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The promyelocytic leukemia (PML) protein has been implicated in regulation of multiple key
cellular functions, from transcription to calcium homeostasis. PML pleiotropic role is in part
related to its ability to localize to both the nucleus and cytoplasm. In the nucleus, PML is
known to regulate gene transcription, a role linked to its ability to associate with transcrip-
tion factors as well as chromatin-remodelers. A new twist came from the discovery that
the PML-interacting protein death-associated protein 6 (DAXX) acts as chaperone for the
histone H3.3 variant. H3.3 is found enriched at active genes, centromeric heterochromatin,
and telomeres, and has been proposed to act as important carrier of epigenetic informa-
tion. Our recent work has implicated DAXX in regulation of H3.3 loading and transcription in
the central nervous system (CNS). Remarkably, driver mutations in H3.3 and/or its loading
machinery have been identified in brain cancer, thus suggesting a role for altered H3.3
function/deposition in CNS tumorigenesis. Aberrant H3.3 deposition may also play a role
in leukemia pathogenesis, given DAXX role in PML-RARα-driven transformation and the
identification of a DAXX missense mutation in acute myeloid leukemia. This review aims
to critically discuss the existing literature and propose new avenues for investigation.
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THE PROMYELOCYTIC LEUKEMIA PROTEIN
The Promyelocytic Leukemia (PML) gene was originally iden-
tified at the breakpoint of the t(15;17) translocation of Acute
Promyelocytic Leukemia (APL), which generates the PML/retinoic
acid receptor (RAR)α oncogene, an inhibitor of PML and RARα

functions (Salomoni et al., 2008) [please refer to accompanying
articles1 and reviews in the field, e.g. (Grimwade and Solomon,
1997; Brown et al., 2009; de The and Chen, 2010), for detailed
information on APL pathogenesis]. PML can localize to the cyto-
plasm [for more extensive discussion on the role of cytoplasmic
PML, see (Lin et al., 2004; Giorgi et al., 2010; Pinton et al.,
2011) as well as this issue of Frontiers] and the nucleus, where
it forms the PML nuclear body (PML-NB), of which it is the
essential component (Salomoni and Khelifi, 2006; Salomoni et al.,
2008). The PML-NB is a subnuclear structure associated with
storage and post-translational modifications (PTMs) of several
nuclear factors [(Salomoni et al., 2008) for more extensive discus-
sion on the role and regulation of PML-NBs, see comprehensive
reviews in the field (Zhong et al., 2000b; Bernardi and Pandolfi,
2007; Lallemand-Breitenbach and de The, 2012), including this
issue of Frontiers]. The PML-NB is disrupted in APL cells by
PML/RARα (Salomoni et al., 2008). Both PML and PML/RARα

(via the PML moiety) can be targeted pharmacologically using
arsenic trioxide (ATO), which, in part through direct binding,
promotes their ubiquitin-dependent degradation (Jeanne et al.,
2010; Zhang et al., 2010). ATO is used in APL therapy because of

1http://www.frontiersin.org/Molecular_and_Cellular_Oncology/researchtopics/
The_PML_protein_a_tumor_suppre/713

its ability to target the leukemic stem cell pool (de The and Chen,
2010).

Although the PML gene is rarely mutated in cancer, its protein
expression is lost in a number of human tumors, suggesting that
it acts as tumor suppressor. Indeed, PML limits tumorigenesis in
APL, lung, and prostate cancer models (Salomoni and Pandolfi,
2002). However, recent studies have highlighted a potential role of
PML in established tumors. In this respect, PML is required for
maintenance of the leukemia-initiating stem cell pool in chronic
myeloid leukemia (Ito et al., 2008). Notably, ATO phenocopies the
effect of PML loss in leukemic stem cells and requires PML for this
effect (Ito et al., 2008). Another growth suppressor, p21 controls
leukemic stem cell maintenance via regulation of genomic sta-
bility (Viale et al., 2009). Furthermore, an additional study from
the Pandolfi’s group showed that PML plays an important pro-
survival role in cancer via regulation of tumor cell metabolism
[(Carracedo et al., 2012); for more extensive discussion on the role
of PML in tumorigenesis, see comprehensive reviews in the field
(Salomoni and Pandolfi, 2002), including this issue of Frontiers].

What is PML nuclear function(s)? Several studies have impli-
cated PML in regulation of transcription (Zhong et al., 2000b;
Bernardi and Pandolfi, 2007; Salomoni et al., 2008). In this respect,
PML-NBs localize in the proximity of active transcription sites in a
cell cycle-dependent manner (Kiesslich et al., 2002). Notably, PML
can directly regulate the function of several transcription factors
(Bernardi and Pandolfi, 2007). For instance, PML interaction with
the p53 tumor suppressor promotes p53-dependent transcription
in a PML-NB-dependent as well as – independent manner (Bischof
et al., 2002; Bernardi et al., 2004; Bernardi and Pandolfi, 2007;
Salomoni et al., 2008). Furthermore, work from our group and
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others have shown that the tumor suppressor and transcriptional
repressor retinoblastoma (pRb) also localizes to PML-NBs (Alcalay
et al., 1998), resulting in alterations of its phosphorylation status
(Ferbeyre et al., 2000; Regad et al., 2009). Interestingly, not only
transcription factors are found in PML-NBs, as a number of chro-
matin regulators localize to these structures, such as the histone
acetyltransferase CREB-binding protein (CBP)/p300, which can
acetylate histones as well as transcription factors. In this respect,
it has been proposed that in senescent cells PML promotes p53
acetylation via dynamic localization of CBP to PML-NBs (Pear-
son et al., 2000). It is presently unknown whether PML could
affect CBP-mediated acetylation of histone tails, in addition to
transcription factors. It is important to note that PML-NBs con-
tain chromatin-associated factors with repressive activity, such as
histone deacetylase 1 (HDAC1), the corepressors N-Cor, Sin3A
(Khan et al., 2001), and the heterochromatin-associated protein
1 (HP1) (Seeler et al., 1998). Together, these findings suggest that
PML could serve as scaffold for multiple chromatin-remodeling
complexes, with potential implications for both transcriptional
activation and repression. Interestingly, there is evidence that
PML-NBs might be involved in regulation of chromatin archi-
tecture, as some genetic loci are non-randomly associated with the
periphery of PML-NBs (Torok et al., 2009). Furthermore, PML
has been implicated in special AT-rich sequence-binding protein 1
(SATB1)-mediated regulation of chromatin architecture and gene
expression (Kumar et al., 2007). Although these studies suggest an
involvement of PML in chromatin regulation via interaction with
histone-modifying enzymes and other chromatin regulators, our
understanding of PML and PML-NB role in this context remains
limited.

New exciting studies now link PML to the histone loading
machinery, with implications for chromatin remodeling and can-
cer pathogenesis. This will be the main focus of the present review
article.

THE PML-INTERACTING PROTEIN DAXX IS A CHAPERONE
FOR THE HISTONE VARIANT H3.3
The death-associated protein 6 (DAXX) interacts with PML and is
found in PML-NBs as well as heterochromatin (Khelifi et al., 2005;
Salomoni and Khelifi, 2006). DAXX recruitment to PML-NBs
occurs via binding to SUMOylated PML with DAXX SUMO-
interacting motif (SIM) (Zhong et al., 2000a; Lin et al., 2006).
DAXX SIM is also required for its ability to localize to hete-
rochromatin [(Kuo et al., 2005) and our unpublished data]. DAXX
loss results in embryonic lethality (Michaelson et al., 1999; Gar-
rick et al., 2006), indicating an essential role in embryogenesis.
DAXX was originally identified as a CD95-interacting protein in
the cytoplasm, affecting CD95-dependent activation of c-Jun-N-
terminal kinase (JNK) (Yang et al., 1997). The link with JNK
was reported by subsequent studies, which implicated an apop-
tosis signal-regulating kinase 1 (ASK1)-dependent mechanism for
DAXX-mediated JNK activation (Ko et al., 2001; Perlman et al.,
2001; Khelifi et al., 2005). However, it is presently unclear whether
endogenous DAXX localizes to the cytoplasm in physiological
conditions [for discussion see (Lindsay et al., 2009)].

What would be DAXX nuclear function? DAXX has been shown
to regulate transcription, either indirectly or directly. On one hand,
DAXX destabilizes p53 via inhibition of mouse double minute 2

homolog (MDM2) ubiquitylation, thus resulting in repression of
p53 target gene expression (Tang et al., 2006). On the other hand,
DAXX regulates transcription of mammalian and viral genes via
its ability to interact with a number of transcription factors [for
more details see (Preston and Nicholl, 2006; Saffert and Kalejta,
2006; Salomoni and Khelifi, 2006; Lindsay et al., 2008; Lukashchuk
and Everett, 2010; Tsai et al., 2011; Rivera-Molina et al., 2012;
Glass and Everett, 2013; Schreiner et al., 2013; Shalginskikh et al.,
2013)] and epigenetic regulators. In particular, DAXX interacts
with HDAC-II (Hollenbach et al., 2002), acetyltransferases (CBP)
(Kuo et al., 2005), and DNA methyltransferase (Dnmt1) (Puto and
Reed, 2008; Zhang et al., 2013), suggesting an important role in
chromatin remodeling.

Recent exciting studies have implicated DAXX in direct chro-
matin regulation via its ability to act as chaperone for a histone
3 (H3) variant called H3.3. Best understood for PTMs of his-
tones, chromatin modification also occurs via incorporation of
histone variants. Unlike canonical H3, H3.3 can be loaded on
DNA in a replication-independent manner. H3.3 is believed to
be an important carrier of epigenetic information (Szenker et al.,
2011). H3.3 is encoded by two genes, H3F3A and H3F3B. H3F3A
inactivation via gene trap leads to perinatal lethality (Couldrey
et al., 1999), whereas H3F3B knockout embryos display partial
embryonic lethality and infertility in surviving homozygous ani-
mals (Bush et al., 2013). DAXX acts as a H3.3 chaperone as part
of a nuclear complex containing the α-thalassemia and mental
retardation X-linked (ATRX) DNA helicase (Drané et al., 2010;
Lewis et al., 2010; Dawson and Kouzarides, 2012). ATRX, like
DAXX, can associate with PML-NBs (Bérubé et al., 2007) and
has been proposed to contribute to DAXX/H3.3 targeting to chro-
matin, potentially via its ability to bind histone repressive marks in
heterochromatin and G-rich DNA repeats (Elsaesser et al., 2010;
Law et al., 2010; Iwase et al., 2011). DAXX and ATRX mediate
H3.3 loading onto telomeres and pericentric heterochromatin,
with implications for transcription of telomeric and centromeric
repeats (Drané et al., 2010; Goldberg et al., 2010; Lewis et al., 2010).
Furthermore, H3.3 loading at telomeres has been suggested to
play an important role in maintaining chromatin structure (Wong
et al., 2009, 2010). Loading of H3.3 may affect transcription also
at euchromatin, as it is enriched at transcriptionally active genes
and has been proposed to regulate epigenetic memory of tran-
scriptional competence (Henikoff, 2008; Ng and Gurdon, 2008;
Jullien et al., 2012). Loading of H3.3 at transcription start site
(TSS) and body of active gene is dependent on the chaperone
HIRA (Goldberg et al., 2010). However, H3.3 is also enriched at
regulatory regions not immediately adjacent to TSS (Mito et al.,
2007; Jin et al., 2009; Goldberg et al., 2010). Deposition at those
sites is in part HIRA-independent (Goldberg et al., 2010), but the
histone chaperone involved was not known. In this respect, our
recent work implicated DAXX in the regulation of H3.3 deposi-
tion at promoters and enhancers of immediate early genes (IEGs)
in neurons (Michod et al., 2012), thus demonstrating that DAXX is
one of the previously unidentified H3.3 chaperones at regulatory
regions (Michod et al., 2012). Work from Genevieve Almouzni,
John Gurdon, and Peter Adams groups (Ray-Gallet et al., 2011;
Jullien et al., 2012; Pchelintsev et al., 2013) showed that HIRA
could also mediate H3.3 loading at regulatory regions. Notably,
DAXX-dependent H3.3 deposition correlates with its ability to
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modulate transcription, thus suggesting a link between H3.3
loading and transcription (Michod et al., 2012). Among the IEGs
analyzed, only a subset of them displayed dependence on DAXX
for H3.3 loading and transcriptional activation, thus suggesting
that other H3.3 chaperones are involved in IEG regulation in neu-
rons, such HIRA or DEK (Sawatsubashi et al., 2010; Jullien et al.,
2012). Finally, both DAXX-dependent loading and transcription
are controlled by a calcium-dependent phosphorylation switch
affecting serine 669 (S669) (Michod et al., 2012), which is a target
of homeodomain-interacting protein kinases (HIPKs) (Hofmann
et al., 2003) (Figure 1). In particular, upon neuronal activation
DAXX S669 is dephosphorylated by the calcium-dependent phos-
phatase calcineurin (CaN), leading to increased loading activity
and transcription (Michod et al., 2012). Although H3.3 is prefer-
entially found associated with hypophosphorylated DAXX, S669
dephosphorylation does not affect DAXX affinity for H3.3, sug-
gesting that when in complex with H3.3 DAXX is either more
effectively dephosphorylated or its HIPK-dependent phosphory-
lation is inhibited. Since CaN is believed to be mainly cytosolic,
it is most likely that DAXX dephosphorylation occurs outside the
nucleus, whereas one could speculate that its HIPK-dependent
phosphorylation could be nuclear. It is important to note that
DAXX S669 phosphorylation status does not affect its chromatin
association. One could speculate that HIPKs could associate with
DAXX on chromatin and inhibit its chaperone activity. Interest-
ingly, the HIRA chaperone complex contains the CaN-binding
protein CABIN1, a CaN regulator (Rai et al., 2011), suggesting
that calcium-dependent signaling could regulate multiple H3.3
chaperone complexes.

Together, these studies suggest that DAXX-mediated loading
of H3.3 at regulatory regions may affect transcription. One
could argue that DAXX ability to regulate transcription could be
H3.3-independent, for instance via its interaction with HDAC-
II (Hollenbach et al., 2002), CBP (Kuo et al., 2005), or Dnmt1
(Puto and Reed, 2008; Zhang et al., 2013). However, DAXX
loss fails to promote any significant changes in histone acety-
lation or DNA methylation at the BDNF Exon IV promoter
(Michod et al., 2012). Another possibility is that DAXX reg-
ulates key transcription factors involved in activity-dependent
IEG induction, in particular CREB and MEF2 (Hong et al.,
2005; Flavell et al., 2008). For instance, DAXX has been recently
reported to repress CREB transcriptional activity via direct inter-
action via its C-terminus (Huang et al., 2012) and HIPK2
is known to phosphorylate CREB (Sakamoto et al., 2010).
However, based on these findings DAXX loss would result in
increased CREB-mediated transcription, opposite to what we
have observed in neurons (Michod et al., 2012). To incon-
trovertibly assess the role of DAXX-mediated H3.3 loading in
transcription, one should test the ability of recently described
DAXX mutants impaired in histone binding (Eustermann et al.,
2011; Elsasser et al., 2012) to rescue transcriptional defects
observed in DAXX-deficient cells (Michod et al., 2012). It is
important to note that histone chaperones are often compo-
nents of chromatin remodeling complexes, such as the nucle-
osome remodeling and deacetylation (NuRD) and Polycomb
complexes (Lai and Wade, 2011; Margueron and Reinberg,
2011). Thus, DAXX could load H3.3 while being part of a

FIGURE 1 | DAXX chaperone activity is regulated by
calcium-dependent signaling in neural cells. Neuronal activation leads to
calcium (Ca2+) entry and activation of the Ca2+-dependent phosphatase,
calcineurin (CaN). In turn, CaN dephosphorylates DAXX at serine 669,
leading to increased H3.3 loading at selected immediate early genes (IEGs).
DAXX loss not only affects H3.3 loading, but also leads to impaired
induction of IEGs, thus suggesting that H3.3 loading may modulate IEG
transcriptional induction.

larger chromatin-remodeling complex containing histone- and/or
DNA-modifying enzymes, which could cooperate with histone
loading in promoting chromatin modification and transcriptional
changes.

What is the evidence for a role of H3.3 loading in transcriptional
regulation? Our work and other studies discussed above suggest a
potential role for H3.3 in transcription and/or regulation of the
transcriptional state (Ng and Gurdon, 2008; Jullien et al., 2012;
Michod et al., 2012). Furthermore, H3.3 downregulation in B cells
results in transcriptional repression at the Igh locus (Aida et al.,
2013). In contrast, loss of H3f3b does not dramatically alter the
transcriptome of mouse embryo fibroblasts (Bush et al., 2013) and
HIRA deficiency in ES cells has limited impact on transcription
(Goldberg et al., 2010). It is plausible that the impact of H3.3
loading on transcription could depend on the cell type, develop-
mental stage, and environmental cues (e.g., neuronal activation, B
cell differentiation stimuli, etc). In this respect, the concept of H3.3
deposition contributing to transcriptional memory at selected loci
during development is particularly intriguing. Overall, there is
accumulating evidence that H3.3 might regulate transcription. A
key question is how. Most active genes are associated with variant
nucleosomes containing H3.3 and the histone 2A variant H2A.z,
which promotes nucleosome instability (Jin et al., 2009). These
properties of H3.3 may explain its enrichment at bivalent genes
in flies (Henikoff, 2008) and, along with H2A.z, in mammalian
cells (Creyghton et al., 2008; Goldberg et al., 2010). Many genes
involved in brain development and postnatal neurogenesis are
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characterized by bivalent chromatin (Valk-Lingbeek et al., 2004;
Marino, 2005; Lim et al., 2009; Sawarkar and Paro, 2010; Schuet-
tengruber et al., 2011; Dawson and Kouzarides, 2012). Bivalency
is defined by the presence of both active and repressive histone
marks, which keep genes in a poised state. These are the repressive
mark trimethylated H3 lysine 27 (H3K27me3) and the active mark
H3K4me3, which are generated via the action of Polycomb Repres-
sive Complex 2 (PRC2) and Trithorax complexes, respectively.
H3K27me3 has a dual role in amplification of PRC2-mediated K27
methylation and recruitment of the Polycomb repressive complex
1 (PRC1), which mediates ubiquitylation of H2A (another repres-
sive mark) (Wang et al., 2004). H3K4me3 is found associated
with several chromatin-remodelers, as well as H3K27 demethy-
lases (Dawson and Kouzarides, 2012). Polycomb group (PcG) and
Trithorax group (TrxG) proteins are key regulators of stem cell fate
in both the embryonic and postnatal brain (Simon and Kingston,
2009; Margueron and Reinberg, 2011). In particular, the PRC1
component Bmi1 and the TrxG complex component Mll1 are
important regulators of neural stem cell self-renewal and neuroge-
nesis (Valk-Lingbeek et al., 2004; Marino, 2005; Lim et al., 2009).
Notably, H3.3 is enriched in the H3K4me3 mark (Henikoff, 2008).
Furthermore, H2A.z has been proposed to regulate targeting of
both PcG and TrxG complexes to chromatin (Hu et al., 2012).
Overall, these studies suggest a potential functional involvement
of H3.3 and H2A.z loading in regulation of bivalency. In partic-
ular, it is conceivable that H3.3 deposition could affect bivalent
domains at IEGs in neurons, as potential mechanism for DAXX-
mediated transcriptional changes (Michod et al., 2012). In general,
it is of key importance to generate new genetic systems to better
define the molecular function of H3.3 and its impact on funda-
mental biological processes. In this respect, Jeffrey Mann’s group
has been involved in generation of new models based on condi-
tional allelic replacement, which bear great promise for advancing
our understanding of H3.3 function in vivo (Tang et al., 2013).

H3.3 LOADING AND DISEASE PATHOGENESIS
An even greater interest in H3.3 and its chaperones has arisen
from the discovery that H3.3 itself, DAXX and ATRX are mutated
in human cancer. In this respect, driver heterozygous mutations in
the H3F3A gene are found in pediatric glioblastoma multiforme
(GBM) (Schwartzentruber et al., 2012; Sturm et al., 2012; Wu et al.,
2012) (H3F3B is expressed at much lower levels in neural cells;
our unpublished observation). H3.3 is mutated at K27 (K27M)
and G34 (G34R or V), with the former found in brainstem tumors
of young children (Schwartzentruber et al., 2012; Sturm et al.,
2012; Wu et al., 2012) and the latter in the cerebral hemispheres
of older children and adolescents (Schwartzentruber et al., 2012;
Sturm et al., 2012; Wu et al., 2012). ATRX is mutated in pedi-
atric (Schwartzentruber et al., 2012) and adult GBM (Heaphy
et al., 2011), and DAXX in pediatric GBM, albeit very infrequently
(Schwartzentruber et al., 2012). ATRX is also found mutated in
neuroblastoma, while both DAXX and ATRX are mutated in neu-
roendocrine tumors of the pancreas (Elsasser et al., 2011; Heaphy
et al., 2011; Jiao et al., 2011; Molenaar et al., 2012). Most DAXX
and ATRX mutations are mutually exclusive and result in loss of
expression (Elsasser et al., 2011; Heaphy et al., 2011; Jiao et al.,
2011; Schwartzentruber et al., 2012; Wu et al., 2012), apart from

a missense mutation found in acute myeloid leukemia (AML)
(Ding et al., 2012). It is important to note that pediatric GBM
also display mutations of ATRX in the absence of H3.3 muta-
tions, as observed in adult GBM, neuroblastoma and pancreatic
tumors, suggesting that alterations in loading of WT H3.3 may
per se lead to cancer. H3.3/ATRX- and ATRX-only-mutated GBM
tumors often carry p53 mutations, suggesting that loss of p53
tumor suppressive function cooperates with H3.3 and/or ATRX
mutations for tumorigenesis. Finally, in pancreatic tumors carry-
ing DAXX mutations, it is conceivable that H3.3 loading could
be mediated by other chaperones, thus leading to alterations in
its genome-wide distribution, with potential consequences for
tumorigenesis. At present, it is unclear what are the expression lev-
els of the H3.3 chaperones HIRA and DEK in pancreatic tumors
and other cancers displaying alterations in H3.3 and DAXX/ATRX
loading machinery.

The key question is how alterations of H3.3 function can
drive/contribute to neoplastic transformation. Analysis of gene
expression changes in GBM neoplasms carrying H3.3 mutations
showed that H3.3 K27M and G34R/V tumors display distinct
transcriptional changes. In this respect, H3.3K27M GBM tumors
display deregulation of some PcG targets (Schwartzentruber et al.,
2012). Furthermore, mutations of the TrxG component multiple
endocrine neoplasia type 1 (MEN1) are found in neuroendocrine
pancreatic tumors and is mutually exclusive with DAXX and
ATRX mutations, suggesting similar functional roles (Jiao et al.,
2011). Together, these data indicate that alteration of bivalent
gene expression may represent one of the mechanisms underlying
the transforming role of the H3.3 K27M mutation. It is impor-
tant to note that deregulation of the machinery controlling the
H3K27me3 epigenetic mark has been implicated in pathogene-
sis of another pediatric brain tumor, medulloblastoma, and adult
GBM. In most cases, this leads to increased H3K27me3 (Brugge-
man et al., 2007; van Haaften et al., 2009; Jones et al., 2012;
Lu et al., 2012; Robinson et al., 2012), via deregulated expres-
sion/mutations of H3K27me3 methylases/demethylases, inacti-
vation of chromatin-remodeling factors or metabolic enzymes
(Bruggeman et al., 2007; van Haaften et al., 2009; Jones et al., 2012;
Lu et al., 2012; Robinson et al., 2012). Increased H3K27me3 in
medulloblastoma and adult GBM is expected to lead to increased
repression. However, it was unclear what would be the conse-
quences of pediatric GBM mutation of H3.3 at K27 on H3K27me3
and transcription. A very recent study from David Allis group
has provided important clues (Lewis et al., 2013). In particu-
lar, this work shows that the presence of H3.3K27M negatively
affects PRC2-mediated amplification of K27 trimethylation in cis
and trans. This occurs via inhibition of the enzymatic activity
of the PRC2 methyltransferase EZH2. Interestingly, introduction
of K-to-M mutations at other known methylated H3 residues
(H3K9 and H3K36) has similar negative effects on enzymatic
activity of the dedicated methyltransferases. Together, these data
suggest that H3.3K27M acts at least in part as a gain-of-function
mutant. Notably, the gain-of-function effect of the K-to-M muta-
tion is not restricted to H3.3, as also canonical H3 is found
mutated in GBM and H3K27M displays similar EZH2 inhibitory
activity. What would be the effect of H3.3K27M loading on
chromatin? Some clues came from another recent study, which
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showed that H3.3K27M is associated with loss of H3K27me3 at
many loci (Chan et al., 2013), as expected based on David Allis
work. However, several genomic regions gained this mark along
with H3K4me3, leading to repression of genes involved in can-
cer development, such as the tumour suppressor p16INK4a (Chan
et al., 2013). Thus, the consequences of this mutation on chro-
matin structure/modifications are more complex than previously
thought.

How would G34R/V mutations function? Notably, H3.3
G34 mutations almost invariably coexist with ATRX mutations
(Henikoff, 2008; Schwartzentruber et al., 2012) and are associated
with the alternative lengthening of telomeres (ALT) mechanism
(Heaphy et al., 2011; Bower et al., 2012; Liu et al., 2012; Lovejoy
et al., 2012), a recombinogenic mechanism for telomere elonga-
tion. ALT cells contain a modified PML-NB called ALT-associated
PML-NB (APB), which we and others have implicated in telomeric
damage response and potentially telomere recombination (Stagno
D’Alcontres et al., 2007; Lovejoy et al., 2012). Thus, it is conceivable
that H3.3 G34 mutations could lead to ATRX loss and alteration of
telomere maintenance mechanisms, thus in turn contributing to
transformation and GBM development. Recent work from Chris
Jones laboratory shows that H3.3G34 mutations alter transcrip-
tion and enrichment of the H3K36me3 active mark at a number
of developmentally regulated genes linked to forebrain develop-
ment and stem cell self-renewal (Bjerke et al., 2013). Remarkably,
these mutations lead to increased expression of the MYCN proto-
oncogene (Bjerke et al., 2013), suggesting a potential link between
histone variant loading and MYCN-mediated transformation.

Are H3.3 mutations transforming per se? It is important to
note that H3.3K27M is unable to promote glioma even in a p53
null background (Lewis et al., 2013), suggesting that either other
genetic events are needed or, more likely, the cell targeted in this
model is not the correct one. In this respect, it is possible that
the type of progenitor and/or the developmental stage are crucial

for transformation by H3.3 mutant proteins. Definite answers to
these outstanding questions will be achieved only upon develop-
ment of more sophisticated genetic models, which are currently in
the pipeline in many laboratories in the field.

Alterations of the H3.3 chaperone complex might extend to
non-neoplastic conditions, such as the ATR-X syndrome, which
is driven by ATRX mutations (Gibbons and Higgs, 2000). Fur-
thermore, ATRX interacts with MeCP2 and cohesin, mutated in
the Rett and Cornelia de Lange (CdLS) syndromes, respectively
(Kernohan et al., 2010). It is presently unknown whether alter-
ations of H3.3 loading may participate in the pathogenesis of these
conditions.

ROLE OF PML AND PML-RARα IN REGULATION OF H3.3
LOADING?
As mentioned earlier, DAXX localizes to PML-NB via a SUMO-
dependent mechanism involving its SIM (Figure 2). Thus, it is
conceivable that PML could regulate DAXX function by altering
its subcellular localization. In this respect, PML was reported to
negatively regulate DAXX repressive function through recruitment
to PML-NBs (Li et al., 2000). However, PML role in regula-
tion of H3.3 deposition is still unclear. Clues have come from
a recent study reporting H3.3/H4 dimers localization to PML-
NBs (Figure 2) (Delbarre et al., 2012). The authors of this
study report that exogenously expressed H3.3 along with H4 and
DAXX localizes to PML-NBs in G1-enriched mesenchymal stem
cells, thus potentially regulating the nucleoplasmic pool of H3.3.
Although exogenous H3.1 and H3.2 failed to localize to PML-
NBs, it is still possible that H3.3 could be targeted to PML-NBs
only when expressed at supraphysiological levels. One obvious
question is whether PML regulates incorporation of endogenous
H3.3 into chromatin. In this respect, it could hypothesized that
PML-mediated localization of H3.3 and its chaperones to PML-
NBs inhibits H3.3 loading into chromatin (Delbarre et al., 2012).

FIGURE 2 | DAXX associates with both PML and PML-RARα?. DAXX
and H3.3/H4 dimers are found at PML-NBs, suggesting that PML may
regulate H3.3 loading. Furthermore, DAXX association with PML-RARα is
required for transformation in vitro. Although it is presently unknown
whether H3.3 also associates with PML-RARα, it is conceivable that
PML-RARα via interaction with DAXX could modulate H3.3 loading. While

DAXX is recruited to PML-NBs via a SUMO-interacting motif
(SIM)-dependent mechanism, it is still unclear whether a similar
mechanism is implicated in its targeting to chromatin (see question mark
in middle panel). DAXX also interacts with DNA methyltransferase 1
(Dnmt1) and targets its activity to chromatin, suggesting that DAXX
coordinates multiple epigenetic modifications.
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Another recent report implicated PML and PML-NBs in regula-
tion of ATRX and H3.3 association at telomeres during S-phase
in ES cells (Chang et al., 2013). As a result, PML downregulation
caused telomere dysfunction and altered telomeric enrichment
of selected epigenetic marks. Although it cannot be excluded that
PML-NBs are sites for localization of extrachromosomal telomeric
DNA, this work suggests that PML is either directly or indi-
rectly involved in regulation of telomere replication/maintenance
potentially via an H3.3/ATRX-dependent mechanism. A ques-
tion arising from this study is whether PML role in regulating
H3.3 association with telomeric DNA is maintained also in ALT
cells, which are often ATRX-negative, in particular in G34R/V,
ATRX-deficient GBM cells. Finally, PML could play a more indi-
rect role in regulation of H3.3 loading via modulation of DAXX
PTMs, in particular its phosphorylation at S669 (Michod et al.,
2012). In this respect, while the S669 phosphatase CaN is mainly
cytosolic, the S669 kinase HIPK2 has been shown to localize to
PML-NBs (Krieghoff-Henning and Hofmann, 2008), suggesting
that localization of HIPK2 and DAXX to PML-NBs could affect its
phosphorylation and as a result its chaperone activity.

Promyelocytic leukemia-mediated regulation of DAXX func-
tion could be particular relevant in the central nervous system
(CNS), given the roles played by the two proteins in this context.
In this respect, our previous work has shown that PML is expressed
in neural progenitor/stem cells (NPCs) in the developing neocor-
tex as well as in postnatal neurogenic niches [(Regad et al., 2009;
Salomoni and Betts-Henderson, 2011) and our unpublished data].
As a result, PML loss leads to alterations of corticogenesis and
smaller brains (Regad et al., 2009), as well as aberrant postnatal
neurogenesis (our unpublished data). While PML and DAXX are
expressed in the germinal area of developing neocortex and in
NPCs within adult neurogenic niches, PML expression is down-
regulated in postmitotic neuroblasts and neurons (Regad et al.,
2009; Michod et al., 2012) (and our unpublished data). It is there-
fore possible that PML could regulate DAXX chaperone function
in NPCs, thus potentially affecting epigenetic changes driven by
H3.3 loading. In turn, this could have implications for cell fate
regulation and neurogenesis. In contrast, PML-mediated control
of DAXX function would be absent in differentiated neurons.

What about the oncogenic form of PML, PML-RARα? SUMOy-
lation within the PML moiety of PML-RARα is required for trans-
formation (Zhu et al., 2005) and is responsible for recruitment
of DAXX via its C-terminal SIM (Figure 2; see also accompany-
ing review articles by Hugues de The in this issue of Frontiers).
Mutation of the critical SUMOylation site within PML-RARα

(K160R) releases DAXX and results in defective differentiation
block (Zhu et al., 2005). In contrast, fusion of K160R PML-
RARα with DAXX restores its transforming capacity (Zhu et al.,
2005). A subsequent study from de The’s laboratory reported
that a DAXX-RARα chimera carrying a multimerization domain
can repress RA-dependent transcription, inhibit differentiation,
and promote transformation. In contrast, a multimerization-
prone RARα mutant, despite inhibiting RA-dependent transcrip-
tion and differentiation, was unable to transform hematopoietic
progenitors (Zhou et al., 2006), suggesting that molecular deter-
minants of the differentiation block and transformation may
not be identical. However, a separate study by Eric So’s group

showed that fusion of the FKBP oligodimerisation sequence with
RARα can promote transformation (Kwok et al., 2006). The pres-
ence of a SUMOylation site (Rodriguez et al., 2001) in FKBP
(which would in principle still recruit DAXX) and non-identical
experimental settings may explain the different results. Overall,
these findings suggest that SUMO-dependent PML-RARα asso-
ciation with DAXX contributes to block of differentiation and
transformation.

PML-RARα has been reported to associate with epigenetic
regulators and mediate epigenetic changes: (i) PML-RARα multi-
merization properties lead to increased density of corepressors and
chromatin remodeling factors at retinoic acid (RA) target genes
(Lin and Evans, 2000; Minucci et al., 2000; de The and Chen, 2010);
(ii) PML-RARα interacts with DNA methyltransferases, thus lead-
ing to DNA methylation of a number of RA target genes (Di Croce
et al., 2002). Interaction with the H3.3 chaperone DAXX could
provide PML-RARα with additional weaponry to promote epige-
netic changes. One could argue that H3.3 is mainly associated with
active genes, not with repression. In this respect, it is important to
note that there is little in vivo evidence that repression of RA target
genes is sufficient to initiate APL (de The and Chen, 2010), and it
is now recognized that PML-RARα also possess gain-of-function
properties through its ability to bind target sequences that are not
recognized by the normal RARα-RXRα heterodimers (de The and
Chen, 2010). Among these sites, there are many genes controlling
stem cell self-renewal and myeloid differentiation (Purton et al.,
2006; Viale et al., 2009; de The and Chen, 2010). Finally, mouse
APL leukemias express high levels of the IEG c-Fos (Yuan et al.,
2007), which we have shown to be regulated by DAXX in neural
cells (Michod et al., 2012). Overall, the existing literature suggests
that PML-RARα promotes transformation through a combination
of dominant-negative and gain-of-function activities. Interaction
with DAXX could contribute to the latter.

Considering H3.3 enrichment at bivalent genes and the alter-
ation of PcG/TrxG activities in hematopoietic tumors (Mills,
2010; Muntean and Hess, 2012), it could be hypothesized that
DAXX-mediated H3.3 loading could affect bivalent gene expres-
sion in APL cells. In this respect, there is a functional crosstalk
between RA-dependent transcription and the PcG machinery, as
many homeobox genes contain RA responsive elements (RARE)
(Mainguy et al., 2003; Ringrose and Paro, 2004) and RA targets
are also PcG targets (e.g., CYP26a1 and RARβ). Notably, PML-
RARα-regulated loci display increased H3K4me3 (Hoemme et al.,
2008), thus suggesting that PML-RARα may regulate this epige-
netic mark. As H3.3 is enriched in H3K4me3, it is conceivable
that PML-RARα could direct DAXX-mediated H3.3 deposition at
a number of its gene targets. As H3K4me3 is lost from a number of
bivalent loci during differentiation of human hematopoietic stem
cells (Cui et al., 2009), it is possible that PML-RARα could re-
establish/maintain H3K4me3 at these loci through modification
of TrxG complex activity and/or loading of H3.3. PML-RARα is
also found in complex with PRC2 components (Villa et al., 2007;
Martens et al., 2010), suggesting it could affect H3K27 trimethyla-
tion. However, subsequent genome-wide analysis showed that RA
treatment fails to significantly affect H3K27me3 (Martens et al.,
2010). More work is needed to define PML-RARα role in regula-
tion of bivalent chromatin and the contribution of H3.3 loading to
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FIGURE 3 | H3.3 is mutated in human cancer. Driver H3.3 mutations are
found in pediatric glioblastoma (pGBM), suggesting that alterations of H3.3
function may lead to brain cancer. It is possible that PML via its ability to
recruit DAXX to PML-NBs could regulate loading of mutant H3.3 proteins,
thus potentially affecting brain tumorigenesis.

its epigenetic activity. It is important to note that a DAXX missense
mutation of unknown functional consequences has been identi-
fied in AML (Ding et al., 2012), suggesting that alterations of H3.3
loading may occur in non-APL hematopoietic neoplasms.

Finally, both PML and PML-RARα have been linked to another
H3.3 chaperone, HIRA (Ye et al., 2007; Delbarre et al., 2012). In
this respect, localization of HIRA to PML-NBs is required for
formation of senescence-associated heterochromatic foci (SAHF).
PML-RARα, which disrupts PML-NBs, inhibits SAHF generation.

Although it is presently unknown whether H3.3 is loaded as SAHF,
these data suggest that PML and its oncogenic version may regulate
H3.3 loading by acting on multiple chaperones.

CONCLUSION
The discovery of DAXX chaperone function provides the fasci-
nating possibility that PML and its oncogenic form PML-RARα

could promote epigenetic changes in part via regulation of H3.3
loading. In this respect, PML-RARα could utilize DAXX chaper-
one activity to modify the epigenetic and transcriptional status of
its target genes, as part of its gain-of-function activities in trans-
formation of hematopoietic progenitors. In contrast, PML could
play a more indirect role in regulation of loading of wild-type
H3.3 as well as its GBM-associated mutants by controlling the
availability of soluble H3.3/H4 dimers and/or DAXX PTMs, with
potential implications for cell fate regulation and transformation
(Figure 3). In this respect, pharmacological degradation of PML
via ATO treatment could represent a strategy to affect H3.3 loading
in cancer cells. More broadly, an increased understanding of H3.3
loading, its function and regulatory pathways has the potential to
lead to a paradigm shift in the field of cancer epigenetics.
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