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Abstract: Pericytes, as mural cells covering microvascular capillaries, play an essential role in vascular
remodeling and maintaining vascular functions and blood flow. Pericytes are crucial participants
in the physiological and pathological processes of cardiovascular disease. They actively interact
with endothelial cells, vascular smooth muscle cells (VSMCs), fibroblasts, and other cells via the
mechanisms involved in the secretome. The secretome of pericytes, along with diverse molecules
including proinflammatory cytokines, angiogenic growth factors, and the extracellular matrix (ECM),
has great impacts on the formation, stabilization, and remodeling of vasculature, as well as on
regenerative processes. Emerging evidence also indicates that pericytes work as mesenchymal cells
or progenitor cells in cardiovascular regeneration. Their capacity for differentiation also contributes
to vascular remodeling in different ways. Previous studies primarily focused on the roles of pericytes
in organs such as the brain, retina, lung, and kidney; very few studies have focused on pericytes in
the heart. In this review, following a brief introduction of the origin and fundamental characteristics
of pericytes, we focus on pericyte functions and mechanisms with respect to heart disease, ending
with the promising use of cardiac pericytes in the treatment of ischemic heart failure.

Keywords: pericytes; endothelial cells; VSMCs; cardiomyocytes; regeneration

1. Introduction

There is a gradual progress to understanding the essence of pericytes. Although peri-
cytes were first described by Dr. Eberth [1], the comprehensive understanding of pericyte
origin came from the study of Dr. Rouget [2]. In his study, the morphology of pericytes
was demonstrated for the first time, showing them to be in close proximity to endothelial
cells [3]. Later, some studies revealed the expression of actin and myosin in pericytes
by immunocytochemistry, indicating that pericytes have contractile elements to regulate
blood flow and vascular permeability [4–6]. Recently, it was found that pericytes work as
potential progenitors, differentiating into other cell types under specific circumstances [7].
In recent years, the nature of pericytes was further characterized, and pericyte loss has
been identified as a key contributor to human diseases, including diabetic retinopathy,
Alzheimer’s disease, and pulmonary hypertension [1].

The current definition of pericytes is well accepted; they belong to mural cells and
are found residing within the basement membrane in microvessels [8]. Pericytes cover
and adhere to the surface of endothelial cells (ECs) in the microcirculation, including
in terminal arterioles, precapillary venules, and capillaries [8]. Structural contacts and
biological interactions occur frequently between these two types of cells, contributing to the
formation, maintenance, and remodeling of vasculature [7]. Additionally, differentiation
of pericytes gives rise to other type of cells, such as adipocytes, vascular smooth muscle
cells (VSMCs), and myofibroblasts, and consequently modulates the vascular network and
blood flow [1]. Furthermore, pericytes communicate and interact with adjacent cells to
support the vasculature structurally and functionally [1].
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In the present review, we focus on the fundamental characteristics of cardiac pericytes
and their interactions with adjacent cells, as well as their role in heart failure.

2. Characteristics of Pericytes
2.1. Origin

A recent study indicated that human pluripotent stem cells (hPSCs) may be a viable
source of pericytes in vitro. HPSCs first develop into mesenchymal progenitor cells, which
differentiate into immature SMCs and immature pericytes [9]. The immature pericytes
develop into two mature phenotypes (pericytes type-I and type-II) and are distributed to
multiple organs and tissues, taking center stage in vasculature [9]. More specifically, a
series of works by Birbrair et al. demonstrated several differences between pericytes type-I
and type-II in terms of marker, location, and function (Table 1) [10–12].

Table 1. Difference between pericytes (PCs) type-I and type-II. PDGFR, platelet-derived growth
factor receptor.

Pericytes Type-I Pericytes Type-II

Marker PDGFR-α+/Nestin-GFP−/NG2-
DsRed+

PDGFR-α−/Nestin-GFP+/NG2-
DsRed+

Distribution Capillary phenotype Arteriolar phenotype

Function Adipocyte deposition
Fibrogenesis

Regeneration
Angiogenesis

During embryonic development, the majority of pericytes originate in the gut, liver,
lung, and heart, following mesothelium–mural cell differentiation [1,13,14]. For example,
pericytes in the heart originate from the epicardium surrounding the outer layer of the heart.
During the growth of the heart, epicardial to mesenchymal transition (EMT) occurs, giving
rise to mesenchymal cells [15]. These mesenchymal cells then develop into mural cells
and fibroblasts in the heart. Other than the mesothelium, there are several cell types from
which pericytes originate. A recent study revealed that endothelial cells may also work
as progenitors of pericytes during development. In this study, endothelial–mesenchymal
transition (End-MT) resulted in an increase in mesenchymal cells, which contribute to
the development of pericytes [16]. In the central nervous system, the neural crest was
identified to be the origin of pericytes [17,18].

2.2. Diversity of Pericytes

Although endothelia are surrounded by pericytes in morphology, only parts of ECs
are covered by pericytes (PCs), and the PC/EC coverage rate varies in different tissues,
ranging from 1% to 50%. This variation leads to a different degree of contribution by pericytes
according to their location (Table 2) [19]. For example, the coverage of pericytes to endothelial
cells in the heart is about 1:2 to 1:3 [20]. Pericytes in the central nervous system such as the
blood–brain barrier (BBB) have the highest coverage, at about 1:1 [21]. The BBB is structurally
and functionally dependent on the coverage of cerebral pericytes [21,22]. The higher density
of pericytes in the BBB is imperative in maintaining the vascular integrity and function of the
brain. Previous studies have shown that detachment of pericytes from endothelial cells results
in an impairment of brain vascular integrity and BBB function [23]. In several organs such as
skeletal muscle, the pericyte–endothelial cell ratio reaches as low as 1:100 [15]. Consequently,
this lower pericyte density implies that pericytes are less important in these areas, making
the vascular network more vulnerable [24]. In addition to variations in coverage, pericytes
also display distinguished shapes depending on their location. For example, pericytes in the
central nervous system are solitary and stellate-shaped, while cardiac pericytes were found
to be spindle-shaped [19,25]. Meanwhile, pericytes in the kidney are rounded and compact
and, thus, more regular than those of the central nervous system and the heart [19]. Although
mural cells around microvessels are all defined as pericytes, their morphology, function, and
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distribution can vary widely [7,8,19,26]. This diversity might contribute to their stem-cell
features.

Table 2. Diverse shape and endothelial cell (EC) coverage ratio of pericytes and their function.

Shape PC-EC Ratio

Heart Spindle-shaped 1:2–1:3
Nervous system Solitary and stellate-shaped 1:1
Skeletal muscle 1:100

Kidney Rounded and compact

Function

(1) Angiogenesis and vessel stabilization
(2) Capillary blood flow regulation
(3) Vascular maturation and remodeling
(4) Vascular permeability
(5) Maintenance functional integrity of the blood–brain barrier

2.3. Identification

The features of pericytes are not only distinguished by PC/EC coverage and pericyte
shape, but also by numerous markers that verify the heterogeneity of pericytes. Some
markers such as smooth muscle α-actin (α-SMA), cluster of differentiation 13 (CD13),
desmin, NG-2, and platelet-derived growth factor receptor (PDGFR-β) are classic, being
well recognized and widely used to represent pericytes [1]. Other markers such as the
regulator of G protein signaling 5 (RGS 5), Endosialin, and delta-like homolog 1 (DLK-1)
are newly identified markers for pericytes [1,19]. The variation of markers depends on the
stage of the pericyte, as well as where it is located. For instance, α-SMA+ pericytes are
usually found in the retina and retinopathy [27,28]. The expression of NG2 and PDGFR-β
was found to be upregulated in the pericytes of tumors and cardiovascular disease [1,29].
Additionally, increased levels of RGS5 are always observed in pericytes of angiogenesis,
indicating the degree of vascular remodeling [30]. Moreover, a previous study revealed
that pericyte type-I is a capillary phenotype, which can be differentiated from pericyte
type-II as an arteriolar phenotype, thus indicating distinguished functions [9].

Despite the diversity of these markers, none of them can definitively indicate pericytes.
This is due to pericyte properties as potential progenitor cells. Pericytes also share common
markers with other adjacent cells. PDGFR-β, a well-known marker for pericytes, is not
only expressed in pericytes but also in SMCs, myofibroblasts, mesenchymal stem cells,
and neuronal progenitors [31]. Another classic pericyte marker, NG2, can be found in
various cell types such as adult skin stem cells, adipocytes, VSMCs, and oligodendrocyte
progenitors [32,33]. Additionally, α-SMA is the common marker for contractile pericytes,
and it is also expressed in VSMCs and myofibroblasts [34]. Currently, there are no specific
markers that could identify pericytes, making tracing pericytes with these markers less
reliable.

This limitation also applies to tracing cardiac pericytes. Pericytes in the heart are
usually marked with α-SMA, NG-2, and PDGFR-β [20]. In recent years, efforts have been
made by many studies to develop a better model for tracing cardiac pericytes specifically.
Using PDGFR-β-Cre mice, a study revealed that PDGFR-β is not suitable for representing
pericytes because PDGFR-β+ pericytes fail to behave as progenitor cells [35]. Using NG2-
DsRed mice as a practical animal model to trace pericytes, accumulating evidence indicates
a crucial role played by NG2+ pericytes in cardiovascular disease. Using NG2-DsRed
mice, Volz et al. reported that pericytes derived from the epicardium were the origin of
VSMCs in the coronary artery [33]. Using NG2-DsRed mice, we demonstrated an important
contribution of NG2 pericytes to myofibroblast transition in angiotensin-II-induced cardiac
fibrosis and renal fibrosis [29,36,37]. In line with these studies, NG2 pericytes were also
proven to be beneficial for BBB function and vascular permeability in NG2-DsRed mice [38].
Therefore, NG2-DsRed mice may be considered as a specific model for tracing cardiac
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NG2 pericytes. More studies are warranted to investigate the role of NG2+ pericytes in
hypertension and hypertensive heart failure using NG2-DsRed mice.

2.4. The Secretome of Pericytes

The secretory capability of pericytes is being explored, and the potential implications
for tissue regeneration are beginning to emerge. Various cytokines and factors such as
immune-regulatory factors, angiogenic growth factors, quiescence-inducing factors, and
the extracellular matrix (ECM) have been reported to be released by pericytes, which
modulate a series of physiological and pathophysiological processes, especially in tissue
repair and regeneration [39,40].

Under basal conditions, several proinflammatory factors such as interleukin-6, 8 (IL-6,
8), tumor necrosis factor alpha (TNF-α), interferon gamma-induced protein 10 (IP-10),
and adhesion molecules have been found in pericytes, contributing to the activities of T-
cells [41–43]. Under the stimulation of several pathogens such as lipopolysaccharide (LPS),
granulocyte colony, and high glucose, cytokines such as Eotaxin and Rantes are produced
by pericytes, resulting in the exacerbation of tissue injury [44]. Interestingly, several anti-
inflammatory factors are also reported to be secreted by pericytes. For instance, leukemia
inhibitory factor (LIF), cyclooxygenase-2 (COX-2), and heme oxygenase-1 (HMOX-1) were
secreted from pericytes and worked as inhibitory cytokines during inflammation [45,46].
Moreover, pericytes induce stem-cell quiescence and protect them from exhaustion and
senescence by releasing quiescence-inducing factors such as bone morphogenetic protein-4,
6, 7 (Bmp-4, 6, 7), which preserves stem-cell regenerative capabilities [47,48].

Angiogenesis is essential for tissue regeneration and repair since more oxygen and
nutrients can be distributed with formation of neovessels. Angiogenic growth factors
such as transforming growth factor-β (TGF-β), angiopoietins-1 (Ang-1), and vascular
endothelial growth factor (VEGF) from pericytes are responsible for differentiation and pro-
liferation of both pericytes and endothelial cells, aiding in the formation and stabilization
of neovessels [1,19,49]. Additionally, the ECM secreted by pericytes plays an important
role during tissue repair and regeneration [50,51]. In addition to the ECM, ECM-associated
factors such as secreted protein acidic and cysteine-rich (SPARC), which regulates ECM
formation and angiogenesis, are also found in pericytes [52]. Taken together, pericytes
could secrete a large panel of cytokines and angiogenic molecules and growth factors,
indicating that pericytes are a potential new therapeutic target for maintaining function or
restoring damaged tissues and organs (Table 3).

Table 3. Molecules secreted by pericytes and their functions.

Molecules
Secreted by Pericytes Functions

TNF-α, IP-10, IL-6, 8
Eotaxin and Rantes Induce inflammatory responses

LIF, COX-2, and HMOX-1 Inhibit inflammatory responses
Bmp-4, 6, 7 Preserve stem-cell regenerative capabilities

TGF-β Stimulates angiogenesis and fibrogenesis
Ang-1 Enhances vessel stabilization
VEGF Stimulates angiogenesis

SPARC Stimulates fibrogenesis
S1P Stabilizes intercellular contacts of PCs and ECs

OPG Contributes to calcification
MiR-132 Induces survival response and differentiation of cardiomyocytes

Interleukin-6, 8 (IL-6, 8), tumor necrosis factor alpha (TNF-α), interferon gamma-induced protein 10 (IP-10),
leukemia inhibitory factor (LIF), cyclooxygenase-2 (COX-2), heme oxygenase-1 (HMOX-1), bone morphogenetic
protein-4, 6, 7 (Bmp-4, 6, 7), transforming growth factor-β (TGF-β), angiopoietins-1 (Ang-1), vascular endothe-
lial growth factor (VEGF), secreted protein acidic and cysteine-rich (SPARC), sphingosine-1-phosphate (S1P),
osteoprotegerin (OPG).
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3. Pericytes Cross-Talking with Adjacent Cells
3.1. Endothelial Cells

Pericytes are vascular mural cells, adhering to the surface of endothelial cells and
becoming embedded within the vascular basement membrane. They usually emerge
around microvessels such as precapillary arterioles, venules, and capillaries [53]. Without
coverage of VSMCs, pericytes are the main mural cells in the microcirculation, and their
reciprocal interactions with endothelial cells take center stage in the formation, stabilization,
and remodeling of microvasculature, which consequently regulates capillary blood flow
and vascular function [7].

3.1.1. Reciprocal Interactions in Structures and Functions

In general, endothelial–pericyte communications are mediated through specialized
intercellular junctions [19,54–56]. The peg–socket pocket is formed by cytoplasmic fingers
and is one of the junctions known to combine endothelial cells and pericytes in structure. It
contains adherent junctions and gap junctions responsible for connecting the cytoskeleton
and cytoplasm of endothelial cells and pericytes [19,57].

The interactions between pericytes and endothelial cells is evident not only by struc-
ture but also by function. On one hand, proliferation, differentiation, contractility, and
stabilization of endothelial cells may be mediated by pericytes. During angiogenesis, a
series of growth factors from pericytes such as TGF-β and VEGF stimulate the proliferation
and transition of endothelial cells [58,59]. The immature basement together with prolif-
erative endothelial cells may be stabilized by the recruitment of pericytes, building up a
foundation for more proliferative endothelium [8]. Conversely, endothelial cells could also
influence pericytes. Studies show that several cytokines from the endothelium may have
an important role in the movement of pericytes. For instance, loss of endothelial PDGF-BB
and WNT5a leads to decreased motility of pericytes and, thus, less pericyte movement
toward endothelial cells [60]. Disturbance of VEGF-A could prevent the recruitment and
migration of pericytes [53]. These alterations cause reduced pericyte recruitment and
inhibition of angiogenesis, indicating the importance of endothelial cells for pericytes
in vascular regeneration. The communication of pericytes and endothelial cells weighs
importantly in the microvasculature. Overall, endothelial cells are the primary target
for pericytes, and their reciprocal communications are essential for neovascularization,
maintaining vascular stabilization, and other important physiological processes in the
vascular network. Several crucial factors such as TGF-β, angiopoietins/Tie-2, PDGF, VEGF,
and sphingosine-1-phosphate receptor (S1P1) are involved in the interactions between
endothelial cells and pericytes (Figure 1) [58,59,61–63].
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Figure 1. Interactions between endothelial cells and pericytes via secretory actions. (1) TGF-β could
be produced by both pericytes and endothelial cells, mainly mediating differentiation of pericytes
and endothelial cells. It also activates proliferation of endothelial cells; (2) angiopoietin-1 (Ang-1)
from PCs and angiopoietin-2 (Ang-2) from ECs could combine Tie-2 in ECs (although a low level
of Tie2 expression has been detected in pericytes, only a mild physiological phenotype was found
after deletion of Tie-2 in PCs. The role of Ang-1/Tie-2 signal in pericytes still remains controversial);
(3) VEGF, mainly derived from mesenchymal cells (pericytes), is responsible for differentiation into
pericytes. Similar to TGF-β, it could also trigger proliferation of ECs. VEGF ligands include VEGF-A,
B, C, D, E and receptors mainly include VEGFR1 and VEGFR2. Normally, VEGFR1 binds to VEGF-A
and B, while VEGFR2 binds to VEGF-A, C, D, and E; (4) PDGF-B, derived from endothelial cells,
is found in angiogenic sprouts and remodeling arteries. It triggers migration and proliferation
of pericytes via combination with PDGFR-β; (5) sphingosine-1-phosphate (S1P) is expressed in
endothelial cells. Its signaling pathway strengthens the contacts between endothelial cells and N-
cadherin, which induces migration of pericytes toward endothelial cells and further stabilizes the
combination of two cells.

3.1.2. EC/Pericyte Interactions in the Heart

Pericytes make direct contacts with blood vessel endothelia, as they are embedded in
the basement membrane of the microvasculature [19,64]. There is an abundance of pericytes
in the myocardial capillary of the human heart. Pericyte coverage is associated with two
or three ECs in the human heart [20]. Loss of pericytes has been shown to contribute to
diabetic retinopathy and vascular leakage in diabetes [65–68]. Additionally, microvascular
dysfunction in other vascular beds has been attributed to pericyte dysfunction [69]. For
example, capillary pericytes have been shown to play a critical role in the regulation of
cerebral blood flow during ischemia/reperfusion injury and the no-flow phenomenon
in reperfusion [70,71]. Despite the fact that pericytes are the second most abundant non-
cardiomyocyte cells in the heart, after ECs [20,69,70,72–74], little is known about the role
of cardiac pericytes in the regulation of coronary blood flow and heart failure. Treatment
of mice with sunitinib malate was shown to disrupt EC/pericyte interactions and lead
to impaired coronary blood flow (CBF) and cardiac dysfunction [69]. Notch3 plays a
critical regulatory role in pericyte differentiation and recruitment by regulating pericyte
numbers and maintaining vascular integrity during development [75–78]. Notch3 knockout
(KO) mice challenged with angiotensin-II were shown to develop coronary microvascular
dysfunction and heart failure [79,80]. We demonstrated that a significant reduction in
pericytes in the mouse heart resulted from knockout of Notch3, leading to impairments of
pericyte/EC coverage and coronary flow reserve (CFR). Furthermore, a larger infarcted
size and higher mortality in mice were observed, suggesting that knockout of Notch3
sensitized the heart to ischemic injury [81]. Additionally, Notch3 deficiency resulted
in a reduced number of NG2+ (pericyte)/Sca1+/c-kit+ progenitor cells and impaired
microvascular stabilization, thus promoting microvascular leakage and inflammation
in ischemic hearts [81]. Our study strongly suggests that, in response to myocardial
ischemia, both the maturation and the integrity of the coronary microvasculature requires
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the presence of cardiac pericytes. Cardiac pericytes show a very promising therapeutic
potential with regard to coronary no-reflow and heart failure [81,82]. Furthermore, Notch3
may prove to be a novel therapeutic target for cardiac pericyte–myofibroblast transition
and coronary no-reflow after ischemia/reperfusion.

We also showed that severe impairment of pericyte/EC coverage is found in the
hearts of obese mice [83]. Following knockout of Sirtuin3 (SIRT3) in mice, reduced peri-
cyte/EC coverage was observed in the heart, along with a significant reduction of CFR [84].
Furthermore, our study indicated that pericyte loss in SIRT3 KO mice may be partially
attributed to impairment of the angiopoietins/Tie-2 and hypoxia-inducible factor (HIF)-
2α/Notch3 signaling pathways [85]. Although the exact mechanism of pericyte loss was
not investigated, studies have shown that loss of pericytes or detachment of pericytes from
the capillary may result in differentiation of pericytes into myofibroblasts. This may be a
contributing factor in the deposition of excessive fibrosis and myocardial stiffness, which
in turn may contribute to heart failure [86,87]. Therefore, we hypothesize that disruption
of SIRT3 signaling may cause disruption of endothelial cell/pericyte communications and
result in pericyte detachment, leading to pericyte–fibroblast transition and resulting in
hypertensive- or diabetes-associated myocardial and vascular stiffness [88].

3.2. Vascular Smooth Muscle Cells (VSMCs)

Vascular smooth muscle cells are another type of mural cells that surround vessels,
regulating vascular tone and mediating vascular remodeling. Pericytes usually encir-
cle microvessels such as capillaries and come into direct contact with endothelial cells.
Meanwhile, VSMCs are mainly located around the vascular wall of large blood vessels
such as arteries and veins and do not contact the endothelium directly [89]. It seems that
pericytes and VSMCs are responsible for the different functions in different vessels and
areas; however, very close connections are found between pericytes and VSMCs. Not only
do they share the same origin, but they also express a series of common markers such as
PDGFR-β, NG2, α-SMA, CD13, and Desmin [1]. More investigations are needed to clarify
the interactions and differences between pericytes and VSMCs.

3.2.1. Pericyte Coordination with VSMCs

Both pericytes and VSMCs, as vascular mural cells, embrace vessels and are involved
in the fabrication of vascular structure with the assistance of newly formed fibrin mi-
crofibers and endothelial cells, thus enhancing the stabilization and sustaining functions of
the vascular network [90]. It is reported that the trilayer vascular graft, including fibrob-
lasts, pericytes, VSMCs, and endothelial cells, supports vascular structure and acts as a
barrier for protection [91]. Additionally, endothelial cells are thought to be a common target
for these two cells in order to benefit vascular function. Proliferation of endothelial cells
induced by pericyte–endothelial cell interactions could improve the contractility of vessels
and reduce vascular leakage [89]. VSMC–endothelial cell interactions have been shown to
be responsible for the stabilization of nascent vessels through secreting the extracellular
matrix [92]. As either pericytes or VSMCs, mural cells play an imperative role in supporting
vascular structure and fabrication of new vessels.

3.2.2. SMC-Like Properties of Pericytes

Similar to SMCs, pericytes also express α-SMA, indicating SMC-like properties of per-
icytes in microvessels [70,93,94]. Previous studies revealed that the contractility of α-SMA+

pericytes contributes to restriction of blood flow in the brain, retina, and pancreas [6,95,96].
In line with these findings, cardiac pericytes were found to express actin and myosin
in the heart [6]. Increased levels of cellular Ca2+ lead to contraction of pericytes, induc-
tion of extension of actomyosin-containing processes, and reduction in capillary diameter.
The reduction in capillary diameter further induces restriction of blood flow in the mi-
crocirculation [93]. Contrarily, one study showed that, in addition to the compression
from cardiomyocytes and endothelial cells and the adherence of leukocytes, disruption
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of pericyte–capillary interactions by PDGF-B/PDGFR-β suppresses the contractility of
pericytes, leading to a significant increase in blood flow [94]. Furthermore, treatment with
adenosine for relaxation of pericytes reduces the contractility of pericytes and significantly
improves blood flow in the heart [94]. These studies provide strong evidence that pericytes
function as SMC-like cells, and that contractility of pericytes could influence blood flow
via restriction of capillaries.

3.2.3. Pericyte–VSMC Transition

As described above, the expression of α-SMA in pericytes could be explained by the
notion that pericytes shared progenitors with SMCs or their SMC-like features. Addi-
tionally, the expression of α-SMA in pericytes may be due to pericyte differentiation to
VSMCs [97–99]. Though endothelial cells are usually characterized as the main source
of VSMCs, pericytes, and other cells around vessels [9], pericytes derived from endothe-
lial intermediates or mesenchymal progenitors are also known for their role as potential
progenitor cells [99]. Pericytes are able to differentiate into a variety of cell types such as
osteoblasts, adipocytes, fibroblasts, chondrocytes, and VSMCs [97–99]. It has been reported
that epicardium-derived pericytes can differentiate into VSMCs in the heart [36]. Moreover,
epicardium-derived pericytes marked solely with PDGFR-β+/Notch3+/NG2+/PDGFR-
α− were observed and wrapped in the coronary artery remodeling (CA) zone, further
supporting the role of pericytes as an origin of coronary VSMCs [36,100,101]. Our recent
study also showed a co-staining of NG2-DsRed and α-SMA cells in the mouse coronary
artery, indicating the potential transition from pericytes to VSMCs [29]. In addition, TGF-β
secreted by pericytes may contribute to pericyte–VSMC transition [1]. These studies pro-
vide evidence that pericytes could differentiate into VSMCs and be the therapeutic target
for coronary remodeling.

3.3. Pericyte Reciprocal Interactions with Other Cells

In addition to endothelial cells and VSMCs, pericytes are also associated with or
interact with other adjacent cell types such as adipocytes, cardiomyocytes, and fibrotic
cells. The interactions between pericytes and other cells in the heart play an essential role
in cardiac physiology and pathology (Figure 2) [102].

3.3.1. Cardiomyocytes

Pericytes have an important function in cardiac remodeling and recovery from heart
ischemia [103]. Similar to the endothelium, pericytes also play a supporting role in car-
diomyocytes through the secretome. This was evidenced by the higher growth rate of
cardiomyocytes cocultured with pericytes as compared to the control group without peri-
cytes [104,105]. Several molecules secreted by pericytes were found to protect cardiomy-
ocytes. For instance, VEGF and miR-132 from pericytes could induce survival responses
via activation of the p-Akt pathway in cardiomyocytes [104]. Stromal cell-derived factor-1
(SDF-1), a molecule responsible for the mobilization and homing of stem cells, was found
to be expressed in pericytes, which is beneficial for cardiomyogenesis [106,107]. In addition
to having direct effects on cardiomyocytes, pericyte-mediated neovessel formation via
release of angiogenic factors in the injured area is also beneficial for cardiac recovery by
providing more nutrients and oxygen [108]. Furthermore, pericytes can induce compaction
of fibrin gel, which is helpful for contractile forces of the heart, thus reducing the burden of
cardiomyocytes [109,110].
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VEGF and miR-132, pericytes could induce survival responses in cardiomyocytes. Moreover, stromal cell-derived factor-1
(SDF-1) from pericytes activates the mobilization of stem cells, benefiting cardiomyogenesis. Furthermore, some pericytes,
sharing the same origin of epicardium with cardiomyocytes, were found to function as cardiomyocytes because of their
myogenic capacity. Lastly, some immature cardiomyocytes are differentiated from pericytes. (2) VSMCs. Pericytes could
produce TGF-β that is responsible for the differentiation and proliferation of VSMCs. In addition, some pericytes also
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pericytes can be defined as one main source of VSMCs. (3) Myofibroblasts. Pericyte-derived TGF-β and SPARC could
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Moreover, PC–myofibroblast differentiation contributes to fibrogenesis.

In addition to supporting cardiomyocytes, some pericytes have been reported to
function as cardiomyocytes, replacing cardiomyocytes and improving cardiac function.
A study revealed that the common origin of cardiac progenitors and pericytes is the
epicardium, suggesting the possibility that pericytes and cardiomyocytes share similar
features [111,112]. In line with this finding, cardiac mesenchymal stem cells were found to
express pericyte markers NG-2 and PDGFR-β, indicating that cardiomyogenic cells exhibit
some properties of cardiac pericytes [112]. Some heart pericytes (hPCs) were reported to
have myogenic capacity, as evidenced by expression of α-SMA and cardiac troponin-T
(cTn-T) and exhibition of contractile features similar to those of cardiomyocytes [113].
Furthermore, pericytes in the heart are capable of differentiating into cardiomyocyte-like
cells via miR-132 both in vivo and in vitro [89,104]. The existence of spontaneous calcium
oscillations after co-culture of pericytes and cardiomyocytes further supports the role of
pericytes as cardiomyocyte progenitor cells [112,113]. Keep in mind that cardiomyocytes
differentiated from pericytes still retain an immature status. Further activation is needed to
develop these newly formed cardiomyocytes into the mature phenotype [113].

Taken together, cardiac pericytes, through either cardiomyocyte-like features or transi-
tion to cardiomyocytes, are critical to sustain cardiac function during myocardial injury,
implicating the crucial role of cardiac pericytes in cardiovascular regenerative medicine.

3.3.2. Fibrotic Cells

Fibrosis is characterized by increased numbers of fibrotic cells and accumulation of
the ECM. Fibrosis, presented in the heart or other organs such as the liver and kidney,
belongs to a reparative process during tissue injury or adverse remodeling [114–116]. For
instance, myocardial injury such as myocardial infarction and ischemia would lead to
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inflammatory responses, initiating cardiac fibrosis for replacement of these injured or dead
cardiomyocytes [117]. Pericytes are one of the major players for the development of cardiac
fibrosis via the secretome involved in producing the ECM and interactions with fibrotic
cells.

Fibrotic cells include fibroblasts and myofibroblasts. The proliferation of fibroblasts
and their trans-differentiation to myofibroblasts result in pathological fibrosis in the heart,
and they are closely related to cardiac pericytes [118]. Several cytokines secreted by
pericytes could induce the proliferation and activation of fibrotic cells. In recent studies,
we found that NG2-DsRed+/TGF-β+ double-positive cells were abundant in the fibrotic
heart and kidney in response to angiotensin-II-induced hypertension, further validating
the role of pericytes in TGF-β production and fibrosis [29,37]. It was reported that pericyte-
derived TGF-β is an essential factor for fibrosis development via secretion of the ECM and
activation and proliferation of fibrotic cells [119].

In addition to direct interactions with fibrotic cells, pericytes could also promote
fibrosis by functioning as fibrotic cells. The ECM, consisting of collagen, elastic fiber, and
proteoglycans, is the major component of fibrosis [120]. It is well known that the ECM
is mostly produced by myofibroblasts. However, a recent study suggested that type 1
pericytes could secret collagen, thus playing a role similar to that of myofibroblasts [121].
Via co-staining of NG2-DsRed and collagen I, we found NG2-DsRed+/collagen I+ double-
positive cells in the fibrotic mouse heart and kidney, indicating the involvement of pericytes
in producing collagen I [29,37]. Other ECM components such as fibronectin, perlecan, and
nidogen-1 were also found to be expressed by pericytes [122]. Secreted protein acidic and
cysteine-rich (SPARC), a protein responsible for ECM modulation, was also found to be
secreted by pericytes in a recent study [52]. Furthermore, α-SMA, PDGFR-β, and endosialin
are common markers for both pericytes and fibrotic cells, indicating the fibrotic properties
of pericytes [1]. The similarities between pericytes and fibrotic cells make pericytes a critical
contributor to the development of fibrosis.

Furthermore, previous studies showed that pericytes are progenitor cells that are able
to differentiate into fibroblasts and myofibroblasts, which are activated by growth factors
from pericytes such as TGF-β and PDGFR-β [116,120]. Using NG2-DsRed mice with a
specific marker for pericytes, we observed DsRed+/FSP-1+ and DsRed+/α-SMA+ double-
positive cells in heart tissues, indicating differentiation of cardiac pericytes to fibroblasts
and myofibroblasts [29].

Interactions with fibrotic cells, replacement of fibrotic cells, and differentiation into
fibrotic cells make pericytes a key player in the physiological and pathological processes
of fibrosis. However, the roles of pericytes in fibrosis under some specific conditions are
controversial. Previous studies demonstrated that pericytes reduce fibrosis via inhibit-
ing proliferation of fibroblasts and differentiation into myofibroblasts in the infarcted
heart [123,124]. More works need to be done to further clarify the roles of pericytes in
cardiac fibrosis.

3.3.3. Telocytes

Telocytes, distributed in almost all organs, are described as a special type of inter-
stitial cells recognized by telopodes (long, thin, and moniliform) [125,126]. With their
long cytoplasmic processes, telocytes could form three-dimentional networks and get
involved in heterocellular contacts with adjacent cells including cardiomyocytes, endothe-
lia, and pericytes [127]. A previous study showed telocyte–capillary junctions through a
telescope [128]. Together with endothelia and pericytes, cardiac telocytes play an essential
role in integrating all the information in the vascular system.

Interestingly, telocytes are tightly associated with pericytes. A series of markers
such as PDGFR-α, PDGFR-β, and vimentin are expressed in both telocytes and pericytes.
Furthermore, it is relatively confusing when distinguishing pericytes from telocytes in
two-dimensional cuts because of their similar look [126]. In addition, it was proposed that
telocytes could originate from the process of endocardial-to-pericyte transformation [129].
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These data strongly indicate a relationship; however, more exploration is needed for further
validation.

4. Pericytes and Blood Flow

As mural cells around vessels, pericytes display a series of features such as contrac-
tility, differentiation ability, and communication with endothelial cells, which are tightly
associated with blood flow in different ways.

4.1. Pericytes and VSMCs

Pericytes and VSMCs are both located around vessels and are unique perivascular mural
cells in these areas. Moreover, pericytes have the same origin as VSMCs and express α-SMA,
desmin, and myosin, suggesting VSMC-like properties of pericytes. These SMC-like prop-
erties of pericytes could function in mediating contractility and dilation of microcirculation,
suggesting the pericyte as an important regulator of blood flow [6,74,95,130,131]. It has been
reported that loss of or reduction in pericyte coverage in capillaries in islets leads to a disrup-
tion of blood flow, resulting in impairment of glucose tolerance and islet function in obesity
and diabetes [96]. Additionally, loss of pericytes following treatment with sunitinib causes a
reduction in coronary blood flow and impairment of coronary flow reserve (CFR) in mice [15].
During myocardial infarction, loss of pericytes results in no-reflow after reperfusion, thus
exacerbating ischemic/reperfusion injuries and increasing incidence of death [74]. Increased
oxidative stress and shortage of ATP during ischemia/reperfusion could further lead to the
constriction of pericytes. These constricted pericytes narrow the capillaries and reduce blood
flow, further worsening microvascular dysfunction and promoting heart failure [93,95,132].
Conversely, treatment with adenosine ameliorates coronary blood flow via relaxing peri-
cytes [133]. These studies strongly suggest pericytes as a potential therapeutic target for
improvement of microcirculation and blood flow.

As previously described, some pericytes may act as progenitor cells and possess the
capacity to differentiate into other cell types such as VSMCs, cardiomyocytes, fibroblasts,
myofibroblasts, and adipocytes [134]. Korn et al. observed the transition of pericytes
to VSMCs in cerebral vessels during embryonic development [135]. In the heart, there
were only a few studies focusing on the effects of pericytes on coronary blood flow. It
was reported that the transition from cardiac pericytes into fibroblasts and myofibroblasts
increases the pressure outside capillaries and results in microvascular rarefaction and
impairments of CFR [29]. Using specific animal models to trace pericytes, epicardium-
derived pericytes were proven to be progenitor cells of VSMCs in the coronary artery, thus
affecting vascular tone [36].

4.2. Atherosclerosis

Coronary arterial disease (CAD), a leading cause of morbidity and death worldwide,
could be a result of atherosclerosis [136]. Sub-endothelial intima is the location of the dis-
turbance of blood flow, as well as the site of development of atherosclerosis [137]. The
pathological process is defined as an interaction between sub-endothelial lipid overload and
endothelial dysfunction, which leads to inflammatory responses in the vessel walls [137,138].
As discussed before, pericytes play a crucial role in angiogenesis, fibrosis, calcification, and
inflammation in vessels. Furthermore, increases in pericytes and pericyte-like cells are always
found in sites of atherosclerosis [139,140]. This evidence implies a tight correlation with the
pathological process of atherosclerosis [131].

It is well documented that low-density lipoprotein (LDL) accumulation is one of the
main reasons for the formation of atherosclerosis. In addition, inflammatory responses
could be the starting point of LDL accumulation-induced atherosclerosis. For instance,
expression of CD68, a scavenger receptor, could result in lipid accumulation, inducing
thickening of vessel walls and the development of atherosclerosis [141]. As mentioned
before, pericytes participate in inflammatory responses in vascular walls in many ways,
such as differentiation to macrophages and secretion of proinflammatory cytokines [131].
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Adverse conditions such as high glucose and reactive oxygen species could induce se-
cretion of BMP-4 by pericytes in the vessel wall [142]. Likewise, under stimulation of
proinflammatory cytokines (IL-17), pericytes could trigger neutrophil-mediated immunity
via production of TNF-α, IL-6, 8 and other proinflammatory factors, playing a central part
in the development of atherosclerosis [143]. Pericyte-induced inflammatory responses
further exacerbate lipid accumulation in atherosclerotic vascular walls.

In large vessels, a proteoglycan-rich layer is located between the endothelium and
muscular elastic layer, and it contains a series of cells such as pericytes [131]. Pericyte
differentiation to osteogenic cells might contribute to the formation of maladaptive ectopic
calcification [138,139,144]. The process of calcification accompanied by matrix remodeling
also attributed to pericytes. Osteoprotegerin (OPG) could be secreted by pericytes and is
associated with development of calcification [145]. All of these alterations are essential
for the structure of atherosclerotic lesions. Furthermore, pericytes have a critical role in
neovascularization in inflamed vascular walls, which promotes the formation of atheroscle-
rosis [146]. Overall, through inflammatory responses, differentiation, and angiogenesis,
pericytes contribute essentially to the development of atherosclerosis.

More specifically, when these pathological processes of atherosclerosis occur in the
cardiac valve, corresponding impairments consequently emerge [147]. Among others, calci-
fication of cardiac valve could be the most common damage caused by atherosclerosis [148].
Cardiac valves include the atrioventricular valve, aortic valve, and pulmonary valve, and
they are responsible for regulating blood flow inside cardiac chambers. The calcification
of these cardiac valves results in disturbance of blood flow and a heavier burden on the
heart, which not only further develops it pathologically but also ultimately leads to cardiac
dysfunction and heart failure [146,147]. Pericytes in cardiac valves retain the ability to
differentiate into myofibroblasts and osteoblasts, causing fibrosis and calcification [142,145].
In contrast, pericytes also contribute to neovascularization in cardiac valves to increase
delivery of oxygen and nutrients to these areas, which ameliorates the development of
fibrosis and calcification in cardiac valves [61,149]. Thus, pericytes could have functions in
both angiogenesis and calcification in stenosis of cardiac valves.

5. The Rapeutic Role of Pericytes in Infarcted Heart

Accumulating evidence indicates that loss of cardiac pericytes could lead to adverse ef-
fects via interference with myocardial blood flow. The disturbance of coronary/myocardial
blood flow, due to pericyte-associated abnormalities such as stenosis of cardiac valves
and no-reflow in capillaries, causes a reduction in blood supply to cardiomyocytes and
exacerbates myocardial ischemia [94,149]. Pericytes are considered as protectors of the
cardiac repair after myocardial infarction [72,113]. It was reported that transplanting hu-
man pericytes into an infarcted heart improved contractility of the injured heart [113].
Pericytes improve cardiac function and enhance cardiac repair after myocardial ischemia
via attenuation of cardiac remodeling, alleviation of inflammatory responses, and induction
of angiogenesis [150]. The potential mechanisms and therapeutic roles of PCs in ischemic
heart have been summarized as followings (Figure 3):
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to its myogenic capacity; b. pericytes could induce increases of cardiac stem cells and survival responses of cardiomyocytes;
c. pericytes could increase cardiomyocyte differentiation. (2) Inhibition of fibrosis: a. pericytes inhibit the secretion of
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HMOX-1 to attenuate inflammatory responses; b. by interfering with inflammatory activities of ECs, inflammation can be
relieved. (4) Angiogenesis: through secreting pro-angiogenetic factors such as VEGF, TGF-β, Ang-1 and S1P, more vessels
are formed to benefit the recovery.

5.1. Cardiomyogenesis

The cardiomyocyte is the major cell type in the heart. During myocardial infarction, the
death of cardiomyocytes results in secondary responses including inflammation, fibrosis,
and vascular leakage, consequently contributing to cardiac dysfunction [150]. Thus, our
ultimate goal is to boost reparative cardiomyogenesis during cardiac repair [151]. Beltrami
et al. revealed a cardiomyogenic phenotype of human heart pericytes (hHPs), as evidenced
by the expression of cardiomyogenic transcription factors Nkx2.5 and GATA4 in vitro [112].
Interestingly, low levels of α-sarcomeric actinin (α-actinin) and cardiac myosin heavy chain,
as well as no expression of cardiac troponin-T (cTn-T), are found in hHPs, indicating that
hHPs may function as immature cardiomyocytes. Intriguingly, when coculturing hHPs
with cardiomyocytes, mature cardiomyocyte markers such as cTn-T and atrial natriuretic
peptide (ANP) are expressed in hHPs [113]. Consistent with this study, the potential
role of pericytes as cardiomyocytes was also proven by Elisa et al. showing myogenic
ability in type 2 pericytes [89]. Furthermore, rather than acting like cardiomyocytes, it
was found that numbers of cardiac stem cells are significantly increased in the infarcted
zone after pericyte transplantation, suggesting an essential role of pericytes in the source of
cardiomyocytes [105]. On one hand, pericytes could improve cardiac repair via promoting
the recruitment of cardiomyocytes. Through the Akt signaling pathway, pericytes activate
the proliferation and survival signaling pathways of cardiomyocytes [104]. Additionally,
SDF-1 secreted from pericytes may contribute to homing of cardiac stem cells [106]. On the
other hand, pericytes can transition into cardiomyocytes directly to contribute to heart
regeneration. TGF-β and miR-132, as molecules secreted by pericytes, are critical in this
differentiation [104,117]. The differentiation and secretome of pericytes contribute to the
reconstitution of major cell types and recovery of cardiac dysfunction after myocardial
infarction. This evidence suggests pericytes as a potential therapeutic target for myocardial
repair.
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5.2. Cardiac Fibrosis

As previously described, a pericyte is defined as a contributor to fibrosis because of its
ability to differentiate into fibrotic cells and secrete profibrotic cytokines. The contributions
of pericytes to cardiac fibrosis in the infarcted heart are different than that during treatment
with pericytes to alleviate cardiac dysfunction during myocardial infarction [123,124]. More
specifically, matrix metalloproteinases (MMPs), as central mediators of fibrosis control-
ling extracellular matrix and proliferation of fibroblasts, were found to be reduced after
the injection of pericytes, partly explaining the antifibrotic role of pericytes in infarcted
heart [152,153]. Similarly, through MMP and endogenous inhibitors (TIMPs), transplanta-
tion of other mesenchymal stem cells also reduces cardiac fibrosis, further supporting the
antifibrotic role of progenitor cells in the heart after myocardial infarction [153]. Addition-
ally, inflammation is known to be a crucial factor for cardiac fibrosis and is regulated by
pericytes [154–156]. Through interference with inflammatory responses, pericytes amelio-
rate cardiac fibrosis and improve cardiac function. Overall, the alleviation of fibrosis could
reduce coronary stiffness and improve cardiac function, which is beneficial for regeneration
after myocardial infarction [104,123].

5.3. Inflammatory Response

Necrosis is the main form of cell death in the infarcted heart, releasing intracellular
contents and activating inflammatory responses [117]. The initiation of inflammatory
response allows cleaning of dead cells and matrix debris, as well as the formation of
scar tissue, benefiting the recovery of the infarcted heart [117]. Meanwhile, excessive
infarction-induced inflammation after ischemia might lead to adverse remodeling, which
further causes cardiac dysfunction. Mesenchymal stem cells with immunosuppressive
function are evidenced by the suppression of T-lymphocyte and CD68+ phagocytic cells
in the injured heart [45,105]. In line with these findings, injection of pericytes into the
infarcted heart resulted in a reduction of monocyte/macrophage infiltration with reduced
CD68 expression [123]. Emerging evidence suggests that the alleviation of inflammatory
responses is attributed to paracrine cytokines from pericytes. Leukemia inhibitory fac-
tor (LIF), cyclooxygenase-2 (COX-2), and heme oxygenase-1 (HMOX-1) are among the
anti-inflammatory factors produced by pericytes [45,46]. The secretion of these cytokines
by pericytes contributes to these immunosuppressive effects in the infarcted heart. Fur-
thermore, proinflammatory factors such as interleukin-1α (IL-1α), tumor necrosis factor-α
(TNF-α), and interferon-γ (IFNγ) are found in pericytes at low levels, which is consistent
with their inhibitory role in inflammation [46,157]. Furthermore, endothelial cells could
synthesize and express chemokines such as vascular cell adhesion molecule-1 (VCAM-1)
or intercellular cell adhesion molecule-1 (ICAM-1) during heart ischemia. The commu-
nications between endothelial cells and these chemokines accentuate infarction-induced
inflammation [117]. However, pericytes, as mural cells around vessels, protect the en-
dothelium via interfering with adhesion molecules by forming a protective coat to reduce
inflammatory activities of endothelial cells [59,158]. Overall, the inhibitory effects of peri-
cytes on inflammatory responses blunt excessive injuries and cardiac remodeling such as
fibrosis and hypertrophy in the infarcted heart.

5.4. Angiogenesis

Angiogenesis takes center stage in heart regeneration and cardiac repair. It was
demonstrated by Payne et al. that blockage of proangiogenetic factors such as VEGF
significantly reduces capillary density and impairs left-ventricle (LV) contractility [159].
The importance of angiogenesis in cardiac repair is due to all of the mechanisms involved
in cardiac repair, including cardiomyogenesis, suppression of inflammatory responses, and
cardiac fibrosis, which are associated with the formation of new blood vessels.

A previous study revealed that transplantation of pericytes induces the growth of cap-
illaries, as evidenced by the increased expression of capillary marker isolectin [104]. Chen
et al. found that injection of pericytes could increase numbers of pericytes not only around
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the infarct zone, but also inside the injured area [123]. Specifically, treatment with pericytes
promotes angiogenesis in the infarcted heart mainly via the secretome. As discussed above,
the pericyte is characterized as a producer of growth factors and cytokines associated
with vascular remodeling during hypoxia [160]. Growth factors such as VEGF-A, PDGF-β,
and TGF-β1 were found to be increased after transplantation of pericytes into the injured
heart. These factors are tightly correlated to proliferation, differentiation, contractility, and
stabilization of endothelial cells, suggesting the involvement of pericytes in angiogenesis
via paracrine signaling [19,161–164]. Overall, the growth of new blood vessels brings
nutrients and oxygen to the ischemic area, inhibits apoptosis and inflammation, and results
in the eventual regeneration of the infarcted heart.

6. Conclusions

Currently, the role of pericytes in myocardial repair and coronary remodeling has
not been defined, despite the fact that pericytes are the second most common cell type
in the heart, after endothelial cells (ECs). The critical roles of pericytes in the regulation
of normal blood flow and ischemia/reperfusion-induced no-reflow were identified in
recent years [70,71,94]. Cardiac pericytes, as mural cells surrounding vessels, are tightly
associated with adjacent cells such as endothelial cells, VSMCs, cardiomyocytes, and fibrotic
cells. Pericytes and their adjacent cells are crucially involved in vascular remodeling and
maintaining vascular functions, regulating blood flow, and affecting physiological and
pathological processes in regeneration of the infarcted heart. Our studies, and those of
other investigators, have demonstrated that cardiac pericytes can detach from the capillary
and migrate into the perivascular interstitium to differentiate into myofibroblasts. This
process leads to increased vascular permeability and inflammation, and it ultimately
results in coronary fibrosis, perivascular fibrosis, and capillary rarefaction. This suggests
that disruption of EC/PC communications occurs, thus causing pericyte detachment
and promoting differentiation into myofibroblasts. Therefore, cardiac pericytes may be a
novel therapeutic target for fibrosis and coronary no-reflow after myocardial infarction or
ischemia/reperfusion, as well as hypertensive heart failure.
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Abbreviations

Ang-1 angiopoietins-1
α-SMA smooth muscle α-actin
BBB blood–brain barrier
BMP bone morphogenetic protein
CAD coronary arterial disease
CBF coronary blood flow
CFR coronary flow reserve
COX-2 cyclooxygenase-2
cTn-T cardiac troponin-T
DLK-1 delta-like homolog 1
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EC endothelial cells
ECM extracellular matrix
EMT mesenchymal transition
EndMT endothelial–mesenchymal transition
hHP human heart pericyte
HMOX-1 heme oxygenase-1
hPSC human pluripotent stem cell
ICAM-1 intercellular cell adhesion molecule-1
IFNγ interferon-γ
IL interleukin
IP-10 interferon gamma-induced protein 10
MMP matrix metalloproteinases
OPG osteoprotegerin
PC pericyte
PDGFR-β platelet-derived growth factor receptor
RGS 5 regulator of G protein signaling 5
SIRT3 Sirtuin3
S1P sphingosine-1-phosphate
SPARC secreted protein acidic and cysteine-rich
TGF-β transforming growth factor-β
TIMPs endogenous inhibitors
TNF-α tumor necrosis factor alpha
VEGF vascular endothelial growth factor
VSMC vascular smooth muscle cell
VCAM-1 vascular cell adhesion molecule-1
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