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Modeling gene expression control using Omes Law
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The binding of transcription factors (TFs) to specific sites
in the genome is a crucial step in the molecular process
controlling gene expression. The in vitro sequence specificity
of these regulatory proteins can generally be well represented
by consensus DNA motifs or slightly more sophisticated
sequence profiles called position-specific scoring matrices.
These are widely used to scan genome sequences in order to
find novel transcriptional target genes. Unfortunately, usually
only a small fraction of the ‘hits’ thus obtained are functional
in vivo, where local chromatin structure and TF–TF inter-
actions come into play. Taking into account the context
provided by the surrounding noncoding DNA is therefore
essential. In a recent study currently published in Molecular
Systems Biology, Nguyen and D’haeseleer (2006) present a
promising strategy for determining which context features are
most important for a given TF binding motif. Their approach
belongs to a growing class of methods that fit simple
mathematical models of transcription regulation to DNA
microarray data to map gene regulation networks.

Many of the molecular players that govern gene expression
are known, but our knowledge about their interactions with
the DNA and with each other is very incomplete. Information
about the gene regulatory network is only implicitly repre-
sented in the large volume of functional genomics data now
available to us. The strengths of the ‘arrows’ between TFs
and their target genes and the condition-specific activities
of the regulatory ‘nodes’ need to be inferred by computational
means. A detailed mathematical model that accurately
describes the molecular computations performed by the cell
would greatly deepen our understanding of cellular physiology,
and provide a framework for analyzing regulatory pathways or
predicting the effects of genetic variation between individuals.

While the activity of a TF is often represented by its mRNA
expression level (Segal et al, 2003), regulatory control is more
often than not exerted at the level of subcellular localization or
covalent modification of the protein, or the presence/absence of
ligands. These variables really define the regulatory state of the
cell, but they are much harder to measure experimentally than
mRNA expression levels and therefore usually remain ‘hidden’.
Nguyen and D’haeseleer use multivariate linear modeling to
computationally infer the hidden post-translational activity of
each TF from the mRNA expression levels of its target genes,
ignoring the mRNA expression level of the TF itself. This model-
based approach was previously introduced (Bussemaker et al,
2001) as an alternative to clustering-based analysis of micro-
array data (Eisen et al, 1998; Beer and Tavazoie, 2004), and has
been extended to include TF deletion data (Wang et al, 2002),

position-specific scoring matrices (Conlon et al, 2003; Foat
et al, 2005), and TF–TF interactions (Das et al, 2004). Since each
individual microarray experiment is analyzed by itself, TF
activities can be inferred in a condition-specific manner.

The ability to infer condition-specific TF activities makes it
possible to estimate the regulatory coupling strength between
a TF and a putative target gene, by comparing the mRNA
expression profile of the gene with the inferred TF activity
profile across a large number of microarray experiments. This
approach has previously been used (Liao et al, 2003; Gao et al,
2004) to refine the gene regulatory network structure derived
from genome-wide TF occupancy data (Harbison et al, 2004).
Nguyen and D’haeseleer derive their initial guess of the
network connectivity from matches to TF binding motifs in
noncoding sequence, and subsequently use a modified version
of the method of Liao et al (2003) to self-consistently infer a
matrix of inferred activities of every TF in every condition and
a matrix of regulatory coupling strengths between every TF
and every gene. Their approach provides an alternative to the
use of evolutionary conservation to distinguish functional
DNA motifs from nonfunctional ones (Kellis et al, 2003). While
this is already interesting per se, the unique insight of the
authors is that the inferred regulatory couplings can in turn be
analyzed to determine which aspects of the promoter context
cause the same motif to be functional in one gene and
nonfunctional in another. They use this approach to gain
insight into the role of promoter geometry and the interplay
between two elusive motifs called PAC and rRPE.

An appealing analogy exists between the linear model for
transcription regulation used by Nguyen and D’haeseleer
and the well-known linear equation called Ohm’s Law, I¼GV,
which states that the electrical current (I) through a resistor is
proportional to the voltage (V) across it. In the cell, TF
activities play the role of the voltage and transcription rates
that of the current, while the regulatory coupling between a TF
and a target gene corresponds to the conductivity (G) of the
resistor (see Figure 1). Changes in the mRNA expression level
of all genes (often called the ‘transcriptome’) are interpreted as
a response to changes in the regulatory activity of all TFs
(which we might call the ‘transfactome’), and this relationship
is modeled by a linear equation one might refer to as ‘Omes
Law’. Nguyen and D’haeseleer show that Omes Law allows
them to predict condition-specific expression levels that were
held out from the data set used to fit their model parameters
more accurately than the method of Beer and Tavazoie (2004).

Electrical engineers will be surprised to learn that, in
biology, the observed conductivity of a resistor strongly
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depends on where it gets inserted into the electronic circuit.
With the work of Nguyen and D’haeseleer, we now have a
computational strategy to systematically analyze how geno-
mic context influences the in vivo responsiveness of TF
binding sites.
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Figure 1 Illustrating the analogy between Ohm’s Law and ‘Omes Law’. The work of Nguyen and D’haeseleer extends a class of linear models for gene expression
regulation that has a very direct and useful analogy to basic electricity theory. (A) In an electrical circuit, Ohm’s Law, I¼GV, describes the linear relation that exists
between the current (I ) through a resistor and the voltage (V) that drives it, the constant of proportionality being the conductivity (G) of the resistor. We use a color-
coding scheme where a scale from white (G¼0) to dark brown (G40) represents conductivity, green (Io0) to red (I40) via black (I¼0) represents current, and blue
(Vo0) to yellow (V40) via black (V¼0) represents voltage. (B) In a gene regulatory network, changes in ‘hidden’ post-translational TF activity play the role of the
voltage, while the resulting changes in mRNA expression level play that of the current. For any given TF, the regulatory strength of DNA binding sites in the upstream
region, or ‘conductivity’, varies greatly between genes. The change in mRNA expression for a given gene is a weighted combination of the changes in activity of the TFs
that bind to its upstream region. In the example shown, gene X is only controlled by factor A, while gene Y is controlled by both factor A and factor B. Therefore, while
gene X is upregulated (red) in response to the increase in the activity of factor A (yellow), the decrease in the activity of factor B (blue) causes the net change in
expression of gene Y to be zero (black). The many-to-many relationship between TF activities and mRNA expression levels can be summarized in the form of a linear
matrix equation (‘Omes Law’). (C) Schematic depiction of the iterative procedure used by Nguyen and D’heaseleer to simultaneously infer a matrix of condition-specific
TF activity changes (blue/yellow) and a matrix of gene-specific motif strengths (white/brown), which together optimally explain the observed mRNA expression changes
(green/red).
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