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Flexible and ultra-lightweight polymer membrane
lasers
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Organic semiconductors enable the fabrication of a range of lightweight and mechanically

flexible optoelectronic devices. Most organic semiconductor lasers, however, have remained

rigid until now, predominantly due to the need for a support substrate. Here, we use a simple

fabrication process to make membrane-based, substrate-less and extremely thin (<500 nm)

organic distributed feedback lasers that offer ultralow-weight (m/A<0.5 gm−2) and excellent

mechanical flexibility. We show operation of the lasers as free-standing membranes and

transfer them onto other substrates, e.g. a banknote, where the unique lasing spectrum is

readily read out and used as security feature. The pump thresholds and emission intensity of

our membrane lasers are well within the permissible exposures for ocular safety and we

demonstrate integration on contact lenses as wearable security tags.
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Optically pumped organic solid-state lasers have gained
widespread attention as coherent light sources that are
easy to fabricate, have emission tunable across the whole

visible range, and are potentially disposable and biocompatible1–8.
These lasers hold great promise for a number of applications, e.g.
for on-chip spectroscopy9,10, data-communication11, biosensing12,
and chemosensing for detecting explosives13,14. However, while
organic LEDs, solar cells, and field-effect transistors are now
routinely made in bendable or even stretchable formats and with
extremely low specific weights15–19, most organic lasers have
remained rigid and relatively bulky, largely due to a need for
macroscopic and solid support substrates (typical substrate
thickness, >100 µm). Many organic lasers use distributed feedback
(DFB) resonators, which provide strong in-plane optical
feedback20. There have also been examples of flexible DFB
designs21–25. However, these use substrates or matrices of
macroscopic thickness, or require metal oxide intermediate layers
and femtosecond pumping schemes. These requirements have
limited applications of flexible DFB lasers so far.

Here, we introduce a different organic laser that maximizes
mechanical flexibility and reduces the thickness of the laser to its
ultimate limit, by using an architecture that comprises only the
organic semiconductor and a DFB resonator and that is fabri-
cated by a wholly solution-based process. The resulting 200-nm
thick membrane lasers were operated freestanding in air or
readily transferred onto a new substrate, on which direct fabri-
cation of a laser may otherwise be impossible or impractical. As
an example, we show how membrane lasers that were designed to
produce a well-defined and unique lasing spectrum can be used as
counterfeit-resilient, barcode-type security labels on bank notes.
In another example, a laser beam was emitted from a bovine eye
onto which a contact lens with a membrane laser had been
mounted. Due to the low threshold of our membrane laser, a
similar configuration is expected to be safe to use in the human
eye, e.g. to complement biometric iris recognition.

Results
Membrane laser design and fabrication. To produce transferable
and thin membrane lasers, we developed a water-based lift-off
technique that releases the final device from a carrier substrate at
the end of the fabrication process (Fig. 1a). The laser was
produced via solution-based deposition and UV nanoimprint
lithography. The stack initially consisted of a thick and rigid
carrier glass substrate, a ~50-nm thick water soluble sacrificial
layer of (poly(3,4-ethylenedioxythiophene)-polystyrene-sulfonate
(PEDOT:PSS), a UV curable imprint resist defining the DFB
resonator and a (180 ± 10)-nm thick layer of an organic semi-
conducting polymer (e.g. F80.9BT0.1, Methods) as gain material
(Fig. 1b). When immersing this stack in water, a hydrophobic
membrane detached from the substrate and spread out on the
water surface (Fig. 1c, d). The membrane was readily picked up,
and then either suspended in air or transferred onto another
substrate (Fig. 1e, f). The lift-off procedure had no detrimental
effect on the photoluminescence quantum yield (PLQY)
of the organic polymer (Supplementary Table 1). We applied the
above technique to fabricate membrane lasers with different
periodicities and gain materials based on one-dimensional
second-order and mixed-order DFB gratings26 and obtained
groove depths of (106 ± 5) nm and (86 ± 4) nm, respectively
(Supplementary Fig. 1).

Removing the substrate not only rendered the laser flexible and
lightweight; replacing the glass substrate (refractive index,
n= 1.52) by air also improved the confinement of the lasing
mode to the gain material (n= 1.7) and reduced spontaneous
emission losses by eliminating leaky substrate modes. The mode

overlap with the gain material improved from Γ= 0.36 for a
typical laser stack on a glass substrate to Γ= 0.59 for our
membrane design (Fig. 1g).
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Fig. 1 Fabrication and physical properties of the membrane laser.
a Schematic of the laser stack immersed in water. b Composition of the
laser stack before lift-off (not to scale) consisting of a glass substrate, the
sacrificial layer (PEDOT), the polymer grating (UVCur), and the polymer
gain material (F8BT). c Schematic of a floating membrane post lift-off.
d Image of a floating membrane post lift-off. Black arrows indicating the
position of three second-order distributed feedback (DFB) gratings. Scale
bar, 3 mm. e Schematic of the vertical laser emission from a second-order
DFB laser membrane (pump spot not shown). f Image of a free-standing
membrane laser suspended over a hole in a glass substrate. Scale bar, 5
mm. g Mode profile of the TE0 mode intensity ( Ey
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membrane laser (black solid line) and a conventional laser on a glass
substrate (blue dashed line). Profilometer measurement of the membrane
before lift-off (green). The yellow area indicates the gain layer, the light
gray area the residual grating layer and the patterned dark gray area the
sacrificial layer. Γ quantifies the overlap of the TE0 mode with the gain
material
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Membrane laser emission. Devices based on mixed-order grat-
ings and F80.9BT0.1 as the gain material showed laser emission
under pulsed excitation (excitation wavelength, λ= 450 nm; pulse
duration, 5 ns) with a threshold pump fluence of 3.3 kW cm−2

(Fig. 2a and Supplementary Fig. 2), in line with state-of-the-art
organic DFB lasers27,28. Figure 2b shows emission spectra of the
same membrane laser and Fig. 2c summarizes the evolution of
spectral line width with pump fluence. At low pump fluences the
spectrum was dominated by the fluorescence background
(Δλ ≈ 60 nm) with a broad Bragg mode (Δλ ≈ 2–4 nm) at a
wavelength of λ ≈ 540 nm. Above threshold, a single lasing mode
(Δλ ≈ 0.2–0.5 nm) appeared and gained superlinearly in relative
intensity, eventually completely dominating the emission spec-
trum. Well above threshold, our second- and mixed-order
membrane lasers showed emission linewidths of (133 ± 14) pm
and (498 ± 50) pm, respectively (full width at half maximum,
Supplementary Fig. 3). We also investigated the near and far field
emission of mixed- and second-order DFB grating membrane
lasers (Fig. 2d). The near field emission data for the mixed-order
grating indicate that most laser light was coupled out from the

narrow second-order region in the center of the grating struc-
ture26. Due to the narrow width of this region, the emitted laser
beam was rather divergent (spread of far field emission at half
maximum, ±(2.60 ± 0.04)°). However, if necessary, the divergence
can be reduced by adjusting the number of light-extracting
second-order periods inserted between the first-order period
feedback structure29. For the pure second-order DFB membrane
gratings, the light extraction was enhanced and spread over a
larger area as can be seen in the near field emission pattern. This
led to higher lasing thresholds (typically, >60 kW cm−2), but to
reduced beam divergence (spread, ±(0.34 ± 0.04)°) and a sharp far
field emission pattern with a fine double-lobe structure30.
Well-defined far field emission and low divergence are clear
indications of spatial coherence and further evidence for laser
action in our membranes2.

The process for laser membrane fabrication is compatible with
a range of conjugated polymers of different chemical structure
and molecular weight. So far, we tested F80.9BT0.1, F8BT and
Super Yellow (SY) and found F80.9BT0.1 to provide the best laser
performance (i.e., lowest threshold) among these, in line with
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Fig. 2 Characterization of membrane lasers. a Input−output characteristics for mixed-order membrane lasers with different gain materials. The lasing
thresholds for F80.9BT0.1 (red), F8BT (blue) and Super Yellow (yellow)-based devices are 3.3 kW cm−2, 13.8 kW cm−2 and 75.6 kW cm−2, respectively.
b Emission spectra of the F80.9BT0.1-based membrane laser for pump fluences below (2.3 kW cm−2), around (5.0 kW cm−2) and well above (33 kW cm−2)
the lasing threshold. c Spectral linewidth (full width at half maximum, FWHM) vs. input-power density for the devices based on F80.9BT0.1 (red), F8BT
(blue) and Super Yellow (yellow). d Near and far field emission from a mixed- and a second-order distributed feedback (DFB) membrane laser. The
location of regions with first- and second-order grating period is indicated on the right-hand side of the near field emission

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03874-w ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1525 | DOI: 10.1038/s41467-018-03874-w |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


earlier findings on rigid substrates and with the PLQY of these
materials31,32 (Supplementary Table 1).

Membrane lasers as security features on banknotes. Two
important features of our membrane lasers are their transfer-
ability and mechanical flexibility. After lift-off, the membranes
can be transferred onto a wide range of substrates, independent of
the substrate composition and surface topology. After the water
used for the lift-off has evaporated, the membranes stick tightly to
the new surface. This enables the use of membrane lasers as novel
barcode-like security labels for objects requiring authenticity
control (e.g. banknotes, ID documents, etc.). The emission
spectrum of membrane lasers can be tuned by the grating period,
the choice of gain material and the waveguide design. The distinct
single-mode emission can either be used as an identification
feature on its own or be further enhanced by combining a
number of different gratings on a single membrane. This creates a
well-defined and discrete lasing spectrum that resembles a binary
barcode, which is unique to each membrane laser and which can
be read out rapidly (ns pumping) and without physical contact
(Fig. 3a). If the laser lines generated by different gratings are
spaced by 1 nm (which appears feasible, see long-term measure-
ment below) and cover the >50 nm wide gain spectrum of the
organic polymer, at least 50 independent spectral channels can be
encoded. This translates to about 250 ≈ 1015 unique labels.

In the following, we illustrate the application of this concept as
a security feature on banknotes. Figure 3b, c shows a polymer
banknote with a membrane laser transferred onto the transparent
window of the banknote. One of the reasons an increasing
number of countries exchange cotton banknotes for polymer
notes is their improved counterfeit resilience33. Individual DFB
lasers can be identified by their reflection from a white light

source and the flexible nature of the membrane laser allowed
repeated flexing and bending without delamination or damage.
Upon pulsed excitation of the section of the banknote containing
the membrane, laser action was readily observed (Fig. 3d). The
lasing threshold was 38.2 kW cm−2, larger than for the free-
standing membrane. We attribute this increased threshold to a
change in waveguiding properties, with the polymer banknote
acting as a substrate that reduced mode confinement and
introduced leaky substrate modes.

The flexible nature of our membrane lasers also allowed
reversible tuning of the emission wavelength by gradual bending
parallel to the grating grooves (Supplementary Fig. 4). When the
membrane was straightened out again, the original laser
wavelength was accurately restored (standard deviation of laser
wavelength over 20 bending cycles with ~8 mm radius of
curvature, σ(λmax)= 50.7 pm; Fig. 3e).

To study the stability of our devices further, we repeatedly
recorded the lasing spectrum of a banknote containing a
membrane with three different gratings over the course of several
months (Fig. 3f, Supplementary Fig. 5). During this test, the
banknote was stored under ambient conditions and no
encapsulation was employed. Compared to the free-standing
membrane lasers (Fig. 2c, Supplementary Fig. 3), the maximum
spectral linewidth of the laser emission from the banknote
increased to Δλmax= 1.2 nm (FWHM, Supplementary Fig. 5a).
However, due to the large signal-to-background ratio of the lasing
spectra, the spectral position of the lasing peak can be localized to
a much higher precision using peak fitting. Using Gaussian fits to
the lasing spectra, we find that the standard deviation of the lasing
wavelengths varies by σ(λmax) < 65 pm over the entire test period
(Supplementary Fig. 5b). Hence, we conclude that the desired 1
nm precision needed to obtain 1015 unique labels is readily
achievable.
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Fig. 3 Membrane lasers as security features on banknotes. a Barcode-like narrow-band lasing emission from a combination of different second-order
gratings with periods ranging from 340 to 360 nm. b Photograph of a £5 banknote with a series of membrane lasers transferred on the transparent window
of the banknote. Two second-order distributed feedback (DFB) gratings are indicated by black arrows. Scale bar, 5 mm. c Photograph of same banknote
when bent parallel to the grating grooves. d Input−output characteristics of a mixed-order DFB grating membrane laser on a banknote. e Lasing spectra of
a banknote with a second-order membrane laser after repeated bending (radius of curvature, ~ 8 mm). Black dashes mark the measured peak wavelength
after each bending cycle. f Lasing spectra acquired from a banknote containing a membrane with three different gratings over a time span of 200 days. For
clarity, the spectra are offset vertically
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Membrane lasers as wearable security tag. The high optical
transparency of the membrane lasers, combined with their low
thresholds and ultrathin design, also inspired us to explore their
use as a wearable security tag on contact lenses where they may
complement a biometric authentication via an iris scan. Post
lift-off, we transferred membrane lasers onto commercially
available contact lenses (Fig. 4a) and mounted these on an
explanted bovine eyeball (Fig. 4b, c). The bovine eye is an
excellent and widely used model for the human eye due to its
similar structure, slightly larger size, and general availability34.
Upon optical excitation with pulsed blue light, we observed a
well-defined green laser beam emerging from the eye (Fig. 4d).
The modest divergence of the beam in the far field pattern is
consistent with expectations for the second-order DFB laser used for
this experiment. Mounting the membrane laser on the eye did not
impede narrow linewidth, single-mode operation (peak wavelength,
λ= 543.4 nm; Fig. 4e). Lasing action was again also confirmed by the
superlinear relation between pump fluence and output power
(Fig. 4f). The threshold pump fluence to achieve lasing was 56.8 kW
cm−2, i.e. higher than the free-standing membrane laser, which we
again attribute to the contact lens acting as a substrate that weakens

mode confinement. Importantly, however, the power density
required to operate the membrane laser is well within the maximum
permissible exposure for intentional and repeated ocular exposure
(ANSI 2000)35. For a divergent pump beam with a full visual angle of
α= 50°, a wavelength of λ= 450 nm, a pulse duration of 5 ns and a
repetition rate of 5Hz, the maximum permissible corneal irradiance
(thermal limit) is 505.1 kW cm−2 (red area in Fig. 4f), i.e. almost one
order of magnitude higher than the pump power density required to
operate our laser. According to the ANSI 2000 standard, a mem-
brane laser on a contact lens could thus—under appropriate
pumping conditions—be safely operated while being worn in the eye.

To further illustrate the transferability and possibility for bio-
integration, we also placed a membrane laser onto a finger nail
(Fig. 4g) where the spectrum can again be readily read out
(Fig. 4h, i), thus providing a possible augmentation for biometric
finger print scans.

Discussion
In summary, we have demonstrated the fabrication and operation
of ultra-thin, substrate-less organic lasers with extreme
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mechanical flexibility and lightweight. These physical properties
combined with the low lasing threshold and the ability to generate
unique output spectra allows the application of membrane lasers
as security label that can be applied to a wide range of substrates
including banknotes, contact lenses, and finger nails. In the
future, the effective gain spectrum of the membrane laser can be
broadened further by combining several organic polymers, which
would enable a further exponential increase in the number of
unique output spectra that can be generated, to (1015)n for n
different organic polymers. Further optimization of the DFB
grating will likely allow lower lasing thresholds and facilitate LED
pumping of membrane lasers. By combining recently developed
roll-to-roll nanoimprint and organic ink jet printing
technology36, membrane lasers could be mass-produced with
high reproducibility and at low cost.

Methods
Membrane fabrication. A ~50 nm-thick sacrificial layer of PEDOT:PSS (Clevios P
VP AI 4083, Heraeus) was spin-coated onto an oxygen plasma-treated glass sub-
strate (25 mm × 25 mm) at 4000 rpm for 60 s and baked for 10 min at 100 °C.
Subsequently, a thin (<10 nm) adhesion promoter (mr-APS1, Micro Resist Tech-
nology) and the photo-curable nanoimprint lithography resist (mr-UVCur21-
200nm, Micro Resist Technology) were spin-coated and baked according to the
manufacturer’s guidelines (in brief, mr-APS1 was spin-coated at 4000 rpm for 60 s
and baked for 60 s at 150 °C and UVCur21-200nm was spin-coated at 3000 rpm for
60 s and baked for 20 s at 100 °C). A transparent perfluoropolyether soft stamp—
comprising a negative of the final grating structure (mixed- and second-order with
nominal grating periods of 340 nm, 350 nm and 360 nm, in second-order)—was
molded into the UV curable polymer layer using a UV imprint alignment system
(EVG620, EV Group; λ= 365 nm; dose 56 mW cm−2; exposure time 220 s). After
removing the soft stamp, the grating surface (average thickness, 50 nm) was treated
with an oxygen plasma to remove any remaining organic residues and reduce
hydrophobicity. Three different gain materials were tested in this study:
poly(9,9-dioctylfluorene-co-benzothiadiazole) with a 9:1 ratio of F8 to BT units
(F80.9BT0.1; Mw= 52,000 g mol−1; ADS233YE, American Dye Source Inc.), poly
(9,9-dioctylfluorene-co-benzothiadiazole) with a 1:1 ratio of F8 to BT units
(F8BT; Mw= 61,000 g mol−1; ADS133YE, American Dye Source Inc.) and a poly
(para-phenylene-vinylene) copolymer (Super Yellow; Mw= 1.7×106 g mol−1;
PDY-132, Merck). These were dissolved in toluene at 25 mgml−1 (F80.9BT0.1 and
F8BT) and 10 mgml−1 (Super Yellow), respectively, and the resulting solutions
spin-coated at 2000 rpm for 60 s, yielding a gain layer of (180 ± 10) nm (for
F80.9BT0.1 and F8BT; see Supplementary Fig. 6 for concentration-dependent
layer thickness) and (250 ± 10) nm (Super Yellow). To release the membrane
from the rigid glass substrate, the sample was immersed in deionized water heated
to 55 °C for 1 h.

The thickness of the different layers was measured using a profilometer (Dektak
150 Surface Profilometer; Veeco). The DFB grating properties were checked using
an AFM. Each DFB grating covered an area of 1 mm × 1mm.

Optical characterization. Membrane lasers were investigated on a custom-built
inverted fluorescence microscope. The pulses produced by an optical parametric
oscillator (OPO; Opolette 355, Opotek Inc.) tuned to 450 nm (repetition rate, 5 Hz;
pulse duration, 5 ns) were passed through a dichroic beam splitter (cut-on
wavelength, 500 nm) and focused onto the membrane lasers with a 40× or
10× objective. The emission from the membrane was collected with the same
objective and passed into the collection path via the dichroic beam splitter. Bright
field images were recorded with a CCD camera. To record the spectrally resolved
laser emission, the light was focused onto the entrance slit of a spectrograph
(Shamrock 500i, Andor) and recorded with an attached EM-CCD camera (Newton
971, Andor). The minimum peak width that can be resolved with this system is 50
pm. The pump spot size varied from 35 to 400 μm diameter.

For far field emission measurements, the back focal plane of the objective was
imaged onto the entrance slit of the spectrometer by inserting an additional lens in
the emission path one focal length away from the back focal plane of the objective
and one focal length away from the projection lens in front of the spectrograph.
To resolve the far-field pattern along both axes, the spectrograph was operated in
zero-order reflection, i.e. without any wavelength dispersion.

To control the pump power density of single pulses and record the
input−output characteristics of the membrane lasers, the OPO emission was
passed through a pair of angle-adjustable birefringent polarizers with the angle
between the polarization of the OPO emission and the first polarizer adjusted by a
computer-controlled stepper motor. Emission spectra at different pump power
densities were recorded and spectrally integrated to determine the laser output
power.

The PLQY measurements (Supplementary Table 1) were performed in an
integrating sphere, using a Hamamatsu Photonics C9920-02 measurement system.
The excitation wavelength was tuned to 450 nm.

Data availability. The datasets supporting this publication can be accessed via the
PURE repository at https://doi.org/10.17630/be25b3ca-49e0-421f-9fb2-
8f75f4bb4202.
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