause

mitochondrial swelling, ATP depletion, apoptosis, and

cell death (23,24). Thus, cardiac aging is associated

with myocardial dysfunction and increased sensitivity to

cardiac stress.

Cardiac fatty acid metabolism and lipotoxicity
The heart normally consumes a large amount of ATP in

order to pump more than 7,000 liters of blood on a daily

basis (25). For the production of ATP that is needed for

this massive amount of work, the heart oxidizes fatty

acids, glucose, lactate, ketone bodies, and amino acids as

energy-providing substrates. Fatty acid oxidation (FAO)

is a major component of the energy production process as

it accounts for the generation of approximately 70% of

cardiac ATP (25,26).

FA utilization in healthy hearts is a complex process

that includes several steps: FA uptake, conversion of free

FA to FA-CoA, storage of FAs in triglycerides (TG), TG

lipolysis, transfer of fatty acids into the mitochondria,

b-oxidation, and oxidative phosphorylation for ATP pro-

duction (Fig. 1). The flawless transfer of fatty acids from

cellular uptake to mitochondrial oxidation prevents accu-

mulation of excess lipids. A study using positron emission

tomography in humans showed that aging decreases myo-

cardial FA utilization and FAO without any difference

in myocardial glucose utilization (27). Several types of

cardiac dysfunction, such as ischemia, obesity, diabetes,

sepsis, and heart failure, are associatedwith impaired FAO,

Fig. 1. Summary of cardiomyocyte fatty acid metabolism in healthy hearts.
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which frequently leads to lipid accumulation characterized

as cardiac lipotoxicity (28,29). Although cardiac lipotoxi-

city is accompanied by increased accumulation of neutral

lipids, several studies have dissociated myocardial TG accu-

mulation from lipid-driven cardiac dysfunction (30�33).

In fact, cardiac lipotoxicity has been attributed to other

lipids, such as saturated free fatty acids, ceramides,

diacylglycerols (DAGs), and acylcarnitines (29,32,34,35),

which change in parallel with cardiac TG.

Although cardiac toxic lipids have been associated

with cardiac dysfunction (29), it has not been studied

thoroughly whether they mediate aging-related cardio-

myopathy, as well as what lipid-driven signaling mechan-

isms may be involved. Various studies have established a

correlation between cardiac lipid accumulation and aging

in humans and animal models (6,7). Aged hearts have

increased expression of the cardiac fatty acid transporter,

cluster of differentiation 36 (CD36) (36). Genetic ablation

of CD36 prevented age-related cardiomyopathy, which

indicates the involvement of increased cardiomyocyte lipid

uptake in this process (36). Several lipids have been related

to lipotoxic cardiomyopathy, such as palmitic acid, acyl-

carnitine, unesterified cholesterol, lysolecithin, ceramide,

and DAGs. These lipids can trigger apoptosis, inflamma-

tion, and mitochondrial dysfunction (29). Interestingly,

ob/ob mice, which are models of hyperphagia and type 2

diabetes, develop symptoms of cardiac aging much earlier,

compared to wild-type mice fed with regular chow diet

(37). This phenotype is associated with increased cardiac

TG and DAG accumulation. Cardiac ceramide levels

have been shown to be increased in a senescence-accelerated

mouse model that develops cardiac hypertrophy (38). Thus,

toxic lipids, such as DAGs and ceramides, are increased

with cardiac aging.

Either ceramides or DAGs can activate Protein Kinase C

(PKC) signaling (39) that has been associated with myo-

cardial aging (40) PKCs constitute a lipid-sensitive Ser/Thr

kinase family, which is involved in a broad range of G

protein�coupled receptor (GPCR)-mediated responses and

have been linked with several types of cardiomyopathy (24,

41�46). All PKC isoforms share a common structural motif

consisting of a conserved kinase domain linked at the

N-terminal domain, via a hinge region, with a more variable

regulatory domain that in most cases contains lipid/phorbol

ester binding and calcium-dependent phospholipid binding

subdomains. PKCs are classified into three subcategories:

conventional PKCs (cPKCs � PKCa, PKCbI, PKCbII, and

PKCg), novel PKCs (nPKCs � PKCd, PKCo, PKCu, and

PKCh), and atypical PKCs (aPKCs � PKCz and PKCi/l)

(39). All PKC isoforms, except PKCu and PKCi/l, have been

detected in cardiomyocytes from humans or other animal

models (41,44, 46�48). A number of studies have demon-

strated that PKC activation relies on binding of DAG or

ceramide and translocation to the membrane. Briefly, PKC

movement to the membrane involves activation by Ca2�

binding to the C2 domain and DAG or ceramide binding

to the C1 domain for membrane penetration. DAG

binding results in formation of a hydrophobic cap facil-

itating membrane insertion and stabilizing the protein-

membrane interface without causing a conformational

change.

Role of PPARa in aging-related cardiomyopathy
Several proteins of the energy production machinery that

mediates processing of FAs and ATP production are re-

gulated at the transcriptional level by PPARa (49). PPARa
is activated by FAs that are released via lipolysis from

the intracellular TG (50,51). Inhibition of PPARa,

as shown in PPARa�/� mice, decreases myocardial fatty

acid metabolism (52�54) and reduces cardiac ATP levels

(53,55). Although some studies have reported normal

cardiac function at baseline for the PPARa�/� mice

(54�56), others showed that these mice have reduced

cardiac function at baseline associated with fibrosis

(53,57) and oxidative stress (58,59). Antioxidant therapy

alleviated left ventricular dysfunction, indicating that

oxidative damage accounts for the cardiac dysfunction

seen in mice with PPARa ablation (59).

Cardiac abnormalities that occur in PPARa�/�

mice progress further during aging (53) and decrease

longevity (60). Nevertheless, aging is associated with

decreased cardiac PPARa levels (4,61). Metabolomic

analysis indicated an age-dependent decrease in cardiac

glucose content, signs of decreased ketone supply, and

altered FA synthesis (62). The importance of PPARa
inhibition in accelerating cardiac aging was demon-

strated in 20-month-old rats that were treated with the

lipid lowering drug atorvastatin, which increases PPARa
expression (63). The treatment with atorvastatin reduced

cardiac hypertrophy, collagen deposition, oxidative stress,

expression of inflammatory cytokines, and the aging

marker b-galactosidase. The conclusion about the associa-

tion of PPARa inhibition and cardiac aging was further

emphasized when pretreatment with PPAR inhibitors

attenuated the effect of atorvastatin on the inhibition

of inflammatory cytokines (63). This indicated that

the beneficial effects of atorvastatin on cardiac aging

may be attributed to either lipid lowering effect or the

anti-inflammatory role of PPAR signaling (64,65).

Furthermore, cardiac aging that is observed in mice

with cardiomyocyte-specific overexpression of human

aldose reductase (aMHC-hAR) is associated with reduced

cardiac expression of PPARa gene targets, such as pyru-

vate dehydrogenase kinase 4 and acetyl-CoA oxidase (66),

and increased PPARg signaling that promotes cardiac lipid

accumulation characterized by increased TG, ceramides,

and acyl-carnitine levels (67). Moreover, genetic ablation

of Ppara in aMHC-hAR mice resulted in earlier onset

of cardiac dysfunction (66). Increased cardiac toxic lipid

levels, such as ceramides, have also been reported in
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senescence-accelerated mice that have lower expression

of PPARa (38). Another study also showed that PPARa
activation reduces inflammation in aged mice (61). Thus,

although reduced cardiac PPARa expression has been

associated with aging-related cardiomyopathy, the under-

lying mechanisms that mediate the beneficial effect of

PPARa have not been fully elucidated.

b-Adrenergic signaling and cardiac aging
A component of cardiac aging pathophysiology is the

impairment of b-AR signaling (3). Normally, stress in-

creases the release of adrenal norepinephrine and epi-

nephrine that target cardiac b-ARs, which belong to the

GPCR family. Increased release of catecholamines by the

sympathetic nervous system stimulates b-ARs and in-

creases contractile force and heart rate. Activated b-ARs

induce adenylyl cyclase activation and cAMP formation.

b-ARs are subsequently phosphorylated and deactivated

by kinases designated G protein�coupled receptor kinases

(GRKs) (68). GRKs can be activated by PKCs (69).

However, GRKs do not seem to be involved in cardiac

aging in humans (70). PKCs can also deactivate b-ARs

directly via a ligand-independent cascade (heterologous

desensitization) (71). Desensitization of b-AR is followed

by internalization of the receptor. This is a key step

required either for restoration (72) or for its proteasomal

degradation (73). Failing hearts demonstrate reduced

cardiac b-AR-mediated responsiveness to catecholamines

and abnormal myocardial b-AR signaling (74), which

coincide with increased catecholamine production.

Age-related inhibition of b-AR responsiveness occurs

in both animals and humans and is characterized by

reduced b-AR density and internalization (75). Isolated

left ventricular cardiomyocytes from hearts of animals at

different age showed that the age-related contractility im-

pairment during b-adrenergic stimulation was associated

with reduced cAMP levels.

It has been shown (34,76) that excessive cardiac lipid

accumulation is associated with dilated cardiomyopathy

in several animal models of cardiac lipotoxicity, which is

consistent with observations in humans. Cardiac lipo-

toxicity is accounted for by accumulation of toxic lipids,

such as DAGs and ceramides, which activate PKCa and

PKCd and impair catecholamine-stimulated cardiac con-

tractility and relaxation (34,35). Various studies have

identified palmitic acid as the FA species that primarily

induces formation of DAGs and ceramides, activates

PKC signaling, and promotes b-AR desensitization and

cardiac dysfunction (34,51,76,77). Interestingly, a meta-

bolomics study showed that aged rat hearts have in-

creased utilization of palmitic acid (78) indicating a

potential role for this toxic FA in aging-related cardiac

dysfunction. Thus, lipid-driven mechanisms that may

involve PKC signaling may account for the impairment

of b-AR signaling that occurs in aged hearts.

Mitochondria and cardiac aging
Impaired mitochondrial oxidative capacity is another

component of cardiac lipotoxicity that seems to have a

causative role in aging (6). Aging-related cardiac mito-

chondrial defects have been primarily attributed to in-

terfibrillar rather than subsarcolemmal mitochondria

(79,80), which have lower abundance in aged hearts (80).

Increased mitochondrial ROS generation has been pro-

posed to be a central event in cellular aging as it was de-

scribed as a major determinant of lifespan several decades

ago (81). Formation of ROS accompanies dysregulation of

oxidative phosphorylation and mitochondrial dysfunction.

Excess electrons from complex I and III can be transferred

directly to O2 to generate superoxide anion (O�), which is

then converted to H2O2 that diffuses into cytosol and

nucleus and activates redox signaling. H2O2 can be con-

verted to a hydroxyl radical, which is the most reactive

ROS species that targets mitochondrial DNA, lipids, and

proteins and contributes in mitochondrial dysfunction

and aging (82).

Changes in mitochondrial biology have a significant

influence in cardiomyocyte function. Nevertheless, cardi-

omyocytes are rich in mitochondria that serve as ATP

generators. Mitochondrial function deteriorates with aging

due to electron transport chain defects (83). Particularly,

reduced activity of complexes I and IV has been reported

and leads to mitochondrial superoxide formation, mito-

chondrial ROS production, and protein damage (84,85).

Aged hearts have increased frequency of mitochondrial

DNA mutations, oxidative damage of mitochondrial

proteins, and mitochondrial structural defects (86), which

have been associated with aging (87). Accordingly, mice

that overexpress catalase in the mitochondria, which

attenuates ROS formation and protects mitochondria

from protein damage and structural defects, have in-

creased lifespan (21); and they are protected from cardiac

dysfunction (86).

Cardiolipin is a critical lipid component of the inner

mitochondrial protein, where the electron transport chain

exists; thus, it has a central role in oxidative phosphory-

lation and cellular energy production (88). It remains

controversial whether the content or composition of

cardiolipin is altered in mitochondria of aged hearts as

there are studies that show reduced content (89�91), as

well as other studies that do not (92). While it is not clear

whether aging itself alters cardiolipin it seems that when

stress, such as ischemia, is applied to aged hearts, cardio-

lipin oxidation is augmented compared to non-aged

ischemic hearts (93,94). As cardiolipin oxidation, which

occurs during oxidative stress, may account for disrup-

tion of the electron transport chain (95) and mitochon-

drial damage (96), this mechanism may underlie cardiac

lipotoxicity-driven mitochondrial dysfunction during aging.

Increased frequency of mitochondrial DNA defects,

particularly deletions (97), has also been associated with
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cardiac aging. This was demonstrated in mice with homo-

zygous mutation of mitochondrial polymerase g. These

mice have increased mtDNA mutations and deletions, and

they develop age-dependent cardiomyopathy and have

shorter lifespan (98). The importance of mitochondrial

DNA mutations for cardiac aging has also been demon-

strated in humans as shown by age-associated accumula-

tion of mtDNA deletions that have been reported in

various tissues, including the heart (99,100). Thus, mito-

chondrial dysfunction that can be triggered by either

oxidative stress or mutations of mitochondrial DNA is

a contributing factor in cardiac aging.

Epilogue
In summary, cardiac FAO is important for lipid metabo-

lism homeostasis and normal cardiac function. Inhibition

of FAO leads to increased cardiac lipid content, which

is often accompanied by increased levels of toxic lipids,

such as Cer and DAGs. These lipids compromise cardiac

function via b-AR desensitization, which is driven by

activation of the PKC signaling pathway. Aging-related

cardiomyopathy is associated with reduced cardiac levels

of PPARa, a master regulator of cardiac FAO, as well

as with inhibition of b-AR signaling and mitochondrial

dysfunction. These components of cardiac lipotoxicity

that are also involved in cardiac aging indicate therapeutic

targets that may alleviate age-related cardiomyopathy

(Fig. 2).
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