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Abstract: In this manuscript, we discuss relevant socioeconomic factors for developing and
implementing sensor analytic point solutions (SNAPS) as point-of-care tools to serve impoverished
communities. The distinct economic, environmental, cultural, and ethical paradigms that affect
economically disadvantaged users add complexity to the process of technology development
and deployment beyond the science and engineering issues. We begin by contextualizing the
environmental burden of disease in select low-income regions around the world, including
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environmental hazards at work, home, and the broader community environment, where SNAPS
may be helpful in the prevention and mitigation of human exposure to harmful biological vectors
and chemical agents. We offer examples of SNAPS designed for economically disadvantaged users,
specifically for supporting decision-making in cases of tuberculosis (TB) infection and mercury
exposure. We follow-up by discussing the economic challenges that are involved in the phased
implementation of diagnostic tools in low-income markets and describe a micropayment-based
systems-as-a-service approach (pay-a-penny-per-use—PAPPU), which may be catalytic for the
adoption of low-end, low-margin, low-research, and the development SNAPS. Finally, we provide
some insights into the social and ethical considerations for the assimilation of SNAPS to improve
health outcomes in marginalized communities.

Keywords: sensor analytic point solutions (SNAPS); environmental health; poverty; pay-a-penny-per-
use (PAPPU); public health

1. Environmental Burden of Disease

According to the World Health Organization (WHO), environmental factors including unsafe
water, poor sanitation, air pollution, and unintentional exposure to hazardous chemical and biological
agents are root causes for the burden of disease, disability, and death in the developing world [1,2]
Impoverished communities living in polluted and crowded environments are much more susceptible to
the double burden of infective and non-communicable diseases, and this situation is often compounded
by a lack of adequate infrastructure, weak environmental policy, and deficient or inequitable healthcare
systems that disfavor economically challenged users [3–8]. Despite the global efforts to reduce poverty,
indicators of health disparities between disadvantaged and affluent populations continue to persist.
For instance, the 2018 World Bank estimates showed that, on average, there is a 12-fold difference in the
mortality rate of infants between low- and high-income populations [9], but in countries experiencing
extreme deprivation such as Somalia and Sierra Leone, this rate is nearly 20-fold higher than the average
rate in wealthy nations. In 2016, diarrheal diseases linked to poor sanitation and the consumption
of contaminated food and water were responsible for 1.6 million deaths, 90% of which occurred in
South Asia and sub-Saharan Africa [10,11] The per capita burden of disease from inhalation exposure
to airborne polycyclic aromatic hydrocarbons (by-products of fuel combustion) has been found to be
nearly 33-fold higher in India compared to the USA [12,13].

Nonetheless, it is important to note that due to the myriad ways in which socioeconomic and
environmental factors interact, it is very difficult to establish highly detailed associations of single
environmental risk factors with epidemiological outcomes [14–17]. Moreover, environmental factors
rarely occur in isolation; for example, a population can be exposed to a combination of pollutants from
different sources, which could result in additive or synergistic effects and symptoms, making medical
diagnostic processes extremely cumbersome [1]. In addition to limited access to healthcare systems,
the problem is compounded by the relatively high cost of clinical testing, which may cause many
illnesses to go under-reported or mis-diagnosed in economically challenged populations [18]. Despite
the complexities involved in linking environmental and socioeconomic factors to epidemiological
outcomes, there is no question that such factors can result in serious public health problems, particularly
in low-income communities that bear the largest proportion of the burden of environmentally-related
diseases [19,20].

Undoubtedly, much of the economic strain from both infectious and non-communicable diseases
associated with unhealthy environments could be effectively diminished through preventive strategies
that tackle associated risk factors [18,21]. One promising approach for addressing health risk factors in
low-income communities is the deployment of integrated technologies for data-informed decision
support such as sensor analytic point solutions (SNAPS). The concept of SNAPS was recently introduced
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as part of a platform approach to converge sensor data and analytics to deliver data-informed decision
support for a number of applications, including healthcare [22]. Even though thousands of sensors and
point-of-care diagnostic tools have been developed in research labs around the world in the past few
decades, the large majority of these technologies have not yet translated into implementable solutions
due to different obstacles including the unsuitability of operation under real-world conditions, high
fabrication and operation costs (which limits market penetration and profitability), and a lack of
convergence with other technologies to yield actionable information for the user [23].

Consider, for instance, the case of diarrheal diseases associated with Escherichia coli infection
from the ingestion of contaminated food or water, which significantly contributes to the mortality and
morbidity of children under five years of age in African and Eastern Mediterranean countries [24]. By
conducting a literature search on the Web of Science, we found that, in the past 10 years, 303 research
articles have been published in peer-reviewed journals that have portrayed the development of E. coli
biosensors. However, only a small fraction of these papers has included claims such as real-sample
testing (~29%), low-cost fabrication (~10%), portability (~9%), and user-friendly operation (~2%) (the
complete report from this search is available in the Supplemental Section S1, Tables S1–S3).

In this manuscript, we provide examples of SNAPS that have been tested in field conditions,
within the context of low-income communities. The first example was developed for assisting the early
diagnosis of infectious disease and the prevention of public health outbreaks, and the second example
supports decision making in cases of human exposure to an environmental pollutant. We also propose
the concept of pay-a-penny-per-use (PAPPU) as a potential paradigm to reduce economic barriers
to implement SNAPS in economically-deprived regions. The two examples of field-tested SNAPS
are at different stages of maturity, providing insight into the design process and logic flow. Finally,
we provide some insights on the social and ethical considerations for the effective use of SNAPS in
assisting users and improving health outcomes in underserved communities.

2. Examples of SNAPS-ART

Near real-time qualitative decisions are often key for rapid response. SNAPS make up a tool
that uses sensor data to provide a response at the point of use with minimal analytics. If two or
more factors must be considered by the human-in-the-loop to take a decision, artificial reasoning
tools (ARTs) are implemented. ARTs make up a data fusion layer that combines sensor data and
displays suggestions or information on the user’s mobile device. In principle, SNAPS are designed
to offer “point solutions,” which implies a rapid binary output (yes/no) based on the data captured
from the sensor signal (for example, sensor binds to an analyte). However, even in rudimentary
scenarios, a single source of binary data may fail to provide basic information. Hence, the need for
artificial reasoning tools (ARTs), which are light-weight middleware (software that sits in the “middle”)
embedded with preliminary logic to decide what is the meaning of the data and what information may
be conveyed (displayed) for the end-user. By introducing a modular ART, the user takes advantage of
a combinatorial variant configuration menu to change, adapt, or introduce new reasoning/logic in the
middleware by re-programming the logic “buckets” by simply re-shuffling and inserting the user’s
preferred choices from a repertoire of pre-programmed logic [22].

There are many complex layers to a system-level solution to ease the environmental burden on
impoverished communities. Velez-Torres et al. [25] recently developed a circular system framework
for integrating analytic tools (such as SNAPS) with social action research (Closed-loop integration of
social action and analytical science research, CLISAR). The CLISAR framework is a transdisciplinary
approach that involves analytical tools such as sensors for informing community action that is related
to, for example, public health, environmental issues, or food security. Beyond simple commercial
colorimetric detection strips that are used in development of CLISAR, information derived from SNAPS
can transform this system by supporting decision-making processes that are aimed at improving the
health outcomes of marginalized communities.
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Herein, we suggest a conceptual approach for selecting and implementing the type of diagnostic
tools for implementation of SNAPS (see Figure 1). The examples that follow in the subsequent
section used a five-step process that followed a closed-loop approach similar to CLISAR and other
circular economic models [25,26]. The first step is to understand the specific problem as well as the
social and economic context where decision-support technology may be needed. The next step is to
identify readily available resources and then design diagnostic tools for creating a technology portfolio
(sensors, analytics software, portable hardware, etc.). The third step involves the selection of the most
appropriate tools to create SNAPS based on technical capabilities as well as interactive feedback from
stakeholders. In step four, scientists and end-users test technology prototypes in field conditions by
using established participatory methodologies. Finally, the results from the proof-of-concept testing
are used to evaluate and refine the technology. This process is repeated until a solution meets user
expectations and desired performance characteristics. The concept is based on principles of circular
systems and convergent thinking [25,26], where technology refinement may occur by using reductionist
or parallel approaches. Below, we present two examples of how this conceptual model is applied in
real-world settings. The first example is in advanced stage field-testing (refinement and technology
improvement, with some elements in the second circular phase), while the second example is in the
early phase of development (tool selection and technology transfer).

Figure 1. Overview of process in development of sensor analytic point solutions (SNAPS) for the
examples shown below. (A) The process begins with establishing context, and each cycle concludes with
technology refinement based on user feedback. The blue, orange, and green arrows indicate technology
evolution by using established principles of circular feedback systems. (B) A conical representation of
the blue, orange, and green cycles shown in Panel (A) indicate convergence toward a systems-level
solution through feedback/refinement pathways. The total number of cycles is context-specific and
proceeds from cycle 1 to cycle n.

2.1. Early Assessment of Tuberculosis in Vulnerable Populations

In 2017, 1.6 million people died from tuberculosis (TB) globally, and there were 10 million new
TB cases that occurred in the same year [27]. TB has surpassed HIV as the leading infectious disease
killer worldwide since 2014 [28]. Furthermore, multidrug-resistant and extensively drug-resistant TB
(MDR/XDR-TB) are current global public health threats. The 2017 Moscow Ministerial Declaration
on ending TB, involving 120 countries and over 800 partners, identified “to advance research and
development of new tools to diagnose, treat and prevent TB” as one of four action items [29].
This meeting was followed in 2018 by a United Nations (UN) General Assembly first-ever high-level
meeting to accelerate efforts to end TB [30].

The care of TB patients starts with accessible and affordable diagnosis. The majority of TB
patients live in poor conditions and in geographically remote areas. Culture-based techniques are the
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gold standard for diagnosis, but this is relatively expensive and results take six-to-eight weeks [31].
For decades, TB diagnosis has relied on direct sputum smear microscopy (SSM) in many countries [31].
SSM is fast, inexpensive, facile, and specific for detecting Mycobacterium tuberculosis (Mtb) in high
incidence areas [31–34]. SSM does not require a highly specialized apparatus and is therefore very
suitable for low-resource settings [31,33]. However, the accuracy of SSM is only 25–65%, which is
considerably lower than the standard culture technique, and its limit of detection is about 10,000 colony
forming units per milliliter (CFU/mL) [34,35]. In a recent study involving hundreds of specimens tested
with culture, SSM, and the Xpert MTB/RIF system, the SSM method exhibited an average accuracy
of 54% for respiratory samples and 50% for non-respiratory samples [36]. Furthermore, the overall
performance of SSM depends on different variables including the type of lesion, the type and number
of specimens, the specific Mycobacterial species, the staining technique, and the competence of the
microscopist [35]. In a 2014 survey, 22 high-burden countries conducted 78 million sputum smears
valued at 137 million USD in 43,000 microscopy centers; about 61% of the analyses were conducted in
the BRICS countries (Brazil, Russian Federation, India, China and South Africa) [37]. About 79% of the
smears performed in the BRICS countries were used for initial diagnosis. On average, the unit cost for
a smear was 1.77 USD, including materials, labor, and overhead expenses [35]. Several studies had
shown that the accuracy of SSM improved when specimens were subjected to liquefaction, followed
by the concentration of the Mycobacteria through overnight sedimentation or centrifugation [34,38–42].
However, the enhanced SSM performance provided by these pretreatment steps may not be sufficient
to offset their increased cost, the complexity of their process, and potential biohazards.

Recent advances in bacteria preconcentration and the diagnosis of TB and multi-drug resistant
tuberculosis (MDR-TB) include sophisticated techniques such as Xpert MTB/RIF, TB beads, liquid
culture, centrifugation, filtration, and line probe assays [43–47]. However, these techniques are not
necessarily accessible or affordable for those who need them the most [48]. Considering the high
accuracy (~97%) and specificity (~99%) of the Xpert system relative to the culture standard [36], the
World Health Organization issued a recommendation in 2010 to use Xpert MTB/RIF for the diagnosis
of all persons with signs and symptoms of TB. However, the Xpert MTB/RIF assay entails a price of
US$10 per cartridge. Thus, if this method was to be implemented for all people with presumed TB, the
cost would exceed 80% of the total TB spending in low-income countries such as India, Bangladesh,
Indonesia and Pakistan [49]. In 2014 and 2015, there were 33 and nine SSMs for every Xpert MTB/RIF
test procured, respectively [50]. While high-end diagnostic methods are more accurate and/or specific
than SSM, these techniques remain cost-prohibiting and inaccessible for people living in low-income
countries where Mtb has a high prevalence.

An essential aspect of TB is the substantial financial burden placed on patients and their families
due to treatment and associated costs. For example, TB patients are often required to take absence
leave from work, which, is unpaid in some cases, leading to a higher risk of financial struggle in the
household [51]. Tanimura et al. reported the distribution of financial burden for the TB patient as 20%
due to direct medical costs, 20% due to direct non-medical costs, and 60% due to income loss [52].
On average, the total cost was equivalent to 58% of reported annual individual income and 39% of
reported household income [52].

In this context, accurate, rapid, and cost-effective diagnostic tests are paramount for reducing
TB infection and its unacceptably high mortality rates, especially for an easily treatable disease [53].
The ambitious goal of the global “End TB Strategy” to diminish TB incidence by 90% and reduce TB
mortality by 95% by the year 2035 is unlikely achievable without highly accurate yet low-cost tools
to address epidemics in settings of poverty [54]. New tools must include improved point-of-care
diagnostic tests that are delivered to low-income communities and at the first point-of-contact by
patients in the healthcare system. Ideally, TB tests should be performed with the use of non-invasive
sampling procedures, and results should be promptly delivered to the patients, allowing for a quick
turnaround time for treatment in a single clinical encounter and hence avoiding the loss of patient
follow up [54].
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Thus, our strategy was to develop low-cost biosensing assay for rapid TB detection by employing
modern advances in nanoparticle science and glyco-chemistry, thus resulting in an accuracy matching
the performance of Xpert MTB/RIF [55,56] and standard culture. The nanoparticle-based colorimetric
biosensing assay (NCBA) is based on the concept of the magnetically activated cell enrichment
(MACE) technique using glycan-coated magnetic nanoparticles (GMNP). In this technique, the Mtb
cells are isolated and enriched by applying a magnetic field to activate nanoparticle-bound Mtb
cells without using any expensive antibodies or energy-consuming centrifuge instruments, thus
eliminating the need for time-consuming growth of Mtb. The NCBA test involves the utilization of iron
oxide nanoparticles with superparamagnetic properties. The incorporation of magnetic nanoparticles
(MNPs) allows for significant improvements over other pre-concentration techniques due to their
high surface-area-to-volume ratio and physicochemical properties. The MNP solution is colloidal
in nature, providing stability, low sedimentation rates, and minimal precipitation due to gravitation
forces. The MNPs are coated with glycan to facilitate their attachment to the bacterial cell wall through
carbohydrate-binding protein sites, providing selectivity to the biosensing mechanism. There are three
stages of specificity involved in this method: First, glycan–cell interaction is specific to the bacteria cell
membrane through carbohydrate–protein binding. Second, the Ziehl–Neelsen staining used in the
NCBA test is specific to acid-fast bacilli Mycobacteria. Third: the Mycobacteria present in sputum due to
respiratory hemoptysis (i.e., intense coughing) is likely TB-causing bacteria.

The NCBA has been used to test sputum samples in Nepal (500 samples), Peru (1108 samples),
and Mexico (24 samples) [55–57]. In the case of Nepal, all sputum samples were tested for TB by using
three different methods: SSM, Xpert MTB/RIF, and the NCBA. In this study, SSM detected only 40% of
the true-positive specimens, while Xpert and the NCBA successfully detected 100% of the true-positive
samples. Neither one of the methods yielded false-positive results. Table 1 presents the results from the
SSM (left panel) and the NCBA tests (right panel), using Xpert MTB/RIF as the standard for defining the
number of true-positive and true-negative TB cases. Table 2 presents the performance characteristics
for both SSM and the NCBA, including sensitivity, specificity positive predictive value (PPV), negative
predictive value (NPV), and accuracy. As shown in Table 2, at a 95% confidence interval, SSM had a
relatively low sensitivity of only 40% (29−52%), while the NCBA exhibited high sensitivity comparable
to the Xpert system (95−100%). The accuracy of SSM was 90% (87–93%), while the accuracy of the
NCBA was 100% (99–100%). Given the sample size and nature of the collected samples, the calculated
prevalence for this cohort of patients was 16% (80 out of 500).

Table 1. Results found by using Xpert MTB/RIF as the gold standard for true tuberculosis (TB) cases
and non-TB cases [55].

SSM Test True TB Cases Non-TB Cases NCBA Test True TB Cases Non-TB Cases

Positive test 32 0 Positive test 80 0
Negative test 48 420 Negative test 0 420

Table 2. Comparison of diagnostic performance [55].

Technique Xpert MTB/RIF as the Gold Standard, % (95% CI)

Sensitivity Specificity PPV NPV Accuracy
SSM Test 40 (29–52) 100 (99–100) 100 90 (88–91) 90 (87–93)

NCBA Test 100 (95–100) 100 (99–100) 100 100 100 (99–100)

When samples were positive, the Xpert MTB/RIF system reported the bacterial load set by the
manufacturer as very low, low, medium, and high. These four categories were used to estimate the
equivalent load in SSM and the NCBA by matching the corresponding samples with Xpert results.
Table 3 shows a comparison of the detection limit and dynamic range of the detection of the two
techniques with respect to the Xpert system. As seen in the table, the NCBA yielded the same results
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as Xpert MTB/RIF at all levels of bacterial load. Conversely, SSM was unable to detect positive samples
at the very low level and detected only 14% of true-positives at the low level, 48% at the medium level,
and 79% at the high level. TB positive samples are normally distributed around the medium level, at
which SSM exhibited a poor detection rate of less than 50%.

Table 3. Detection limit and dynamic range of detection of the two techniques with respect to the Xpert
MTB/RIF categories [55].

Xpert MTB/RIF Categories ** Very Low Low Medium High Total

Xpert MTB/RIF 10 22 29 19 80
NCBA 10 22 29 19 80
SSM 0 3 14 15 32

% Detection (NCBA/Xpert) 100% 100% 100% 100%
% Detection (SSM/Xpert) 0% 14% 48% 79%

** The Xpert MTB/RIF assay provides semiquantitative readouts based on the cycle threshold (Ct): very low = Ct >
28, low = Ct 22–28, medium = Ct 16–22, high = Ct < 16.

The NCBA method significantly outperformed SSM with a lower detection limit for acid fast bacilli
(AFB) of 102 CFU/mL and a fast analysis time of 10–20 min. This diagnostic tool is facile (Figure 2), easily
scalable, and inexpensive (0.10 USD/test). According to the Ministry of Health of Nepal, a low-cost TB
diagnostic test with 70% accuracy could potentially save 300,000 lives just in Nepal over the next five
years [58]. The NCBA technique shows promising potential for improving the TB control program in
Nepal and other high-prevalence low-income countries. The deployment of the NCBA in remote rural
areas would help increase case finding and case notification, thus supporting public health programs
for fighting drug-resistant TB. There are nearly 600 microscopy centers distributed throughout Nepal
in which the immediate implementation of the NCBA is possible. Similarly, this technique is applicable
in many of the high TB-burden countries. In 2013, Desikan hypothesized that a universally accessible
and rapid detection method with a sensitivity of 85% and specificity of 97% could save about 392,000
lives every year worldwide [33]. Thus, the developed NCBA technology may enable the “End TB
Strategy” and lead towards a TB-free world.
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Figure 2. Typical nanoparticle-based colorimetric biosensing assay (NCBA) results for TB+ and TB−
sputum samples, as viewed through the eyepiece of the bright field microscope. (A) The TB-positive
sample (clumped red GMNP-AFB complex surrounded by brown GMNPs). (B) TB negative sample
(dispersed brown GMNP). (C) Schematic of smartphone app for image processing and display of test
results [55].

2.2. Alerting Mercury Exposure in Artisanal Gold Mining Communities

In South America, Africa, and Asia, millions of individuals are exposed to dangerous levels
of mercury concentrations as a result of artisanal small-scale gold mining (ASGM) [59]. ASGM is
a rudimentary gold mining approach that is performed by individuals or groups with little or no
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mechanization, often in informal (illegal) operational settings with toxic chemicals [60]. ASGM is
composed of three main steps: crushing the ore into fines, mixing the fines with liquid mercury, and
separating the mercury from gold by evaporating the mercury [61]. Often in unregulated occupational
conditions, workers perform mercury evaporation by using open pits, which not only have severe
adverse health effects for the workers that inhale the mercury vapor but also release the toxic vapor
into the environment. ASGM recently exceeded combustion of coal as the leading anthropogenic
source for mercury emissions globally [62]. The risk of exposure to mercury can lead to detrimental
effects on the nervous, immune, reproductive, and digestive systems, induce infertility, reduce mental
function, and induce kidney failure [63–67].

The global responsibility for reducing mercury emissions was recognized by the Minamata
Convention in Switzerland in 2013. At the convention, over 140 countries signed a treaty committing
to protect human health from mercury exposure [62]. The signatory countries pledged to “ban new
mercury mines, phase-out existing mines, ensure the phase out and phase down of mercury use in a
number of products and processes, develop control measures for emissions, and regulate the informal
sector of ASGM” [62]. In order to mitigate mercury exposure and regulate mining operations, it is
prudent for marginalized communities to monitor the presence of mercury in their water through
low-cost, rapid, and facile devices.

Several analytical methods have been developed for mercury determination in water. Standard
laboratory techniques include cold vapor atomic absorption spectroscopy (CV-AAS) [68,69], cold
vapor-atomic fluorescence spectrometry (CV-AFS) [70,71] and inductively coupled plasma mass
spectrometry (ICP-MS) [72,73]. These spectroscopic techniques are highly sensitive and accurate but
are often impractical for environmental applications due to the high cost of analysis. In addition,
these standard methods require extensive user training, and the results often require days or even
weeks to produce results, making them less suitable for rural communities [74–76]. Some field capable
units are commercially available, namely based on direct mercury analysis (DMA) and handheld
nanosensors/biosensors [77,78]. DMA is based on the principle of thermal decomposition (vaporization),
followed by amalgamation and subsequent atomic absorption spectroscopy. While extremely accurate,
DMA is cost prohibitive for low-income communities because commercial prices of US-manufactured
equipment range between 13k and $30k USD. Perhaps inexpensive nanosensors/biosensors that are
coupled with low-cost electrochemical techniques on portable devices are likely to be more suitable as
tools for the on-site analysis of mercury, especially where ASGM is in practice.

While there are many types of transduction methods for the low-cost determination of mercury,
electrochemical methods are sensitive, quantitative, and may be the mechanism of choice for
cost-effective rapid detection in the field [79]. The most common electrochemical method for ionic
mercury detection is that of the anodic linear stripping voltammetry (ASV) techniques [74,80]. ASV is
a two-step method of deposition/accumulation during the reduction of mercury ions and stripping
during the oxidation of mercury ions along the surface of the electrode. As the mass transfer limit is
reached in the reaction, the oxidative current forms a well-defined peak that can be used to calculate
the concentration of mercury in the sample [81]. The efficiency of any electrochemical stripping test
can be determined by calculating the percent change in oxidative current relative to baseline.

Carbon-based nanomaterials are a popular choice for improving the electrochemical detection of
mercury, as this type of material exhibits a high surface area, strong mechanical strength, excellent
thermal conductivity, and high conductivity [82–84]. Some of the carbon nanomaterials in recent
literature include glassy carbon [85,86], carbon nanotubes [87], graphene [88], and reduced graphene
oxide [89]. While each of these nanocarbon materials is efficient for mercury detection via stripping
voltammetry, some of the materials are complicated to fabricate and exhibit poor water solubility [90].
Among carbon nanomaterials, graphene and reduced graphene oxide (rGO) have the highest water
solubility and one of the lowest fabrication costs. For these reasons, there is a growing trend to develop
disposable, low-cost, graphene-based electrodes for field applications.
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Examples of low-cost graphene electrodes include screen-printed electrodes and conductive
paper and plastic [74,91]. In 2014, Lin et al. (2014) [92] discovered a low-cost, one-step, conductive
material when reducing graphene on a commercial polymer with a carbon dioxide infrared laser.
Since then, multiple researchers have shown that laser scribing could be used to design electrodes to
sense biomolecules by using infrared and ultra-violet light lasers [93–96]. While graphene is indeed
a useful material in sensing, one of its problems is the tendency of graphene and graphene oxide to
bind to a variety of materials in aqueous phase [97]. For this reason, sensor labs typically metallize
graphene electrodes with a noble metal that has a specific interaction with mercury ions. These metals
can be deposited by using simple electrodeposition methods or advanced techniques such as pulsed
sono-electrodeposition [98]. Recently, Abdelbasir et al. 2018 [99] showed that copper nanoparticles
recovered from waste cables can be used to detect ionic mercury by using linear sweep stripping
voltammetry (LSSV).

Low-cost, portable, mobile phone-based acquisition systems have been developed for mercury
analysis in the field [100]. While this is significant for deploying sensors in low-income regions,
the inexpensive-portable sensor-systems lack data analytics capability to transform the data into
meaningful information that could be useful for the user. For example, the maximum concentration
level for inorganic mercury in drinking water is 6 ppb [101]. However, bodyweight, ingestion rate,
length of exposure, form and pathway of the contaminant, health of the individual, and concentration
of mercury influences the degree of mercury toxicity [102–104]. Thus, a SNAPS tool may assist
communities in acquiring data and extracting actionable information for decision support.

Our group is currently working on developing the SNAPS platform for estimating the toxicity risk
associated with the ingestion of mercury-contaminated water. This SNAPS platform is composed of a
disposable graphene–nanocopper sensor that is coupled with a low-cost handheld potentiostat and a
smartphone. The working mechanism of the platform starts with the detection of mercury present in
the sample by using the graphene–nanocopper sensor. Next, selective electrochemical interactions
between mercury and the electrode generate an electrical signal. The electrical signal is acquired and
processed by the potentiostat to produce a current output. Then, computer software records the current
output and transforms it into concentration data via calibration curves. Finally, a smartphone app
is used by the user to enter the data for the following parameters: mercury concentration in water
(from the sensor), bodyweight of the user, water ingestion rate, and length of exposure. Based on
these parameters, the app runs an algorithm that includes a hazard quotient formula to generate an
estimation of the risk of toxicity for the user [105–108].

We recently conducted a proof-of-concept demonstration of this SNAPS platform in a rural area
that has been dramatically impacted by ASGM known as La Toma in Cauca, Colombia. Even though
this SNAPS platform is in an early stage of development, it represents an example of how rural
communities in developing countries may use sensors as a service to access data on mobile devices
and extract actionable information to help make informed decisions. Figure 3 shows the progression of
the proof-of-concept demonstration of the technology.
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Figure 3. Demonstration of a SNAPS tool for assessing risk due to the inadvertent consumption
of mercury in drinking water for gold mining communities in Colombia. The first step was to (A)
characterize the local socioeconomic dynamics and (B) identify related routes of mercury exposure
(in this case from smelting of amalgam). (C) Together with community members, we collected
samples from local water sources. (D) These samples were tested with nanomaterial-enabled sensors.
(D) Concentration data derived from sensors were transformed into customized information about the
toxicity risk for specific user groups who were using a mobile app.

Mercury enters natural aquatic systems primarily due to the burning of mercury amalgam during
the extraction of gold from raw ore.

3. Can We Overcome the Economic Barriers for Distributing Diagnostic Tools in
Low-Income Settings?

Framing the issue of diagnostic tools in the context of technology leads us to recognize a vast
spectrum. On one hand, ideas about telemedicine were proposed about 100 years ago [109], and on the
other hand, milestones in computational speed occurred about 100 days ago [110]. It may be justifiable
to suggest that technological barriers may not be the primary reason why many diagnostic tools are still
absent from communities under economic constraint. The powerful incentive of lucrative profitability,
in the short term, may not be realized by serving impoverished regions.

Transaction cost [111] may be the over-arching factor that has multiple interpretations [112] but
appears to be the economic barrier with respect to the reasons why accelerating the rate of diffusion of
diagnostic tools in distressed communities continues to pose difficult challenges [113–115]. We must
focus on value to the user or the extent of the benefit to the beneficiary’s environment and/or ecosystem
(for example, the early diagnosis of tuberculosis in a patient may save the entire village from infection
and epidemic). However, delivery of value is inextricably linked to cost, unless it is aimed to deliver
philosophical or mythical messages [116].

In over-simplified terms, the convergence of the cost of the product and the cost to deliver the
service contributes to transaction cost [117]. A plethora of costs and cost-incurring processes are
involved, but we shall bypass the details. The physical product (in this case is the sensor) and the
service is the solution delivery (SNAPS). Academics cannot control cost, but their contribution can
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impact implementation and use. A low-cost sensor from a lab must be manufactured, calibrated,
evaluated, and sufficiently scaled if the outcome can still be claimed as a “low-cost” sensor that is
capable of delivering value with respect to maintaining a certain pre-agreed quality of service (QoS) in
keeping with the key performance indicators (KPI) that the users desire, demand, or deem necessary.

In addition, a working sensor that is delivered to a user is useless without a visualization system
to capture the data from the sensor. Stand-alone visualization devices (for example, blood glucose
home monitors with dedicated devices to read the blood glucose strip and deliver data readout) add
inordinate costs to the system. The alternative is to use a mobile phone as a platform to visualize the
data from the sensor. The signal transduction from the sensor to the mobile phone calls for multiple
layers of tools, technologies, and software (middleware), in addition to the functional use of a mobile
phone. The presence of a mobile phone in any environment is contingent upon available cellular
and/or wireless infrastructure to support its use. It may not be prudent to assume the presence of a
telecommunications infrastructure despite the global penetration of such services [118–121]. Thus,
even if a working sensor is at hand, the obvious process of signal to data transition and the visualization
of the data involves multiple layers of capital expenses (infrastructure cost), as well as associated
technologies and software.

Assuming that the above layers are in working order, the sensor data meets a “dead end” upon
data visualization. A number (with units) is only meaningful if there is a relevant framework for
interpreting such data, e.g., the combination of sensor data from mercury contamination expressed in
terms of a hazard quotient score, which uses other vital pieces of information to assess health risk.
It is the delivery of information based on sensor data that drives value. Taken together, the physical
product is no longer the focal point of value. Information pertaining to the health of the user is the
service that delivers value to the user. Transaction cost, therefore, is no longer a product-based entity;
rather, it is the cost of service that must be feasible for the service to be delivered, disseminated, and
adopted by a community.

Overcoming the economic barriers to deliver SNAPS will be virtually impossible if the chasm
between product and service continues to overshadow the concept of value delivery to the user.
The economic principle, which may work in impoverished nations, is rooted in micro-finance and
micro-payments with low transaction costs [122,123]. The paradigm shift from “product sales” to
delivery of “service” involves combining the product with resources (including retail mobile banking,
infrastructure, telecommunications, cybersecurity, and customer service). Users pay only when they
use the service. The latter lowers the transaction cost and hence the barrier to entry into vast markets
of low-income users. It is not the product but the user experience that is the pivotal fulcrum for the
inversion of traditional business models in the era of the Internet of Things (IoT) [124].

The PAPPU model was epitomized by the plain old telephone system (POTS), where the user
paid only the “charge per call” which was reasonably affordable even if the per capita income was low.
In this paper, we advocate for PAPPU as a metaphor for ethical profitability through social business
models. In principle, the user may pay a penny for each use of a SNAP (suggested but not restricted to
one penny). The “penny” is a placeholder for the financial design of an ultra low-cost nano-payment
model, which, in the real world, may represent one Rupee (INR), one Yuan (CNY, RMB) or one Peso
(COP). The PAPPU metaphor may evolve to become the generalized monetization mantra that signifies
pay-a-price-per-unit wherever the principles of IoT may be deployed or embedded as a digital by
design metaphor including ubiquitous sensing. The diffusion of connectivity may serve as a tool
and IoT may be catalytic as a platform to better facilitate the practice of equality, equity and égalité.
PAPPU offers an economic instrument for businesses to build a profit model based on economies of
scale to serve low-income communities and abide by ethical profitability. PAPPU offers an alternative
strategy for enterprises and businesses who are seeking to engage with the next billion users, albeit
profitably, but within the realms of ethical profitability that can be sustained by the per capita income
of these communities.
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The concomitant growth of infrastructure (e.g., affordable access to low latency, reduced jitter,
high bandwidth wireless telecommunications, 5G, and trusted mobile banking) may be necessary
to pave the road for the pursuit of PAPPU. The ability to escape the dead weight of old technology
in the developing world may accelerate the implementation of PAPPU as an integral part of the
socio-economic fabric of a product-less, service-based economy where payment per unit of service (one
liter of municipal water, one kilo-watt hour of energy, or one gallon of sanitation waste) may become
the new normal.

Implementing PAPPU may require alliances, public–private partnerships, or global consortia with
an altruistic fervor to pay and pave for the synergistic integration that is necessary to promote SNAPS
as services in low-income communities. The challenge is to bring to the table global organizations,
benevolent individuals, and thoughtful governments who may choose to lead this effort to channel
science to serve society for the less fortunate. We need new eyes, unbridled imagination, and the moral
fabric of synergistic solutions that can wrap around—not to isolate—and protect, provide and promote
acceptable solutions for remediable injustices.

4. Social and Ethical Considerations for the Development and Implementation of SNAPS

Social and ethical considerations are inextricably linked with the transformation of SNAPS from
an academic vision to real-world implementations that may actually help people. Academics must
remain cognizant of their ethical responsibility to discourage the misapplication and dissemination of
misinformation about their inventions. In this section, we attempt to analyze some potential interactions
between the social and technological domains, as well as how democratic approaches for technology
creation and diffusion could favor the improvement of health outcomes for disadvantaged communities.

Since the introduction of the technology acceptance model (TAM) decades ago, several extended
versions of this archetype have been proposed to elaborate a more comprehensive framework for
predicting people’s intention to use a particular product or service [125–127]. The TAM and its variants
have served as the guiding rationale behind R&D for a variety of commercial technologies that are
mass-produced, including healthcare devices [128]. However, this model may be inadequate in the
context of technology development for low-income communities [129]. It is worth noting that the
ultimate goal of the TAM and related models is to forecast user behavior across a broad range of
consumer populations, which means that the model focuses on highly generic predictors of technology
acceptance. For instance, the TAM does not explicitly include any cultural or social variables, which
is a significant limitation because social differences may contribute significantly to the variance in
users’ attitudes towards technology [127,130]. However, the goal of SNAPS with the PAPPU concept
is to provide an affordable sensor-analytics service platform to support decision-making and the
enhancement of health outcomes for economically challenged groups. Thus, a useful model to guide
the development of SNAPS should include bi-directional communication between researchers and
users, and it should perhaps motivate researchers and users to change or adapt or better inform their
behavior [131].

Trust in the technology [132] is quintessential for adoption and continued use, because technology
is equally seen as a double-edged sword [133,134]. Driving positive impacts from the introduction
of SNAPS in low-income regions may involve not only the transfer of fully functional technology
but also the empowerment of the beneficiary communities by enabling the local mastery of the
technology along with the possibility to re produce and even adapt the technology to local conditions.
We believe this open-source approach to technology adoption is auspicious for supporting marginalized
communities, especially when trying to avoid the known failures of the charitable approach of
technology leapfrogging. For example, the WHO estimates that only 10%–30% of the medical devices
that are donated to developing countries are used as intended; the remaining 70–90% end-up being
dumped in landfills, thus contributing to more pollution problems and environmental health risks [135].
This situation is explained not only by the incompatibility of the technology with the locally available
infrastructure but also to the lack of local capacity to adapt or fix the donated devices once they
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break [136]. Additionally, dependence on foreign technologies could lead to an imbalance of power in
which the users have no option other than relying on the willingness of external entities to continue
to deliver much-needed technology in their regions. Thus, if the goal is to make technology work
effectively on behalf of society, we must divert from the mainstream handed-down from the top
approach and enable society to create and transform technology in meaningful ways, in dispersed
regions, and from the bottom-up.

Engaging the community through operational transparency may prevent public anxiety and may
also facilitate the proper implementation of technology. Users’ understanding of the limitations and
potential risks associated with SNAPS could be vital for setting clear expectations about SNAPS-assisted
testing while avoiding misapplications of the technology. As Wallace et al. pointed out, the misuse of
many direct-to-consumer screening tests could have caused an unnecessary increase in healthcare costs
due to people’s overreaction to inaccurate readings from direct-to-consumer screening tests, as well as
their subsequent demand for further testing with advanced clinical technology [132]. However, this
concern is mostly relevant for developed countries in which people have access to healthcare systems
where clinical testing is readily available for patients. In low-income settings, such as remote rural
areas in developing countries, health care services are often dysfunctional or completely inaccessible.
For marginalized communities, information from SNAPS could instead drive actions that are aimed
at limiting the exposure to harmful biological vectors and chemical agents. Thus, communities
in territories that suffer from prolonged government abandonment could greatly benefit from the
democratic adoption of SNAPS to make informed decisions and solve their problems with more
autonomy. Nonetheless, we agree that transparency and accountability from everyone involved in the
process of technology deployment are paramount for protecting the users’ rights and integrity.

5. Conclusions

Monitoring environmental contamination is essential to protect the public from diseases and
other health issues. This monitoring requires accurate and cost-accessible sensor technologies to
enable early warning capabilities for users to minimize negative impacts (Figure 4). The framework
of SNAPS with PAPUU has the potential to pave the way for economically viable systems that can
potentially be applied as tools to reduce local environmental risks and mitigate health problems that
are derived from them. We envision that the use of SNAPS will increase low-income communities’
participation in the public/government planning process by providing data that they can use to
fight for their right to public health care, clean water and adequate sanitation. By bridging smart
technology with basic needs and public health, SNAPS will advance our understanding of how
information can change public participation, having low-income communities’ representatives as
‘change agents’ that influence public policies and planning. These communities’ representatives benefit
from rights-based arguments, evidence-based research, and effective data analyses. SNAPS have the
potential to serve as an illustration of how empowering impoverished communities in their local
context can strengthen democratic practice in their region. Grounded on an integrated perspective
that takes social and ethical considerations into account, we foresee that SNAPS will shed some light
to improve implementation of public health plans in underserved communities by increasing public
participation in planning. Moreover, SNAPS could potentially become a new approach to achieve
the United Nations Sustainable Development Goals 3 and 6: ensure healthy lives while promoting
well-being at all ages and ensure access to water and sanitation for all, respectively. Furthermore, it
could also help empower impoverished communities to obtain the rights they have been promised
such as basic sanitation, clean water, and adequate health care services.
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Figure 4. SNAPS converges with pay-a-penny-per-use (PAPPU) to establish a framework for
sensor-as-a-service. The paradigm is rooted in economic, ethical, cultural, and environmental core
values that synergistically act as a catalyst for the democratization of healthcare in underserved
communities. Where noted, photos credited to Demirbas et al. [137] and Vanegas et al. [95].
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