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Microbial communities residing in the gastrointestinal tracts of animals have profound
impacts on the physiological processes of their hosts. In humans, host-specific and
environmental factors likely interact together to shape gut microbial communities,
resulting in remarkable inter-individual differences. However, we still lack a full
understanding of to what extent microbes are individual-specific and controlled by host-
specific factors across different animal taxa. Here, we document the gut microbial
characteristics in two estrildid finch species, the Bengalese finch (Lonchura striata
domestica) and the zebra finch (Taeniopygia guttata) to investigate between-species and
within-species differences. We collected fecal samples from breeding pairs that were
housed under strictly controlled environmental and dietary conditions. All individuals
were sampled at five different time points over a range of 120 days covering different
stages of the reproductive cycle. We found significant species-specific differences in
gut microbial assemblages. Over a period of 3 months, individuals exhibited unique,
individual-specific microbial profiles. Although we found a strong individual signature in
both sexes, within-individual variation in microbial communities was larger in males of
both species. Furthermore, breeding pairs had more similar microbial profiles, compared
to randomly chosen males and females. Our study conclusively shows that host-specific
factors contribute structuring of gut microbiota.

Keywords: gut microbiota, symbionts, birds, zebra finch, Bengalese finch, host-specific factors, inter-individual
differences, temporal stability
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INTRODUCTION

Animal bodies are inhabited by billions of microorganisms,
which are collectively termed microbiota. The majority of
these microorganisms reside in the gastrointestinal tract
(gut) of the animals (Qin et al., 2010). A strong body
of evidence has left no doubt that several physiological
processes of the animal hosts, which had been previously
attributed to the host itself, are functionally influenced by
microbial activities (Tremaroli and Bäckhed, 2012; McFall-
Ngai et al., 2013; Kohl and Carey, 2016). Consequently, the
microbial symbionts influence several aspects of the host
biology, such as host energy metabolism (Gill et al., 2006),
immunity (Round and Mazmanian, 2009; Kohl, 2012; Maynard
et al., 2012; Kamada et al., 2013), development (Borre et al.,
2014; Videvall et al., 2019; Kirschman et al., 2020), behavior
(Archie and Theis, 2011; Ezenwa et al., 2012; Lim et al.,
2016; Davidson et al., 2018, 2020; Johnson and Foster, 2018;
Sherwin et al., 2019), and evolution (Moeller and Sanders,
2020). Therefore, taxonomic diversity of the microbial species
contained in the gut, as well as their relative abundance is
likely deterministic for the host’s fitness (Gould et al., 2018;
Videvall et al., 2020).

The composition and the structure of gut microbial
communities are shaped by the combination of extrinsic
and host-specific factors in both stochastic and deterministic
ways. Animals acquire their microbes vertically from their
parents (Palmer et al., 2007; Jiménez et al., 2008; Collado
et al., 2012; DiGiulio, 2012; Jeurink et al., 2013; Trevelline
et al., 2018) or horizontally from the physical and social
environment, first in the postnatal phases and then through
their lives (Tung et al., 2015; Moeller et al., 2018; Chen et al.,
2020). Therefore, the environmental pool of microorganisms
and ecological parameters driving the distribution of microbial
communities have non-negligible roles in shaping host-
associated microbial communities (Candela et al., 2012;
Rothschild et al., 2018). Besides, gut microbiota, – at least to
some extent – is an entity, regulated by the host itself in a
deterministic way. When an animal host cross paths with a
microorganism, the host either selectively establishes symbiotic
associations or eliminates the survival and reproduction
of the microorganism. Although the exact mechanism of
these complex processes is still largely elusive, it probably
involves selective pressures imposed by distinct features of
the gastrointestinal environment, physiology, immunity, and
dietary adaptations of the host (Ley et al., 2008; Muegge
et al., 2011; Kubinak et al., 2015; Stagaman et al., 2017).
Consequently, it is feasible to assume that each individual
harbors a unique microbial assemblage reflecting both, the
signatures of their interactions with the environment (Engel
et al., 2020) and host-specific factors. At the same time,
considering the vital functions of the microbes in several
physiological processes of the hosts, the gut microbiota, or
at least a subset of microorganisms should be conserved
among the members of the same species. In line with these
assumptions, human microbiota consists of some temporally
stable microbial species that are highly adapted to their host,

along with some transient taxa that respond quite rapidly
to the dietary, developmental, and physiological alterations
(Turnbaugh et al., 2007; Lozupone et al., 2012; Lloyd-Price
et al., 2017). Interestingly, in this rapidly growing field, we
are still lacking the knowledge to what extent microbial
communities are similar between conspecifics, what drives inter-
individual differences and if and how stable are communities
across the distinct life-history stages of individual hosts in
non-human species.

This information gap is specifically striking for avian taxa
(Maraci et al., 2018). Existing knowledge indicates that the
gut microbiota of birds is shaped primarily by external factors
such as diet (Blanco et al., 2006; Waite and Taylor, 2014;
Bodawatta et al., 2018; Kohl et al., 2018; Michel et al., 2018;
Teyssier et al., 2020), local habitat (Hird et al., 2014; Waite
and Taylor, 2014), or nesting environment (Teyssier et al.,
2018; van Veelen et al., 2020). Gut microbial species can
be transferred between parents and offsprings (Chen et al.,
2020) and breeding pairs (Kreisinger et al., 2015; Ambrosini
et al., 2019). Individuals from the same nest have a similar
gut microbial composition (Lombardo et al., 1996; Ambrosini
et al., 2019). However, it is unclear whether these congruences
are originating from genetic relatedness or similarities in
diet or environmental conditions. Although the link between
the gut microbial profile and host taxonomy (Ruiz-Rodríguez
et al., 2009, 2018; Waite and Taylor, 2014; Hird et al., 2015)
and genetics (Banks et al., 2009; Zhao et al., 2013) have
been demonstrated, evidence for the strength of these host-
specific factors is equivocal. This can be explained by the
fact that to date, most avian studies that investigate the
determinants of the gut microbiota have been carried out on
wild animals in natural conditions, except for the poultry. While
undoubtedly important, the findings of those studies on host-
specific factors are clearly mitigated by strong environmental
and dietary effects. In this regard, studies conducted under
captivity conditions where the diet and environmental conditions
are standardized would allow us to understand how much
of the microbial diversity is driven by deterministic host-
specific factors.

The present study aimed to document interspecies and
intraspecies differences in gut microbiota in two estrildid
finches, the zebra finch (Taeniopygia guttata) and the Bengalese
finch (Lonchura striata domestica), under strictly controlled
environmental and dietary conditions to determine whether
gut microbial diversity is influenced by host-specific factors.
If the gut microbiota is influenced by host taxonomy and
genetics, we expect that (i) individuals of the same species
should harbor more similar microbial profiles compared to
members of different species, (ii) there should be consistent
between-individual variations, and (iii) at least some proportion
of the microbial species harbored by the hosts should be
conserved over time, even throughout the different stages of
the reproductive cycle. To test these assumptions and explore
the impact of sex and social transmission, we characterized
gut microbial profiles in breeding pairs of the zebra finches
and the Bengalese finches at five different time points, over a
period of 120 days.
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MATERIALS AND METHODS

Ethics Statement
Housing and breeding of birds were approved by the
Gesundheits-, Veterinär-und Lebensmittelüberwachungsamt der
Stadt Bielefeld (#530.421630–1,18.4.2002). All birds remained
in the aviary stock after experimentation. All experiments were
performed following the animal experimentation guidelines and
laws of Germany.

Study Organisms and Sampling
Between January and August 2017, we examined gut microbial
profiles of 42 individuals of two captive bird species, the
zebra finches (ZF; N = 28, 14 females, 14 males, referred to as
“Bielefeld” in Forstmeier et al. (2007) and the Bengalese finches
(BF; N = 14, 7 females, 7 males), from the laboratory stock
at the Bielefeld University. The zebra finches were transferred
from single-sexed indoor aviaries (2.30 × 2.90 × 3.30 m) to
indoor cages (0.80 × 0.30 × 0.40 m) as pairs. The Bengalese
finches were transferred from mixed-sex indoor aviaries
(2.30 × 2.90 × 3.30 m) to indoor cages (0.80 × 0.30 × 0.40 m).
After a week of habituation, nesting material (coconut fiber)
was provided and a wooden nest box (15 × 15 × 15 cm) was
attached at each cage. The pairs were kept in these cages until
their youngest offspring reached nutritional independence
(approximately 35 days after hatching). After this point,
all birds were transferred into mixed-sexed indoor aviaries
(2.30 × 2.90 × 3.30 m), where they were kept with other
conspecifics from this study. All birds kept under a 14:10 h
light/dark cycle with a temperature range of 24.5–25.5◦C. They
were fed the standard diet, comprising of seeds ad libitum,
a vitamin–mineral supplement and additional egg food
(Tropical Finches, CéDé, Evergreen, Belgium) and germinated
seeds every day.

Previous studies showed that fecal sampling is a non-lethal
and non-invasive method that can successfully capture gut
microbial structure in different bird species (for example Videvall
et al., 2018), including the zebra finches (Berlow et al., 2020).
Therefore, we used community profiles from fecal samples as a
proxy for the gut microbial communities. To collect feces, we
transferred the birds to sampling cages (30× 40× 30 cm) where
they were kept individually for 30 min. Before the sampling,
cages were cleaned using 78% ethanol and the bottom of cages
were covered with sterile aluminum plates. After 30 min, we
transferred the fecal materials from the aluminum plates to sterile
2 ml Eppendorf tubes using a sterile pipet tip. The samples
were kept at ice during the collection and directly transferred to
−80 within the first hour after the collection, where they were
stored until further processing. The sampling equipment was
always handled using nitrile gloves sterilized by 78% ethanol.
We collected samples at five different time-points during the
breeding period (over 120 days). The first samples were collected
during incubation, approximately 7 days after the completion of
the clutch. The second and third samples were collected during
the chick-rearing period, 5 and 10 days after hatching of the
youngest chick, respectively. The fourth samples were collected

when the juveniles reached nutritional independence, 35 days
after hatching of the youngest chick. The fifth samples were
collected after the reproductive phase, when the juveniles reached
sexual maturity, 100 days after hatching of the youngest chick. In
total, we collected 210 samples from 42 birds.

DNA Extraction and Library Preparation
Microbial DNA was extracted from 0.02 grams of the fecal sample
using the QIAamp PowerFecal DNA Kit (Qiagen), according
to the manufacturer’s instructions. We prepared the16S rRNA
gene libraries following the Illumina 16S Metagenomic Library
Preparation Guide, 15044223-B. We targeted hypervariable
V3–V4 region of the 16S ribosomal RNA (rRNA) genes by
using the primers 5′-CCTACGGGNGGCWGCAG-3′ and 5′-
GACTACHVGGGTATCTAATCC-3′ (Klindworth et al., 2013).
The Illumina overhang adapters attached to the primers were as
follows:

Forward: 5′-TCGTCGGCAGCGTCAGATGTGTATAAG
AGACAG-3′,
Reverse: 5′-GTCTCGTGGGCTCGGAGATGTGTATAAG
AGACAG-3′.

The first polymerase chain reactions (PCR) was performed in
a 25 µL reaction volume containing 5 µL DNA, 12.5 µL KAPA
HiFi HotStart ReadyMix (KAPA Biosystems, MA, United States),
2.5 µL of each primer (2 µM) and 5 µL of PCR grade water. The
amplification conditions were as follows: an initial denaturation
step at 95◦C for 3 min, followed by 25 cycles of denaturation
at 95◦C for 30 s, annealing at 55◦C for 30 s, extension at 72◦C
for 30 s, with a final extension step of 5 min at 72◦C. To
remove free primers and primer dimers and PCR products were
subsequently purified using the Agencourt AMpure XP PCR
purification system (Beckman Coulter, Brea, CA, United States)
as described in the manufacturer’s protocol. To be able to
multiplex the libraries, Dual Illumina indices (The Nextera XT
Index Kit, Illumina, Inc., San Diego, CA, United States) were
attached to the PCR products were by another PCR which was
performed in a 50 µL volume containing 5 µL of the purified
amplicon PCR product, 25 µL KAPA HiFi HotStart ReadyMix,
5 µL of each index primer, 10 µL of PCR grade water. The
temperature profile of the amplification was as follows: an initial
denaturation step at 95◦C for 5 min, followed by eight cycles of
30 s at 95◦C, 30 s at 55◦C 30 s at 72◦C with a final extension
step of 5 min at 72◦C. Two blank controls for PCR amplification
and five replicates of the same sample were also included in
the sequencing. The amplified fragments were subjected to
another purification step using the Agencourt AMpure XP PCR
purification system. The size of the amplified fragments was
verified by running 1 µl of 1:50 dilutions of the final libraries
on a Bioanalyzer DNA 1000 chip (Agilent Technologies, Palo
Alto, CA, United States). Then, the concentration of the libraries
was quantified by PicoGreen dsDNA Assay on a TECAN Infinite
Reader M200 instrument. Seven samples were discarded due to
unsuccessful amplification. Three negative control of extraction,
PCR and clean-up steps and two technical replicated of three
samples were included in the final pool. Accordingly, the final
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library contained equal concentrations of 209 uniquely barcoded
amplicons. Sequencing of the final library was performed using
paired-end mode (2 × 300 sequencing cycles) on the Illumina
MiSeq system (Illumina, Inc., San Diego, CA, United States) at
the CeBiTec, Bielefeld University.

Bioinformatics Processing
Processing of raw MiSeq forward and reverse PE reads were
done as described by Engel et al. (2018) with the following
minor adjustments to individual bioinformatic steps. To achieve
a higher assembly rate, we assembled Miseq PE reads in an
iterative manner using Flash v1.2.11 (Magoč and Salzberg, 2011).
All reads failing the first round of read assembly were clipped to
a q20 average quality threshold using sickle v1.33 (Joshi and Fass,
2011) and re-submitted to flash. This process was consecutively
repeated while increasing the quality clipping threshold by three
up to the point where either all reads could be assembled or
a maximum quality clipping threshold of q35 was reached.
All other steps, i.e., (i) adapter clipping with cutadapt v1.18
(Martin, 2011), (ii) de-replication, alignment, filtering, and de-
noising with mothur v1.41.3 (Schloss et al., 2009), (iii) chimera
checking and operational taxonomic unit (OTU) clustering with
USEARCH v8.0.1477 (Edgar, 2010), and (iv) taxonomically
classification based on the full SILVA database v138 (Quast et al.,
2013) was carried out as described in detail previously (Engel
et al., 2018) but without performing a length trimming step after
primer clipping. The reason for employing the OTU approach is
that we are mainly interested in structural community differences
or conformities rather the detection of extremely rare and low
abundant community members. Therefore, the finer taxonomic
resolution provided by ASVs over OTUs does not further
our understanding.

Statistical Analyses
We conducted all consecutive statistical analyses in R version
4.0.0 (R Core Team, 2020) and Primer-e software version 7
(Clarke et al., 2014). The code used in this study is provided in the
GitHub repository at https://github.com/AnnaAntonatouPap/
Microbiota-of-estrildid-finches-.git. We excluded the samples
with less than 10,000 total read counts (n = 5). After
this filtering step, 204 samples were retained in the dataset.
We filtered out all the OTUs that could not be classified
at phylum level or that were classified as mitochondria or
chloroplasts (n = 44) as those are very likely to be issued by
sequencing errors.

To account for the potential bias due to the uneven
sequencing depth across the samples, we rarefied OTU read
count data to the lowest read count observed in the dataset
(12,472) and estimated alpha diversity based on this dataset.
We computed Shannon’s diversity index, which accounts for
both abundance and evenness of the taxa present (Shannon,
1997). We investigated the drivers of alpha diversity using a
linear mixed model, as implicated in the lme4 package version
1.1−15 (Bates et al., 2015). We used untransformed Shannon’s
diversity index as the response variable; the host ID and
couple ID as random effects; species, sex, and sampling time
as fixed effects. We also included the interaction between sex

and sampling time as fixed effects to account for potential
sex-specific changes in alpha diversity over time. Residuals of
the models were inspected visually. To visualize the taxonomic
and compositional structure of the microbial communities in
the zebra finches and the Bengalese finches based on the
non-rarefied dataset, we produced stacked bar plots, based
on the family level taxonomy using ggplot2 version 3.3.2
(Wickham, 2009).

To estimate between-group diversity, first, the filtered dataset
was subjected to Cumulative Sum Scaling (CSS) normalization
(Paulson et al., 2013a) using the r package metagenomeseq
version 1.30.0 (Paulson et al., 2013b) to deal with unequal
sequence coverage. Subsequently, to account for compositional
variations within the data, we Log (x+ 0.0001)−transformed the
data and later corrected the transformed values by subtracting
the log of the pseudo count as recommended by Thorsen et al.
(2016). Then, we computed a dissimilarity matrix based on
Jaccard (1912), Bray–Curtis (Bray and Curtis, 1957), unweighted
UniFrac (Lozupone and Knight, 2005), and weighted UniFrac
(Lozupone et al., 2007) distances. To visualize the dissimilarities
between the zebra finches and the Bengalese finches, we
used a principal coordinate analysis (PCoA) as implemented
by the function “ordinate” in vegan package version 2.5-6
(Oksanen et al., 2019). Based on PCoA plots, we selected
the two dissimilarity measures explaining the highest variation
(Bray–Curtis and weighted UniFrac) and used these distance
matrices in all further analyses. We statistically tested the
differences in the gut microbial assemblages in a priori defined
groups by non-parametric analysis of similarities (ANOSIM)
(Clarke, 1999) with 999 permutations in Primer 7. We analyzed
the differences in microbial communities between the host
species, performing one-way ANOSIM. We tested whether
the samples collected from the same individual are more
similar to each other compared to the samples collected from
different individuals using two-way nested ANOSIM (individuals
nested in species). To further evaluate whether the length of
the period between the sample collection has any effect on
microbial composition, we calculated a distance matrix that
incorporated the time between the sample collection (setting
the first sampling = 0). Then we performed a Mantel-like
test (RELATE) to analyze the correlation between the distance
matrix based on weighted UniFrac and the distance matrix
of the time between sample collection by correcting for host
ID, using Primer 7. We analyzed whether the individuals
of the same sex have more similar microbial communities
using a two-way crossed ANOSIM. Next, to address the
potential sex-specific temporal differences in the community
structure, we subset the samples collected from a given
sex of each species. In each group, we tested whether the
samples collected at a particular time point are more similar
then the samples collected at different time points using
one-way ANOSIM. Finally, to evaluate whether the mating
pairs have more similar microbial communities compared to
randomly chosen males and females, we first merged the
samples collected from the same individuals by averaging
taxonomic representatives from these samples to prevent any
bias due to the use of repeated sampling of the same bird.
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Second, we performed a two-way nested ANOSIM (couples
nested in species).

To identify specific OTUs potentially shaping the differences
among species, we analyzed differentially abundant OTUs. We
estimated logarithmic fold changes between groups by a negative
binomial Wald test as implemented in DESeq2 version 1.12.4
extension (Love et al., 2014) of the Phyloseq package version
1.32.0 (McMurdie and Holmes, 2013). As a significance threshold
for p-values, we used a 0.01 threshold after a Benjamini and
Hochberg (1995) false−discovery rate correction.

RESULTS

We sequenced the hypervariable V3–V4 region of the 16S rRNA
gene from 210 gut microbial community samples originating
from 42 individual birds. After the bioinformatics processing,
our dataset consisted of 209 samples, 626 different OTUs with a
total read count of 14,821,860 (mean: 72,656). After the filtering
process, our dataset contained 204 samples, 582 OTUs with a total
read count of 14,639,903 (Mean = 71,764.23).

We identified 20 microbial phyla, with the domination of
Firmicutes (79.15%), Campilobacterota (14.07%), Proteobacteria
(4.36%), and Actinobacteria (2.40%) (the numbers indicate the
total abundance; the mean values and standard deviations are
provided in Supplementary Table 1). At a finer taxonomic
scale, identified taxa corresponded to 199 microbial families,
96.26% of which is constituted by Lactobacillaceae (76.10%),
Campylobacteraceae (13.63%), Enterobacteriaceae (3.03%),
Leuconostocaceae (1.88%), and Bifidobacteriaceae (1.62%)
(Supplementary Table 2). Although the most abundant
families remained the same through our study, we observed
some compositional alterations among the species and across
time (Figure 1).

Structure of the Gut Microbial
Communities in Relation to Host
Taxonomy
We found pronounced differences in the gut microbial structure
of the zebra finches and the Bengalese finches. Based on the
linear mixed model, which explained a considerable variation in
diversity (R2-marginal = 0.117, R2-conditional = 0.261), we found
a significant difference in the alpha diversity estimates between
the two bird species: the zebra finches exhibited higher diversity
based on Shannon diversity index (β = 0.19 ± 0.09, 95% CI
[0.02− 0.35], p = 0.028; Figure 2A).

We visualized the dissimilarities in microbial communities
among the species using a PCoA based on Jaccard (Figure 3A),
Bray–Curtis (Figure 3B), unweighted (Figure 3C), and weighted
UniFrac distances (Figure 3D). The microbial communities
harbored by each species clustered together in all plots. As
the variation explained by the first two axes was higher in
the PCoA plots based on Bray–Curtis (Axis1: 17.1%, Axis2:
9.9%) and weighted UniFrac distances (Axis1: 32%, Axis2:
15.2), compared to Jaccard (Axis1: 11.2%, Axis2: 7.2%) and
unweighted UniFrac (Axis1: 15%, Axis2: 10.6%) dissimilarity, we
used the former two when computing ANOSIM to statistically

test for potential differences between the two species. The
ANOSIM confirmed a statistical difference in the microbial
communities between the two species, which was already
revealed by PCoA (based on Bray–Curtis; one-way ANOSIM;
factor species: global R = 0.247, p = 0.0001; based on weighted
UniFrac, one-way ANOSIM; factor species: global R = 0.230,
p = 0.0001).

We determined the differentially abundant OTUs underlying
the observed differences among the species using the DESeq2
method. We provided detailed information on differentially
abundant OTUs in the Supplementary Table 3. Overall, we found
81 significantly differentially abundant OTUs, which constituted
for 13.91% of all OTUs (Figure 4). Of these, seven were
significantly more abundant in the Bengalese finches and 74
were significantly more abundant in the zebra finches. Expect
three of those differentially abundant OTUs, all belonged to three
microbial phyla: Proteobacteria (n = 32), Firmicutes (n = 29), and
Actinobacteriota (n = 17).

Structure of the Gut Microbial
Communities in Relation to Host ID
The microbial composition of samples collected from the same
individual (Defined by the Host ID) at different time points
were on average more similar than those of the samples
collected from different individuals (two-way nested ANOSIM
Bray–Curtis; Individuals nested in species; factor species: global
R = 0.442, p = 0,001; factor Host ID: global R = 0.273,
p = 0.001; Weighted UniFrac, factor species: global R = 0.527,
p = 0.001; factor Host ID: global R = 0.096, p = 0.001;
Supplementary Figure 1A). Furthermore, in zebra finches the
length of the period between the sample collection negatively
correlated with the microbial similarity: the smaller the sampling
periods, the more similar the microbial communities are (Mantel
test, Rho: 0.142, p = 0.038). However, this correlation was
not evident in the Bengalese finches (Mantel test, Rho: 0.085,
p = 0.181).

Sex-Specific Differences in Diversity and
Structure of the Gut Microbial
Communities
When we analyzed the alpha diversity in relation to host
sex, we did not find any evidence for sex-specific differences
(the linear mixed model, β = 0.04 ± 0.13, 95% CI [−0.21
to 0.30], p > 0.5). Furthermore, no significant differences
were found in the microbial communities between males and
females of a given species (two-way crossed ANOSIM; Bray–
Curtis; factor Species: global R = 0.246, p = 0.001; factor Sex:
global R = 0.004, p = 0.263; Weighted UniFrac; factor Species:
global R = 0.229, p = 0.001; factor Sex: global R = −0.004,
p = 0.673). However, as the linear mixed model showed a
reduction in alpha diversity over time (β = −0.25 ± 0.12,
95% CI [−0.49 to −0.01], p = 0.038), we partitioned the
diversity across sexes. In males, the microbial diversity decreased
over time with a significant difference between incubation
and day 100 (β = −0.48 ± 0.12, 95% CI [−0.87 to −0.08],
p = 0.005; Supplementary Figure 1B). By contrast, we did
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FIGURE 1 | The relative abundance of microbial families in gut samples from (A) the Bengalese Finches and (B) the zebra finches through the different phases of the
reproductive cycle: at incubation, 5 days (D5), 10 days (D10), 35 days (D35), and 100 days (D100) after hatching the youngest chick, respectively. Rare phyla with
relative abundances below 1% are not shown.

not observe any significant diversity change across sampling
times in the females. When comparing the gut microbial
communities across the time within a given sex of each
species, we found that both taxonomic composition and relative
abundance of the microbial assemblages is changing over
time in the zebra finch males (ANOSIM; Bray–Curtis; global
R = 0.115 p = 0.0003; Weighted UniFrac; global R = 0.067,
p = 0.009; Supplementary Figure 1B). In the Bengalese finch
males, the alterations between the sampling times were only
significant when using the Bray–Curtis measure (global R = 0.118
p = 0.009; Supplementary Figure 1B). No significant change was
observed in females.

Microbial Similarity Between Mating
Pairs
Mating pairs (defined by the Couple ID) had more similar
microbial assemblages compared to randomly chosen males and
females (two-way nested ANOSIM; Couples nested in species,
Bray–Curtis; factor species: global R = 0.679, p = 0.001; factor
Couple ID: global R = 0.555, p = 0.001; Weighted UniFrac; factor
species: global R = 0.54, p = 0.001; factor Couple ID: global
R = 0.115, p = 0.001; Supplementary Figure 1C).

DISCUSSION

The relevance of symbiotic microorganisms for host ecology
and evolution has become increasingly evident. However, we
still lack a full understanding of the factors shaping microbial
assemblages. Although studies are accumulating, the knowledge
on microbial symbiosis in birds is still far behind compared
to mammalian species. Furthermore, a huge proportion of
the avian studies are conducted on wild populations in their
natural habitats (reviewed in Maraci et al., 2018), where several
environmental parameters and host-specific factors interact
together to shape patterns of microbial colonization and
maintenance. Although these studies are very important, they
provide little insight into the relative contribution of host-
specific factors. Controlled studies enable us to comprehend
to what extent hosts can control their microbial assemblages
by minimizing the impact of host diet and other extrinsic
factors. However, such studies are scarce in avian species. To
fill this gap, we characterized gut microbial assemblages of the
zebra finches and the Bengalese finches under strictly controlled
conditions. As expected, we found prominent interspecific
differences in the structure of gut microbial communities.
Although the individuals exhibited unique, individual-specific
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FIGURE 2 | Comparisons of Shannon’s diversity index. (A) Among the host species (Bengalese Finches and zebra finches). (B) In males of both species across five
different sampling times: at incubation, 5 days (D5), 10 days (D10), 35 days (D35), and 100 days (D100) after hatching of the youngest chick, respectively. The
significance was determined based on the linear mixed model, at p-values ≤ 0.05 (*), p ≤ 0.01 (**), and p ≤ 0.001 (***). In the box plots, the line within indicates the
median and the lower and upper boundary of the boxes indicates the 25th and 75th percentile, respectively. Whiskers above and below the boxes correspond to the
range of 1.5 times the inter-quartile range (IQR) above and below the 25th and 75th percentile, respectively.

microbial patterns over 3 months, males of both species manifest
higher within-individual variations, compared to females. Our
study conclusively shows that gut microbes are host-specific,
providing essential insights on the host characteristics shaping
gut microbial communities.

Taxonomic Composition of the Gut
Microbial Communities
Microbial assemblages of the zebra finches and the Bengalese
finches were dominated by four microbial phyla: Firmicutes,

Campilobacterota, Proteobacteria, and Actinobacteria. The
microbial structure recovered in our study was remarkably
different from that of wild birds (Hird et al., 2015; Grond et al.,
2018). Firmicutes were overrepresented, while there is a deficit
of proteobacteria in our study, which is consistent with the
findings of previous studies carried out under captivity (Xie
et al., 2016). In our study, the second most abundant phylum
was Campilobacterota, which is not a usual phylum reported by
avian studies conducted under natural or captivity conditions.
However, the phylum Campilobacterota was introduced
with the SILVA database v138 release, replacing the phylum
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FIGURE 3 | Principal coordinate analysis plots of the dissimilarities of zebra Finch and the Bengalese finch gut microbiota. Distances were computed using the
(A) Jaccard and (B) Bray–Curtis dissimilarity index, and the (C) unweighted (D) weighted UniFrac distance metric.

Epsilonbacteraeota, which was indeed among the abundant
phyla reported in previous avian studies (Zhao et al., 2019).
This change to the SILVA reference taxonomy, among other
taxonomic changes on various levels (York, 2018), was done
as SILVA now adopts to the Genome Taxonomy Database
(GTDB), a new and more precise taxonomy based on phylogeny
inferred from the concatenation of 120 ubiquitous single-
copy proteins (Parks et al., 2018). Although some members
of this phylum can potentially cause diseases in wild and
domestic animals (Bull et al., 2008), they are considered to be

non-pathogenic in bird species (Oakley et al., 2014) and are
frequently isolated from healthy zebra finches (Benskin et al.,
2010; Chen et al., 2020).

Species-Specific Differences in
Community Diversity and Composition
A substantial body of evidence has revealed that host taxonomy
and evolutionary history are among the main determinants
of the gut microbial communities harbored by mammals

Frontiers in Microbiology | www.frontiersin.org 8 February 2021 | Volume 12 | Article 619141

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-619141 February 15, 2021 Time: 18:35 # 9

Maraci et al. The Microbiota of Estrildid Finches

FIGURE 4 | The differentially abundant phyla between the zebra finches and the Bengalese finches. Bars represent OTUs that are significantly differentially abundant
between the two host species. OTUs with a log2–fold–change larger than zero are more abundant in the zebra finches (blue bars), while the OTUs with a
log2–fold–change smaller than zero are more abundant in the Bengalese finches (purple bars).

(Ochman et al., 2010; Phillips et al., 2012; Moeller et al., 2014;
Knowles et al., 2019; Song et al., 2020). However, the avian
studies investigating interspecific differences in host-associated
microbial communities revealed contrasting findings. Some
studies failed to show a link between host-taxonomy and gut
microbial structuring (Ruiz-Rodríguez et al., 2009, 2018; Hird
et al., 2014). On contrary, some comparative studies have
shown remarkable species-specific differences (Waite and Taylor,
2014; Hird et al., 2015; Michel et al., 2018; Fu et al., 2020;
Lee et al., 2020). It is, however, important to note that all

these studies have been conducted using natural populations.
As different bird species have distinct dietary preferences
and occupy different habitats with altering ecological variables
it is not clear whether the detected patterns reflect a true
host-specificity.

In the present study, although some proportion of the
gut microbiota was conserved between the zebra finches and
the Bengalese finches, we also found remarkable differences
in the gut microbial communities between these two closely
related bird species. Zebra finches harbored more diverse
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microbial colonies compared to the Bengalese finches. The
microbial communities of the two species exhibited variations
in terms of taxonomic diversity, relative abundance, and
phylogenetic distance of the harbored species. As the diet
and other environmental parameters were strictly controlled
in our experiment and the birds were housed in the same
environment and consequently exposed to the same microbial
reservoir, these findings likely underpin the differences in
host biology. Although Bengalese finches and zebra finches
are widely used in the ecological investigations, interestingly
the studies investigating biological differences between these
two species are limited to vocal communication, impeding
any conclusive inference on what drives species-specific
differences in microbial communities. However, one potential
explanation for the observed changes is interspecific differences
in physiology and anatomy of the digestive system. Although
the gross anatomy of the digestive system is expected to
be similar in these two bird species, there can be fine-
scale anatomical and physiological differences which were
indicated by two studies showing that mechanics of drinking
movement (Heidweiller and Zweers, 1990) and water retention
efficiency (Gere, 1977) differs between Bengalese finches and
zebra finches. Alternatively, given the fact that host genetic
variation, especially the allelic diversity of immune genes such
as immunoglobulin genes, major histocompatibility (MHC)
genes, toll-like receptors and cytokines, affects diversity and
community structure of host-associated microbes (Bolnick
et al., 2014; Blekhman et al., 2015), it is feasible to assume that
observed microbial differentiation might reflect prominent
genetic differences among the species. Considering the
ancestral species White-rumped munia (Lonchura striata
acuticauda) and wild zebra finch (T. guttata) originate
from finches coming from two geographically distinct
locations – China and Australia, respectively – presumably,
they experienced differential selection pressures exposed by
coevolving pathogens, which in turn result in variations in
immune genes. Another possibility is that the strength of
artificial selection during the domestication was different for
these two species resulting in differential patterns of genetic
variation. These predictions partially align with the existing
literature: a comparative study investigating the genetic
variability between captive and wild populations of zebra
finches revealed that domestication led to the loss of some
genetic variation but not a severe bottleneck (Forstmeier
et al., 2007). Furthermore, domesticated zebra finches also
exhibited high allelic diversity for the MHC complex class I
genes which play a crucial role in adaptive immunity (Newhouse
and Balakrishnan, 2015). To the best of our knowledge,
there is no study investigating the loss of genetic diversity in
immune genes due to the domestication Bengalese finches.
However, considering during the domestication of Bengalese
finches from White-rumped munias, breeders selected some
specific traits such as good parenting behavior and white
color morphs (Takahasi and Okanoya, 2010), presumably
domestication led to a substantial decrease in host genetic
diversity. However, all these potential interactions warrant
further testing.

Individual-Specificity and Stability of
Microbial Communities
In humans, tremendous inter-individual variations in microbial
communities were documented (Turnbaugh et al., 2009;
Lozupone et al., 2012; Kolde et al., 2018) and some of these
variations were shown to be stable over time (Lozupone
et al., 2012; Faith et al., 2013) leading to the conclusion that
individuals have unique microbial profiles. Interestingly, these
inter-individual variations in the gut microbial repertoire are
prominent shortly after birth (Dominguez-Bello et al., 2010;
Raveh-Sadka et al., 2015), while the individuals have very limited
interactions with their environment, suggesting the role of
vertical transmission and host genetics in shaping individual-
specific microbial profiles. Nevertheless, far less is known about
the individual-specificity of microbial communities in non-
human species.

Temporal stability of gut microbes has been studied in
zebra finches using temperature gradient gel electrophoresis
(Benskin et al., 2010). However, to the best of our knowledge,
individual specificity, and long-term stability of gut microbiota
in avian species under controlled conditions were investigated
using a metagenomic approach for the first time in our study.
We found significant inter-individual variations in microbial
communities. The samples collected from the same individual
were more similar to one another than those from different
individuals. Although we observed some temporal variations
in the composition of gut microbial communities in males (as
explained in more detail in the next section), a considerable
proportion of the gut microbes harbored by individuals was
conserved throughout our study. These findings are consistent
with the previous study (Benskin et al., 2010) and emphasize
the idea that some microbial species are highly adapted to their
host and resilient to perturbations, while others are more flexible
(Lozupone et al., 2012; Ursell et al., 2012). Accordingly, it is
feasible to conclude that hosts can, at least to some extent, control
their microbial communities. This further indicates that host
genetics has a function in structuring gut microbial communities.
However, the exact genetic pathways involved in the regulation
of host-symbiont interactions and consequences of these inter-
individual variations warrants further investigation.

The Effect of Sex and Sex-Specific
Temporal Alterations in Community
Diversity and Composition
As males and females of a given species have some differences
in their behavior, hormonal profiles and physiology (Tarka et al.,
2018), which might influence their symbiotic interactions, we
would expect to observe some microbial differences among the
sexes of the same species. However, the evidence for the impact of
sex on microbial communities is equivocal. In some species, there
are sex-specific differences (Leclaire et al., 2014; Elderman et al.,
2018; Stoffel et al., 2020), while in others no sexual dimorphism
was detected (Benskin et al., 2010; Tung et al., 2015; Bennett et al.,
2016; Ren et al., 2017).

In our study, there were no differences in alpha and beta
diversity between males and females of the host species,
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when analyzed regardless of sampling time. However, when
we examined the temporal changes in alpha and beta
diversity across sexes, we observed sex-specific differences:
the males exhibit temporal alterations in both alpha and
beta diversity indices, while these metrics remained the same
in females, over time. The observed sexual dimorphism
can be explained by the plastic alterations in gut microbial
communities in response to fluctuating testosterone levels
during reproduction. Our sampling times coincide with the
different stages of the reproductive cycle, covering all phases
between incubation and post-reproduction. Testosterone
mediates several reproductive behaviors (Adkins-Regan,
2005) and suppresses the immune system (Folstad and
Karter, 1992). This suppression can allow the opportunistic
microorganisms to colonize different habitats in the animal
body and lead to an increased microbial diversity (Escallón
et al., 2017). In socially monogamous birds with biparental
care, like the zebra finches or the Bengalese finches, testosterone
levels peak during the mating phase declines during the
parental care phase with fluctuations and reaches lowest
levels during the non-breeding period after reproduction
(Hill et al., 2005; Schwabl et al., 2005). In our study, alpha
diversity followed the same pattern in males. They were highest
during incubation, the phase just after mating, decreased
during parental care phase and lowest during non-breeding.
Similarly, in rufous-collared sparrows (Zonotrichia capensis),
cloacal microbial communities exhibited sexual dimorphism.
In males, the diversity decreased during reproduction
and increased again as they transitioned to non-breeding
condition, while this pattern has not been observed in females
(Escallón et al., 2019). However, as we did not measure the
testosterone levels in our study, this interaction remains to
be investigated.

Microbial Similarity Between the Mating
Pairs
We observed similarities between the microbial compositions
of mating pairs. This finding supports the existing body of
literature on transmission of cloacal bacteria among sexual
partners in birds (Kulkarni and Heeb, 2007; White et al.,
2010; Escallón et al., 2019). A birds’ cloaca performs multiple
functions for the digestive, urinary, and reproductive system.
During sexual intercourse, it allows the transfer of microbes
between the pairs, from these different sources. Although this
kind of microbial exchange can lead to the transmission of
diseases, it can also ensure the transfer of beneficial microbes
between sexual partners (Smith and Mueller, 2015). Potential
fitness benefits provided by sexually transmitted microbes and
involvement of these microbes into mate choice decisions should
be further studied.

CONCLUSION AND OUTLOOK

Symbiotic microorganisms influence nearly all aspects of
an animals’ biology. However, we still know very little
about the role of host characteristics in the regulation of

these complex systems, especially in avian taxa. This is
partly because most studies have been conducted on wild
populations, and in such systems, host-specific factors
can be masked by spatially varying environmental factors.
On the contrary, our study was conducted under fully
controlled conditions to minimize interference of dietary
and environmental variations and therefore has specific
importance in terms of understanding the effect of host-
specific factors in sculpturing symbiotic microbial assemblages.
Our study convincingly shows that in zebra finches and
Bengalese finches gut microbes are species-specific, unique to
individuals, considerably stable over-time (with some lesser
extent fluctuations in males across the different stages of the
reproductive cycle) and exhibit similarities between mating
pairs. This descriptive study is an important first step in
elucidating the function of host-microbe interactions in avian
ecology and evolution.

Our findings have naturally raised some further questions
to be investigated. For example, an investigation of heritable
components of the microbiota and the relative importance of
different transmission routes can improve our understanding
of the species-specificity of gut microbes. Furthermore,
the exact mechanisms enabling the individual hosts to
regulate this highly complex system warrant further
research. In this regard, the investigation of host immune
genes can broaden our insights about the colonization
dynamics. Lastly, the interaction between reproductive
hormones and gut microbial composition should be
further studied.
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by stars) and the samples are color coded according to the sampling time.

Supplementary Table 1 | The total abundance, the mean abundance and the
standard deviation of the identified microbial phyla. The numbers represent
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