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gordana.leposavic@pharmacy.ac.bg.rs

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Multiple Sclerosis and

Neuroimmunology,

a section of the journal

Frontiers in Immunology

Received: 31 May 2020

Accepted: 17 August 2020

Published: 19 November 2020

Citation:
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CD8+ T Cell-Mediated Mechanisms

Contribute to the Progression of

Neurocognitive Impairment in Both

Multiple Sclerosis and Alzheimer’s

Disease? Front. Immunol. 11:566225.

doi: 10.3389/fimmu.2020.566225

CD8+ T Cell-Mediated Mechanisms
Contribute to the Progression of
Neurocognitive Impairment in Both
Multiple Sclerosis and Alzheimer’s
Disease?
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Neurocognitive impairment (NCI) is one of the most relevant clinical manifestations of

multiple sclerosis (MS). The profile of NCI and the structural and functional changes in the

brain structures relevant for cognition in MS share some similarities to those in Alzheimer’s

disease (AD), the most common cause of neurocognitive disorders. Additionally,

despite clear etiopathological differences between MS and AD, an accumulation

of effector/memory CD8+ T cells and CD8+ tissue-resident memory T (Trm) cells

in cognitively relevant brain structures of MS/AD patients, and higher frequency of

effector/memory CD8+ T cells re-expressing CD45RA (TEMRA) with high capacity to

secrete cytotoxic molecules and proinflammatory cytokines in their blood, were found.

Thus, an active pathogenetic role of CD8+ T cells in the progression of MS and AD may

be assumed. In this mini-review, findings supporting the putative role of CD8+ T cells

in the pathogenesis of MS and AD are displayed, and putative mechanisms underlying

their pathogenetic action are discussed. A special effort was made to identify the gaps

in the current knowledge about the role of CD8+ T cells in the development of NCI to

“catalyze” translational research leading to new feasible therapeutic interventions.

Keywords: multiple sclerosis, Alzheimer’s disease, neurocognitive impairment, effector/memory CD8+ T cells,

CD8+ tissue-resident memory T cells, microglia

INTRODUCTION

Neurocognitive impairment (NCI) is an important feature of multiple sclerosis (MS) and
might be even more relevant to patients than mobility restrictions (1). More important,
there is no efficient therapy for the NCI (2, 3). Hence, it is important to incorporate
cognitive assessment into MS clinics and to stimulate research leading to effective
interventions to moderate the NCI (4). To “catalyze” this research, we attempted to
identify the major gaps in the current understanding of the immunopathogenesis of
NCI. In this attempt, we considered that despite clear etiological differences, MS as
Alzheimer’s disease (AD) may be presented with dementia (major neurocognitive disorder
in DSM-5 classification) (5–7), and that some similar immunohistopathological changes are
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found in cognitively relevant brain structures of MS and
AD patients (8–12). Besides innate immunity cell-mediated
neuroinflammation (13–15), accumulating evidence indicates
involvement of the adaptive cellular immunity in the
pathogenesis of not only MS but also AD. Although CD4+
T cells are shown to be the major driver of MS pathogenesis
(16–19) and to be implicated in AD development (19–21),
therapeutic strategies selectively altering/inhibiting the function
of CD4+ T cells showed disappointing results in MS and AD
alike (20, 22, 23). On the other hand, there are data indicating
that (i) CD8+ T cells are the predominant type of T cells
in MS brain lesions (8–10) and (ii) NCI development in AD
patients and transgenic mouse AD models coincides with CD8+
T cells’ infiltration into cognitively relevant brain structures
(11, 12, 24–27). Thus, it may be hypothesized that CD8+ T cells
contribute to the development of NCI in MS and AD. In this
mini-review, the results from a side-by-side comparative analysis
of literature data corroborating the role of CD8+ T cells are
displayed as a starting point for translational research leading to
feasible therapeutic interventions.

NCI AND HISTOPATHOLOGICAL
SIGNATURE OF MS AND AD

NCI is seen in 43–70% of people diagnosed with MS (28);
in the subclinical radiologically isolated syndrome, clinically
isolated syndrome, and all phases of clinical MS (29). It is also
detected in experimental autoimmune encephalomyelitis (EAE),
the often used animal model of MS (30–36). The most commonly
impaired cognitive domains in MS include memory, attention,
executive functions, speed of information processing, and visual-
spatial abilities (37). The neurocognitive profiles of MS patients
substantially differ depending on (i) clinical subtype and duration
of the disease (38–41); (ii) age, sex, and ethnicity (38–41); (iii)
brain (reflects maximal lifetime brain volume determined by
genetics) and cognitive (gains throughout life experience, e.g.,
education, intellectually enriching leisure activities) reserve (42);
and (iv) differences in screening tools used for neurocognitive
evaluation (41). A proportion of MS patients meets the criteria
for dementia (5, 7). On the other hand, AD is shown to
be the most common cause of dementia, accounting for 60–
80% of dementia cases (www.alz.org/alzheimers-dementia). All
cognitive domains may be affected in AD patients (43). The
neurocognitive profile of AD patients depends on stage of the
disease and brain and cognitive reserves (44). In the development
of NCI in AD, changes corresponding to mild cognitive disorder
in DSM-5 classification may also be detected (45). Of note,
when cognitive functions in older MS patients were evaluated,
similarities between their neurocognitive profiles and those of
patients with mild cognitive disorder of the AD type (anamnestic
mild cognitive impairment) were found (40).

In MS patients apart from characteristic inflammatory-
demyelinating lesions of the white matter, inflammation and
neurodegeneration in cortical and deep gray matter, which are
associated with deficits in learning andmemory in AD, was found
(9, 46, 47). On the other hand, although AD is characterized by

the gray matter damage, disruption of white matter integrity was
also described (48).

The development of typical brain lesions in AD is linked
with the neurotoxic β-amyloid peptide (Aβ) variants that
form soluble oligomers and insoluble fibers, and Aβ-induced
hyperphosphorylation of the microtubule-associated protein
tau (49–52). Thus, in hippocampal and cortical regions of
AD patients, extracellular aggregates of amyloid fibrils—senile
plaques and intracellular aggregates of hyperphosphorylated
tau—neurofibrillary tangles are typically present (49–52).
Although aggregation of oligomeric Aβ (oAβ) and plaques
formation is a major feature of AD (53), soluble oAβ, particularly
those encompassing Aβ1−42, are neurotoxic (54). On the other
hand, in MS despite the augmented expression of the amyloid
precursor protein (APP), reflecting axonal damage (55, 56), and
the increased levels of soluble α-APP and β-APP, intermediate
products of APP proteolysis, in brain lesions (57), amyloid
plaques have not been found (58–62). The latter could reflect an
enhanced demyelinization and release of myelin basic protein,
as this protein inhibits amyloid fibril formation (favoring the
detrimental effect of their soluble precursors) (63–66) and/or
their enhanced cleaning due to microglial activation (62).
However, as TNF-α, a major proinflammatory cytokine, impairs
autophagic flux of Aβ aggregates in microglia (67), the latter
does not seem likely. Additionally, it is supposed that the
generation/clearance of (o)Aβ in MS varies during the disease
progression or depending on the phase of the disease (68, 69).
This may explain the discrepancies between data on their
concentration in cerebrospinal fluid (CSF) (70–78). Of note,
although alterations in Aβ metabolism are implicated in the
impairment of neural plasticity and the development of NCI in
MS (79, 80), there are no data on concentration of neurotoxic
(o)Aβ in brain tissue. Differently from amyloid plaques,
characteristic insoluble hyperphosphorylated tau formation has
been described in the brain in the neurodegenerative phase of
EAE and MS (81–83).

STRUCTURAL AND FUNCTIONAL
ALTERATIONS OF SYNAPSES

It appears that synaptic loss precedes neuronal loss in AD, and
these effects are probably driven by amyloid and tau pathology
(52, 84). Post-mortem analyses of synapses/synaptic markers
(synapsin I, synaptophysin, and post-synaptic density protein 95)
in hippocampal and frontotemporal tissue provide evidence for
strong synapse loss in MS/EAE as well (32, 85–88). The synaptic
loss is suggested to be the strongest correlate of NCI in AD
(89–91). In EAE, a positive correlation between hippocampal-
dependent memory impairment and synaptic loss was also found
(32, 92).

While the density of synapses is a key determinant to control
the complexity and diversity of neuronal networks, the ability
of neurons to durably strengthen their connections, also called
synaptic plasticity, is crucial to shape the neuronal networks
necessary for learning and memory [reviewed in (93)]. Long-
term potentiation (LTP) and long-term depression (LTD) are
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two forms of synaptic plasticity and leading candidates for
mechanisms underlying learning and memory (94). Generally,
in experimental models of AD soluble oAβ are shown to cause
LTP impairment, as well as LTD depression and synaptic loss
[reviewed in (95)]. Although LTP impairment is also found in
EAE (96–101), there is no direct evidence for a role of soluble
oAβ [reviewed in (95)].

It is likely that several post-synaptic receptors mediate soluble
oAβ toxicity at the post-synaptic compartment (102). However,
NMDA receptors (NMDARs) seem to be particularly important
in both animal AD (103) and MS models (97). The alteration
of synaptic plasticity in AD models has been linked with oAβ-
induced increase in glutamate concentration at synapses (85,
104, 105) and its “spillover” out of the synaptic clefts (106). The
latter causes recruitment of extrasynaptic NMDARs (107–109)
and neuronal excitotoxicity (110, 111) resulting in progressive
neuronal andmemory loss (106). Additionally, specific activation
of extrasynaptic NMDARs in animal AD models enhances the
amyloidogenesis and Aβ release (112) and tau phosphorylation
(106, 113–115), leading to a vicious circle and the disease
progression (116). Thus, there is a positive correlation between
oAβ release, tau pathology, and NCI in AD (117). On the other
hand, the role of oAβ in the development of NCI in MS (79, 80)
requires additional research.

Research Challenges
To further investigate the role of oAβ/phosphorylated tau in the
development of NCI in MS/EAE.

CD8+ T CELLS IN MS AND AD LESIONS

CD8+ T Cells in MS Lesions
In MS lesions, including those relevant for NCI, the vast majority
of CD3+ T cells were found to be clonally expanded CD8+ T
cells (10, 118–124). Their number correlates with the severity
of axonal damage (125). In NCI-related brain lesions of EAE-
affected animals, T cells were also detected (36, 126), and the
demyelination was shown to be more MHC class I- than MHC
class II-dependent (127), suggesting an active role for CD8+ T
cells in the destructive CNS immune response. To harmonize
these findings with the long-standing view of MS as a CD4+ T-
cell-driven disease (128), it was hypothesized that following the
disease initiation CD4+ T cells (the key drivers of the disease
initiation) in MS/EAE are eliminated by apoptosis (124, 129), so
CD8+ T cells take on a leading role (130, 131). Furthermore, the
genetics (HLA A∗0301 and HLA A∗0201 was associated with a
higher risk for MS and a protective effect on MS, respectively)
(132, 133) evinces CD8+ T cell involvement in MS (134).
Consistently, in active MS lesions (125, 135) and CSF (136–
138) classical cytotoxic CD8+T lymphocytes (CTLs) were found.
Of note, CTLs with polarized perforin/granzyme granules were
observed in close proximity to oligodendrocytes/demyelinated
nerve fibers (139, 140) and CD11b+ myeloid cells (135). In
favor of CTL-mediated cytotoxicity, in relapsing-remitting MS
the granzyme levels in CSF were higher at relapse compared
with the remission and healthy controls (138). To additionally

corroborate the pathogenetic role of CTLs, neuroantigen-specific
CD8+ T cells from MS patients and EAE mice were shown to be
capable of killing neuronal cells and releasing IFN-γ and TNF-
α in vitro (141–146). Consistently, a role of IFN-γ- and TNF-α
co-producing CD8+ T (Tc1) cells in MS pathogenesis is assumed
(146). Additionally, in active acute and chronic MS lesions high
frequency of IL-17-producing CD8+ T (Tc17) cells (147, 148)
was observed. These cells co-produce GM-CSF (149, 150), which
contributes to myeloid cell activation and inflammation (151,
152). Besides, a positive correlation between the frequency of
Tc17 cells in CSF andMS-related disability was found (153). This,
in conjunction with data showing that co-transfer of Tc17 cells
with subpathogenic numbers of CD4+ T cells could induce the
disease in mice resistant to EAE and deficient in both IL-17-
producing CD4+ T cells and Tc17 cells (154), corroborates the
important role of Tc17 cells in EAE/MS pathogenesis. Data from
a rat EAE model are in the same vein (155). In EAE mice Tc17
cells do not exhibit cytotoxicity (156) but have a high plasticity
to convert into IFN-γ-producing cells with strong cytotoxic
activity (157). In relapsing-remitting MS the frequency of IFN-
γ/TNF-α co-producing Tc17 cells is higher in peripheral blood
(PB) at relapse compared with the remission (158). Moreover,
the rise in the count of PB effector/memory CD8+ T cells
re-expressing CD45RA (TEMRA) and secreting high levels of
cytotoxic molecules and proinflammatory cytokines (IFN-γ and
TNF-α) speaks in favor of an active CD8+ T-cell response in
MS (159).

Although majority of CD8+ T cells in active MS lesion are
recruited from the periphery (160), CD8+ cells with features
of tissue-resident memory T (Trm) cells are also present in
these lesions (123, 161) and suggested to have an important
role (162–166).

Research Challenges
To investigate the contribution of CD8+ T cells in the
development of NCI in MS considering the hypothesis that
CD4+ T cells are involved in the initiation of brain lesions,
whereas CD8+ T cells take on the leading role as the
disease progresses.

CD8+ T Cells in AD Lesions
Similar to MS, in AD (11, 12, 24, 25, 167) and several
mouse models of AD (26, 27, 167, 168), CD8+ T cells
were found to be the predominant type of T cells in the
brain structures related to cognition. Additionally, a strong
correlation between CD8+ T cell infiltration and tau pathology
in both humans and experimental animals has recently been
described (11, 27). They are located in close proximity
to neuronal processes and microglia (12, 25, 167). More
important, granules loaded with granzyme A were detected
in CD8+ T cells from AD-affected hippocampi (12). To
additionally corroborate the active role of CD8+ T cells
in the disease pathogenesis, greater count of IFN-γ/TNF-α-
producing CD8+ TEMRA cells was found in PB from patients
diagnosed with mild neurocognitive disorder of AD type/AD
patients (12). The latter correlated with NCI development
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(12). Of note, in PB from AD patients, higher frequency of
Tc17 cells was detected than in controls (169). Moreover, a
substantial proportion of CD8+ T cells in their intrathecal
immune compartment belonged to a clonally expanded TEMRA
subset (12).

Finally, CD8+ T cells with characteristics of Trm cells were
also detected in hippocampi and subcortical white matter in AD
patients and animal ADmodels (11, 26, 161, 165). However, their
role in AD requires further research.

Research Challenges
To elucidate the mechanistic immune signature of AD by
exploring the role of CD8+ T cells in various experimental
models of this disease.

PUTATIVE MECHANISMS OF CD8+ T
CELLS PATHOGENETIC ACTION IN THE
DEVELOPMENT OF MS AND AD

Considering the aforementioned data, CD8+ T cells most
likely contribute to the propagation of the initial lesions
in AD and MS. It may be supposed that myeloid cells,
primarily microglia, sense initial tissue damage (inflammatory
CD4+ T cell-mediated and neurotoxic Aβ/phosphorylated tau
protein-mediated damage in MS and AD, respectively), activate,
upregulate MHC-I expression, and start the production of
inflammasome-related cytokines and chemokines to recruit
CD8+ T cells (124, 167, 170). In brain tissue CD8+ T cells
may communicate with cells of distinct types, including neurons,
which are shown to upregulate MHC-I expression in MS and
AD (134, 171). Conceptually, CD8+ T cells may directly affect
neuronal integrity acting via perforin-dependent delivery of
several granzymes or via Fas-ligand/Fas receptor interactions
(172, 173) and/or causing their “collateral” injury (174–176).
They cause the “collateral” injury through destruction of myelin
sheath and/or oligodendrocytes (174–176). Of note, CTLs are
capable of sequential and simultaneous killing of several target
cells, which is followed by “spillover” of cytotoxic molecules
from immunological synapses and consequent collateral death
of neighboring cells [reviewed in (177)]. Apart from neuron
apoptosis, CTLs may cause their electrical silencing by increasing
intracellular Ca2+ levels through massive insertion of channel-
forming perforin (174, 178). The intracellular Ca2+ load may
be augmented also by enhanced glutamate release from activated
CD8+ T-cells and/or the target neurons themselves (174, 178–
180). Apart from cell-to-cell contacts, CD8+ T cells could
contribute to neuronal damage and NCI by releasing IFN-γ,
TNF-α, and IL-17. These cytokines increase the permeability
of blood-brain barrier and promote T-cell immigration into
the CNS parenchyma (181, 182). Additionally, they upregulate
MHC-I and thereby sensitize neurons/non-neural cells to
CD8+ T cell (183). They could also trigger cell apoptosis
(184). Moreover, in MS/EAE and AD/animal AD models
these cytokines contribute to alterations in synaptic plasticity,
and consequently NCI (185–187), by increasing glutamate

release and/or affecting expression/phosphorylation of glutamate
receptors (188–191).

Contrary to in vitro studies, a recent immunocytochemical
study failed to show direct communication between CD8+
T cells and neurons/oligodendrocytes in MS, but pointed to
their direct communication with distinct subsets of CD11b+
myeloid cells, including microglia, with manifold functional
consequences (135). Specifically, CD8+ T cells may be activated
to kill the target cells, whereas the activation of CD11b+
myeloid cells is associated with secretion of a broad array
of proinflammatory mediators, including reactive oxygen and
nitrogen species, and proinflammatory cytokines that damage
neighboring cells, including neurons (135, 170, 192–194).
The influence of CD8+ T cells on microglial secretion of
proinflammatory cytokines and iNOS expression in chronic
infection corroborates this notion (195). A recent study
showed that in EAE mice CD8+ T cells communicate with
brain infiltrating monocytes/monocyte-derived cells in a Fas-
ligand/Fas receptor dependent manner (131). Such an interaction
may also trigger the activation of microglia and consequently
the expression of multiple genes encoding proinflammatory
mediators (196). Thus, it may be speculated that CD8+ T-cell
to myeloid cell communication in the brain represents a hotspot
in the immunopathogenesis of MS. Besides, considering the
localization of CD8+ T cells in AD-affected brain (12, 167), it
may be assumed that they also contribute to AD progression
by enhancing microglial activation. Specifically, the presumption
is that with AD progression, as with MS/EAE progression
(98), initially phagocyting microglia become more activated
and consequently dysfunctional/damaging, i.e., that along the
disease trajectory microglia function as a “double-edged sword”
(12, 167).

Finally, given that Trm “sessile” cells were found among
CD8+ T cells in AD, and particularly in relapsing-remitting
and progressive MS (123, 161, 164–166, 197, 198) and that
drugs inhibiting T-cell recruitment into the brain in MS
showed limited therapeutic efficacy (123), the role of CD8+
Trm cells in the progression of MS and AD should be
examined. Generally, they are characterized by upregulated
expression of inhibitory receptors (PD-1 and CTLA-4) and
diminished production of cytotoxic enzymes (123, 161, 164,
198). However, as they have preserved capacity to secrete
proinflammatory cytokines (IFN-γ, TNF-α, and GM-CSF), they
may contribute to myeloid cell activation when stimulatory
signals (e.g., increased generation of proinflammatory mediators
and toxic metabolites) overcome the inhibitory signals (123,
161, 164, 198). Hence, the increased brain levels of toxic
soluble (o)Aβ variants in AD and possibly in MS may
contribute to this activational/functional “switch” (199–202).
Namely, the engagement of Toll-like receptor 2 on CD8+
Trm cells by toxic (o)Aβ variants may convert their partial
activation to the full activation and proinflammatory cytokine
production (199–202). Thus, it seems that the role of CD8+
Trm cells in MS (166) and possibly AD pathogenesis could
be dependent on the disease stage. Altogether, it may be
hypothesized that not only effector/memory CD8+ T cells
recruited from the periphery but also CD8+ Trm cells contribute
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FIGURE 1 | Schematic representation of the putative interactions between (re)activated CD8+ T cells and microglia in the progression of multiple sclerosis (MS) and

Alzheimer’s disease (AD). It may be hypothesized that upon entering in damaged (by CD4+ T cells and neurotoxic oligomeric amyloid β peptides [Aβ]/tau protein in

MS and AD, respectively) brain tissue, effector/memory (EM) CD8+ T cells reactivate and additionally activate microglia through Fas ligand/Fas-mediated interactions

and secretion of potentially damaging proinflammatory cytokines (IFN-γ, IL-17, TNF-α, GM-CSF). Consequently, microglia change their functional properties, viz.

initially predominantly protective (phagocyting damaging cells, and Aβ variants and their soluble and insoluble assembly) microglia change to become

dysfunctional/detrimental secreting damaging mediators, including proinflammatory cytokines (IL-1β, TNF-α), reactive oxygen species (ROS), and reactive nitrogen

species (RNS) on the account of phagocyting ability. To this microglial transition also contribute CD8+ tissue-resident memory T (Trm) cells, as they in the response to

alterations in the local microenvironment [mirrored in increasing accumulation of various activating mediators, e.g., proinflammatory cytokines, local metabolites,

including Aβ1−42 and its soluble oligomers (o)Aβ1−42, which are shown to interact with TLR2 expressed on their cell surface] transit from a suppressed state (sCD8+

Trm cell) maintained by PD-L1- and CD86-mediated signaling to activated proinflammatory cytokine-secreting state (aCD8+ Trm cell). The damaging mediators

derived from (re)activated EM CD8+ T cells (including glutamate, which is shown to contribute to activation of extrasynaptic NMDA receptors to promote cell death)

and microglia, along with toxic metabolites/mediators from neurons themselves (Aβ, glutamate), contribute to neuron/neurite damage and further progression of

the diseases.

to the deleterious changes in the activational status/functional
properties of microglia, and thereby to MS/AD perpetuation and
NCI worsening.

Research Challenges
To confirm the significance of CD8+ T cells and microglia
communication in the progression of NCI in these diseases
and particularly the contribution of CD8+ Trm cells to the
detrimental output of this communication.

CONCLUSIONS

It may be speculated that CD8+ T cells recruited from the
periphery together with CD8+ Trm cells contribute to MS and
AD progression acting on neurons/neurites not only directly
but also indirectly by affecting the functional properties of
microglia (Figure 1). This conceptmay serve as a basis for further
research to formulate therapeutic interventions targeting not
only effector/memory CD8+ T cells but also CD8+ Trm cells to
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moderate NCI severity. This could be particularly important, as
patients with MS are now more likely than ever to enter old age
and develop AD, so a number of individuals with these complex
comorbidities is expected to increase (203).
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