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ABSTRACT
Traumatic brain injury is highly prevalent in the United States. However, despite its frequency and
significance, there is little understanding of how the brain responds during injurious loading.
A confounding problem is that because testing conditions vary between assessment methods,
brain biomechanics cannot be fully understood. Data mining techniques, which are commonly
used to determine patterns in large datasets, were applied to discover how changes in testing
conditions affect the mechanical response of the brain. Data at various strain rates were collected
from published literature and sorted into datasets based on strain rate and tension vs. compres-
sion. Self-organizing maps were used to conduct a sensitivity analysis to rank the testing
condition parameters by importance. Fuzzy C-means clustering was applied to determine if
there were any patterns in the data. The parameter rankings and clustering for each dataset
varied, indicating that the strain rate and type of deformation influence the role of these
parameters in the datasets.
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Introduction

Traumatic brain injury (TBI) sent about 2.5 million peo-
ple to the emergency room in the United States in 2013
(Taylor et al. 2017). Of these people, 56,000 died and
280,000 were hospitalized (Taylor et al. 2017). In Europe,
approximately 2.5 million people will suffer a TBI
each year; of these, 1 million will die and 75,000 will
be hospitalized (Maas et al. 2015). TBI is most frequently
caused by falls, blunt trauma, and motor vehicle acci-
dents. TBI can cause a variety of long- and short-term
health effects such as impaired memory, balance, and
communication, as well as increased depression and
anxiety. Furthermore, TBI increases the risk of
Alzheimer’s disease and other neurological disorders.
Approximately 5.3 million Americans live with a TBI-
related disability. Such disabilities affect individuals’
relationships, productivity, and everyday living. The
economic cost of TBI in the US was estimated to be
$76.5 billion in 2010, with the vast majority of this
amount coming from fatal TBIs and TBIs resulting in
hospitalization. It is clear that TBI has a substantial
impact on our society.

Understanding the biomechanics of TBI mechanisms
is imperative if effective protective countermeasures are
to be established. Numerous preclinical in vitro studies
have been conducted in an attempt to improve under-
standing; however, the results of these studies vary in
orders of magnitude in terms of the stress states
applied to the brain material studied. This can be attrib-
uted to a number of reasons, such as in vitro specimen
age (Chatelin et al. 2012), specimen storage and testing
temperature (Zhang et al. 2011), specimen aspect ratio,
and material heterogeneity (brain white [axons] or gray
[neurons] matter, or a combination) (Prange et al. 2000;
Pervin and Chen 2009, 2011; Chatelin et al. 2012). This is
further compounded by significant inconsistencies in
brain tissue biomechanical testing protocols. Though
the ultimate goal of most of these tests is to obtain
uniaxial stress-strain responses for brain tissue at quasi-
static, intermediate, and high strain rates, the influence
of the above factors on the data has not yet been
quantified.

From quasi-static strain rates to high strain rates,
brain tissue has been found to be highly strain-rate
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dependent (Miller and Chinzei 1997, 2002) as a result of
its numerous structural components, which include
solid and fluid materials. Brain tissue tends to be stiffer
at higher loading rates (Miller and Chinzei 2002; Pervin
and Chen 2009; Prabhu et al. 2011; Rashid et al. 2014).
As a result, the peak stresses increase as strain rate
increases, with the peak stresses varying across two
orders of magnitude during quasi-static strain rate com-
pression (Sparrey and Keaveny 2011).

Chatelin et al. (2012) observed that the stress response
of the brain varies with the age of the individual from
which specimens are taken, such that the adult human
brain is 3–4 times stiffer than the infant brain. Thibault
and Margulies (1998) concluded similarly that at low
strains, the brains of 2–3 day old pigs were less stiff than
one-year-old pigs. At large strains, Prange and Margulies
(2002) found that immature pig brains were stiffer than
adult pig brains.

A difference in the properties of brain whitematter and
gray matter has been reported extensively (Bilston et al.
1997; Ozawa et al. 2001; Van Dommelen et al. 2010);
however, there is variation in the literature on the differ-
ences betweenwhite and graymatter. Prange et al. (2000)
found that gray matter was on average stiffer than white
matter by about 30% in porcine brain tissue. Nicolle et al.
(2004) concluded gray matter was slightly stiffer than
white matter, but concluded that both are similar enough
at small strains. However, Manduca et al. (2001) found that
white matter was three times stiffer than gray matter.

When under tension, brain tissue does not deform
homogeneously because of the specimen edge effects
where the brain specimen is attached to the apparatus
platens. Larger diameter specimens undergo more inho-
mogeneous deformation than smaller diameter speci-
mens (Rashid et al. 2012e); any variation in specimen
diameter can have a large effect on stress response
under tension. Under tension, a small specimen thickness
is necessary for uniform deformation (Pervin and Chen
2011; Rashid et al. 2012e), but under compression, there
are no significant differences in stress response at differ-
ent thicknesses (Rashid et al. 2012c).

Gefen and Margulies (2004) consider post-mortem time
to be the most important cause for variations in stress
response in literature, though others have reached the
opposite conclusion. Nicolle et al. (2004) concluded that
differences in stress response in brain specimens tested
between 24 and 48 h are insignificant. Zhang et al. (2011)
found no change in response between two and six hours
post-mortem and Prevost et al. (2011) found no response
variations between four and 15 h. However, Sparrey and
Keaveny (2011) found a change in the stress response
porcine spinal cord white matter under compression
despite all post-mortem preservation times being less

than 4 h, and Garo et al. (2007) found that the thalamus
increased in stiffness with increasing post-mortem time.

Tissue samples frequently must be stored for a few
hours to a few days prior to testing. Generally, samples
are stored at approximately 5°C, to minimize degrada-
tion effects which would affect the material response.
Samples may also be stored at 37°C if testing will be
performed within 4–6 h of extraction in order to mimic
in vivo conditions. Zhang et al. (2011) studied the effect
of storage temperature, ice-cold and 37°C, on the
brain’s material response, finding that samples stored
at 37°C exhibited a stiffer response than those stored at
ice-cold temperature. Differences between the two
responses decreased at higher strain levels. Zhang
et al. (2011) concluded by recommending that
researchers store brain tissue at low temperatures and
perform tests at physiological temperatures. Brain tis-
sue mechanical properties are also dependent on the
temperature at which the samples are tested, as Hrapko
et al. (2008) concluded that brain tissue is less stiff at
room temperature (22°C-25°C) than at physiological
temperature (37°C). There may also be more variability
in testing temperature than reported, as the exact tem-
perature of the room in which testing takes place is
rarely measured.

In response to these unmet needs, unsupervised
learning techniques were applied to determine how
changes in brain mechanical properties relate to
changes in testing conditions. One such technique, self-
organizing maps, was used to conduct a sensitivity
analysis on the data to determine which parameters
were most significant. The principal component analysis
was utilized to represent the data in a lower dimen-
sional space. Finally, fuzzy C-means clustering with
a Gustafson-Kessel distance measure was used to deter-
mine whether or not the datasets tend to cluster in
certain patterns.

Materials and methods

Experimental data were gathered from several brain
tension and compression testing studies (Miller and
Chinzei 1997, 2002; Shen et al. 2006; Tamura et al.
2008; Pervin and Chen 2009, 2011; Zhang et al. 2011;
Rashid et al. 2012a, 2012b, 2012c, 2012d, 2012e, 2014;
Li et al. 2015, 2019). The focus of this paper is on
uniaxial tension and compression data. Studies on the
shear, indentation, biaxial, etc. response of the brain
were thus excluded. From this, 30 uniaxial tension and
compression studies were found. Of these, those which
used cylindrical brain samples were selected to remove
the potential effect of geometry on the stress-strain
response, leaving 15 studies. Several of these papers
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did not provide sufficient details that were essential for
the analysis. Although there are techniques for analyz-
ing data with missing values, the authors wanted to
ensure there were as many characterizable relationships
between the testing parameters and the mechanical
responses of the brain as possible. A plot digitizer soft-
ware tool developed by Ankit Rohatgi (2016) was used
to extract the whole stress–strain curve from each pub-
lished plot of these 15 studies. All parameters were
converted to Systéme Internationale (SI) units and
stress and strain were converted to true stress and
strain, as required, for consistency. The data taken
from each source are summarized in Table 1.

In the previous studies listed above (Miller and Chinzei
1997, 2002; Shen et al. 2006; Tamura et al. 2008; Pervin and
Chen 2009, 2011; Zhang et al. 2011; Rashid et al. 2012a,
2012b, 2012c, 2012d, 2012e, 2014; Li et al. 2015, 2019),
tension and compression, biomechanical tests were per-
formed on brain tissue in order to characterize its deforma-
tion. In the case of compression, a small specimen of brain
matter was placed between the top and bottom loading
plates in the testing apparatus and compressed uniaxially
at a specific constant displacement rate while the force and
displacement, or strain, were measured. The brain speci-
menswere cylindrical and typically cut out of the brainwith
a cylindrical die. A physiologically conducive solution, such
as phosphate-buffered saline (PBS), can be used to
immerse specimens during transportation and testing to
prevent loss ofmoisture, whichmight affect the specimen’s
stress response (Budday et al. 2015).

The input parameters of interest were: age of the
individual from which specimens were taken, specimen
diameter and thickness, specimen storage temperature
prior to testing, specimen mechanical testing tempera-
ture, post-mortem preservation time, and brain matter
composition. The species difference parameter was
excluded because prior work has shown that there is
no significant difference in brain properties between
species (Pervin and Chen 2011). Brain matter composi-
tion was a categorical variable and has therefore been
represented numerically. Strain rate was also recorded.
Because the strain rate is ascertained by the researcher,
it was considered an input parameter. Stress and strain
were considered the output parameters of the dataset.
Thus, the final dataset included eight input parameters
and two output responses, with 5,579 data points. This
dataset was then split into seven data subsets: tension,
compression, quasi-static strain rate tension, intermedi-
ate strain rate tension, quasi-static strain rate compres-
sion, intermediate strain rate compression, and high
strain rate compression. The data were normalized to
the peak value of the corresponding variable so that all

values shown in figures are between zero and one. The
parameters of each data subset are listed in Table 2.

Theory and calculations

Unsupervised learning techniques were applied to
discover the patterns and relationships between the
input testing conditions and the biomechanical
stress-stress response. Because the focus of this
work was not to understand cause-effect or predict
the response, supervised learning was not employed.
The data mining procedures used here to identify
patterns in the data were: (1) Self-organizing maps
(SOM), used to conduct a sensitivity analysis on the
data to determine which parameters are most signifi-
cant; (2) Principal component analysis (PCA), used to
reduce the dimensionality; and (3) Fuzzy C-means
clustering (FCM), used to analyze dimensionally
reduced data using FCM clustering.

Self-organizing maps

A Kohonen map, or self-organizing map (SOM), is a type
of artificial neural network useful for visualizing pat-
terns in high-dimensional data in a two-dimensional
(2-D) or three-dimensional (3-D) array (Kohonen 1988).
The inputs for the SOM are the dimensions of the
dataset to be analyzed. Each input element connects
to each neuron (an information-processing unit) in the
array through a weight vector; after training, the SOM
will create a mapping between the input space and the
2-D neuron map. The nonlinear SOM mapping uses
a technique such that vectors which are close together
in the higher dimensional space are also close together
on the map.

SOM training is usually conducted on a 2-D neuron
array with spatially defined neighborhoods, along with
a method of data compression that determines the
similarity of data. The SOM performs data compression
such that the data is more convenient to handle with
no loss of its complexity during compression. Using
spatial neighborhoods allows for determining the simi-
larity between the input vector and the vector of
weights between the inputs and neurons.

Prior to training, weights are chosen randomly and
an initial learning rate and neighborhood size are cho-
sen. When a training vector comes in, the neuron with
the closest weight is found, and the winning neuron’s
weights are adjusted to make them even closer to the
training input vector. This is repeated until conver-
gence, when the feature map does not noticeably
change between iterations. Once the artificial neural
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network (ANN) is properly initiated, there are three
essential processes involved in the formation of the
map (Kohonen 1988):

● Competition: for each input pattern, the neurons in
the network compute their respective values of
a discriminant function. This discriminant function
provides the basis for competition among the
neurons. The particular neuron with the largest
value of discriminant function is declared the win-
ner of the competition and this is the criterion for
the winning neuron.

● Cooperation: the winning neuron determines the
spatial location of a topological neighborhood of
excited neurons, thereby providing the basis for
cooperation among such neighboring neurons.

● Adaption: the synaptic weights of the winning neu-
ron and its neighbors are adjusted such that their
individual values of the discriminant function in
relation to similar input patterns will be decreased.

In these datasets, the features are those listed in Table 2
and SOMs were produced with respect to each of these
features. The feature(s) that has/have the most cluster-
ing tendency (i.e. there are groups or clusters of similar
values in the SOM) is the most significant (important) in
the dataset. If the clustering tendency is less dominant
(i.e. data clusters don’t contain similar values), this
means that the corresponding feature is less important.
One way to know the exact order of significance is to
produce an SOM with respect to one feature (say
strain), then run the SOM but this time after removing
one feature from the dataset (say diameter). If the
clusters of the previous SOM (the one that was pro-
duced with respect to strain rate) remain the same as
the case before removing ‘diameter’ from the dataset,
this means that ‘diameter’ is not significant. However, if
the structure of SOM changes after removing the fea-
ture ‘diameter’ this means that this particular feature is
significant.

Principal component analysis

It is difficult to visually represent and analyze a dataset’s
patterns in high-dimensional space, in which there are
more variables than can be easily visualized or analyzed
using traditional statistical methods. As such, a technique
like principal component analysis (PCA) can be used to
determine patterns in the data and represent it in an easier
to comprehend format by reducing the number of dimen-
sions without losing the underlying data structure. Since
different clustering techniques involve using a distance
measure (e.g. Euclidean, Gustafson-Kessel, Manhattan,
etc.) in order to assign different data vectors into the
appropriate cluster, reducing dimensionality is important
in order to calculate the distancematrix that can be used as
the basis for building the membership matrix. However,
clustering algorithms by themselves don’t reduce the
dimensionality of data. Therefore, PCA was used to reduce
the dimensionality to three dimensions in order to make it
easier for fuzzy C-means clustering to work and calculate
the corresponding distance and membership matrices.

The procedure for PCA was: (1) Calculate the mean
across each parameter; (2) Subtract this mean from each
parameter; (3) Find the covariance matrix and its eigen-
vectors and eigenvalues; and (4) Determine the principal
components making up the dimensionally reduced data-
sets using the eigenvectors and eigenvalues. The number
of principal components for each dataset was chosen
such that the amount of variability in the data accounted
for by the principal components was at least 85%.

Fuzzy C-means clustering

After dimensionality reduction with PCA, the fuzzy
C-means (FCM) clustering algorithm (Bezdek and Ehrlich
1984) was applied to findpatterns in the stress-strain data.
Clustering tends to involve a C � Nmembership matrix U,
where C is the number of clusters and N is the number of
data points. Each element in U represents the degree of
membership of a datapoint to a cluster:

Table 2. The parameters and number of data points of each data subset.

Tension Compression

Quasi-static
Strain Rate
Tension

Intermediate
Strain Rate
Tension

Quasi-static Strain
Rate Compression

Intermediate Strain
Rate Compression

High Strain Rate
Compression

Age X X X X
Strain Rate X X X X X X X
Diameter X X X X X X X
Thickness X X X X X X X
Brain Matter Composition X X X X X X X
Storage Temperature X X X X X X X
Testing Temperature X X X X
Post-mortem
Preservation Time

X X X X X X

Number of Data Points 903 4675 370 533 1686 755 2234
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U ¼
u11
u21
..
.

uC1

u12
u22
..
.

uC2

. . .

. . .
. .
.

. . .

u1N
u21
..
.

uCN

2
664

3
775 (3)

For a hard partitioning of the stress state data into
C clusters, each membership must be zero or one.
Clustering can be achieved by optimizing a cost func-
tion, and then iteratively alternating estimates of the
vectors in the cost function.

FCM is then an objective function-based clustering
method, where V ¼ v1; . . . ; vCf g with the initial value
vi being the prototype for cluster i, set randomly, and

XC

i¼1
uik ¼ 1; " k ¼ 1; . . . ;N; (4)

Meaning the memberships of each data vector must sum
to one. The cost function for FCM can be written as,

J U; Vð Þ ¼
XC

i¼1

XN

k¼1
uQikd xk; við Þ; (5)

where Q is the fuzzifier, or weighting exponent
(1 � Q<1), and d xk; við Þ is the distance metric between
data vector xk and cluster center vi. A Gustafson-Kessel
distance measure (see Supplementary Material), scaled
by a hyper-volume approximation, was used because it
uses covariance matrices for each cluster, allowing the
distance measure to capture the statistical features of
each cluster.

Usually, the fuzzifier (Q) is chosen arbitrarily based on
how soft or hard we want the partitioning. That is, large
values of Q (≥4) result in softer partitioning. Hard partition-
ing means that the degree of membership of each data
sample to a particular cluster is relatively high (roughly
0.7–1.0) whereas soft partitioning means that the degree
of membership is lower (roughly 0.5–1.0). On the other
hand, crisp partitioning is the toughest measure of hard
partitioning where each data sample should have a degree
of membership of ‘1’ to be assigned to a particular cluster.
These degrees of membership are determined by our
choice of the fuzzifier Q, so it is quite hard to come up
with a mathematical formula or rationale to calculate Q.
However, the choice of Q as 2 is a common practice as it is
a midway between the crisp and soft cases (Bezdek and
Ehrlich 1984).

Results

Self-organizing maps

In Figure 1, the 10 � 10 SOMs with true strain labels
are shown for the seven datasets, which have been
used for comparison in determining the ranks of the
input parameters. It is important to note that the values
shown in the SOMs are normalized with the peak value

of the corresponding testing parameter (strain, storing
temperature, testing temperature, etc.). Brain matter
composition, which is a categorical variable, is given
the value 0.33 for white matter, 0.66 for gray matter,
and 1.00 for mixed gray and white matter. The figures
used to determine parameter ranking can be found in
the Supplementary Material.

For the compression dataset, the parameters in order
of significance are testing temperature, age, brain mat-
ter composition, diameter, strain rate, post-mortem pre-
servation time, storage temperature, and thickness. The
compression dataset has a similar sensitivity to testing
temperature, age, and brain matter composition.

For quasi-static strain rate compression, the para-
meters in order of significance are storage temperature,
age, testing temperature, strain rate, thickness, brain
matter composition, post-mortem preservation time,
and diameter.

The intermediate strain rate compression parameter
rankings are: thickness, diameter and post-mortem pre-
servation time (tied), testing temperature, storage tem-
perature, brain matter composition, strain rate, and age.
The strain was similarly sensitive to thickness, diameter,
and post-mortem preservation time, indicating that
these three parameters are of similar significance.

For high strain rate compression, the parameters in
order of significance are age; brain matter composition;
strain rate and age (tied); diameter, thickness, and test-
ing temperature (tied); and storage temperature.

The parameters for tension data listed in order of
significance are: post-mortem preservation time, strain
rate and brain matter composition (tied), diameter, sto-
rage temperature, and thickness.

The parameter rankings for the quasi-static strain rate
tension data in order are thickness, strain rate, post-
mortem preservation time, storage temperature, brain
matter composition, and diameter. For the intermediate
strain rate tension data, the parameter rankings are brain
matter composition and diameter (tied), thickness, sto-
rage temperature, strain rate, and post-mrotem preserva-
tion time. The SOM results are summarized in Table 3.

Fuzzy C-means clustering

Following PCA, FCM was run on the stress state data
using a Gustafson-Kessel distance measure. The number
of clusters for each dataset was chosen such that the
maximum membership value for all or the majority of
the data was over 0.5. The PCA and FCM plots for the
compression data illustrated in Figure 2(a) show that it
tends to cluster based on testing temperature and age.
The quasi-static strain rate compression data have four
clusters, as seen in Figure 2(b), based on storage
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temperature ad age. The intermediate strain rate com-
pression data in Figure 2(c) cluster based on diameter
and thickness The high strain rate compression data,
shown in Figure 2(d), cluster according to brain matter
composition and age. See the Supplementary Material
for scaled image plots of cluster membership matrices.

In Figure 3, the results of the PCA with FCM clus-
tering for the tension, quasi-static strain rate tension,
and intermediate strain rate tension datasets are
shown. In Figure 3(a) the tension data form five
clusters based on post-mortem preservation time
and brain matter composition. In Figure 3(b), the
quasi-static strain rate tension data has four clusters
based on thickness and post-mortem preservation
time. The intermediate strain rate tension data in
Figure 3(c) forms two clusters based on brain matter
composition and diameter.

Discussion

The brain is a complex collection of tissues, with both
heterogeneous and anisotropic regions. There are sev-
eral studies which attempt to quantify and describe this
behavior by deforming brain tissue under quasi-static,
intermediate, and high strain rates, and under tension
and compression (Miller and Chinzei 2002; Rashid et al.
2012a, 2014). However, the stress-strain responses and
the conclusions thereof on brain tissue biomechanics
are inconsistent due to the difficulty in building closed
form solutions describing the data. The result is dispa-
rate data leading to inconsistent conclusions about
brain tissue biomechanics. Data mining is an empirical
approach which can explain potential sources of varia-
tion in the data and is undertaken here in order to find
the trends in brain tissue biomechanical data and

Figure 1. (a) 10 × 10 SOMs with respect to strain for: (a) Compression, (b) Quasi-static strain rate compression, (c) Intermediate strain rate
compression, (d) High strain rate compression, (e) Tension, (f) Quasi-static strain rate tension, (g) Intermediate strain rate tension.
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correlate them with in vitro testing conditions and brain
specimen properties.

Three data mining techniques were utilized to ana-
lyze the data: self-organizing maps (SOM), fuzzy
C-means clustering (FCM), and principal component
analysis (PCA). Because these methods revealed several
trends that were expected, such as strain rate and age
dependencies, we concluded that the methods were
appropriate for the problem at hand. The SOM analysis
allows for the initial identification of potential groups in
the data and reveals significant testing condition para-
meters. The FCM clustering method is used to identify
clusters in order to accurately categorize the stress-
strain data, as well as assign different levels of cluster
membership to the data, or the degree to which each
datapoint belongs to each cluster.

The SOMs in Figure 1 give the variations in clustering
behavior between each dataset – compression, quasi-
static compression, intermediate strain rate compres-
sion, high strain rate compression, tension, quasi-static
strain rate tension, and intermediate strain rate tension.
In other words, it can be inferred from the clustering
pattern differences that there are significant variations
due to changes in strain rate regimes (quasi-static, inter-
mediate, and high) and stress state (compression and
tension) on the brain tissue’s mechanical responses. The
relevance of strain rate and stress state dependence has
been documented in the body of literature (Miller and
Chinzei 1997, 2002; Pervin and Chen 2009, 2011; Rashid
et al. 2014). From Figure 1(b–d), due to the distinct
variations in the cluster patterns, one can assert that
strain rate plays a pivotal role in the stress-strain beha-
vior of the brain parenchyma.

With regards to the datasets used here, strain rate
ranked second in the tension dataset (Table 3), and was
separated into the FCM clusters by quasi-static and inter-
mediate rates (Figure 3(a)). Strain rate ranked second in
the quasi-static strain rate tension data, again due to the
strain rate dependency of brain tissue, though its signifi-
cance was similar to the thickness and post-mortem pre-
servation time. The four clusters of the quasi-static strain
rate tension data each had significantly different strain
rates (0.9 s−1 for cluster 1, 2 s−1 for cluster 2, 4.3 s−1 for
cluster 3, and 0.0064–0.64 s−1 for cluster 4) (Figure 3(b)).
Strain rate, however, ranked next to last in the intermedi-
ate strain rate tension data, and its clusters in Figure 3(c)
had varying strain rates, indicating that the sensitivity of
true strain to brain matter composition, diameter, and
thickness are just as significant as the strain rate depen-
dency of brain tissue. Hence, it is critical to include strain
rate dependency and consider experimental specimen
dimensions for the constitutive modeling of the brain
under tensile deformation.Ta
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Figure 2. (a) Principal component analysis and fuzzy c-means clustering results for: (a) Compression, (b) Quasi-static strain rate
compression, (c) Intermediate strain rate compression, (d) High strain rate compression.

Figure 3. (a) Principal component analysis and fuzzy c-means clustering results for: (a) Tension, (b) Quasi-static strain rate tension,
(c) Intermediate strain rate tension.
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Strain rate also ranked second in the high strain rate
compression data. However, strain rate ranked fourth
out of eight parameters for quasi-static strain rate com-
pression, and seventh out of eight parameters for inter-
mediate strain rate compression. While the strain rate
dependency is evident in the quasi-static and high
strain rate compression data, a similar trend is not
apparent for intermediate strain rate compression
data. The specimens for quasi-static and high strain
rate tests were conducted using standardized methods
(Gray and Blumenthal 2000) for uniaxial compression
tests. However, intermediate strain rate tests were per-
formed using a novel test setups that combined the
attributes of quasi-static and high strain rate compres-
sion test apparatus. The lack of strain rate significance
for the intermediate strain rate data could be due to the
uniqueness of the intermediate strain rate testing meth-
ods. Further investigation into the differences of the
testing procedure for intermediate strain rates is war-
ranted to understand this anomaly.

Although a difference in the stiffness of mature and
immature brain tissue has been found at low strains
(Thibault and Margulies 1998) and high strains (Prange
and Margulies 2002), age ranked second in quasi-static
strain rate compression dataset, and third in the high
strain rate compression dataset, but it ranked last in the
intermediate strain rate compression dataset. The
decrease in the rank of age the intermediate strain rate
compression data is likely due to the lack of variability in
age within this dataset. The range of age in the compres-
sion and quasi-static strain rate compression data is 1–18
months, and the range is 6–18 months for high strain rate
compression. The range of age in the intermediate strain
rate compression data is 1–6 months, indicating that the
material properties of brain tissue are similar at these
ages. Past 6months, thematerial properties of brain tissue
change over time. In other words, due to the stiffness of
brain tissue, age-dependent brain tissue moduli are also
strain rate-dependent.

Although there is disagreement in the literature on
the difference in the mechanical properties of gray and
white matter, there is enough of a difference between
the two for brain matter composition to be a significant
property of brain specimens (Bilston et al. 1997; Prange
et al. 2000; Ozawa et al. 2001; Manduca et al. 2001;
Nicolle et al. 2004; Van Dommelen et al. 2010). Hence,
brain matter composition ranked second in the tension
data and first in the intermediate strain rate tension
data, and factored into the FCM clustering behavior as
well (Figure 3(a–b)). In quasi-static strain rate tension,
brain matter composition ranked fifth. In the compres-
sion dataset, brain matter composition ranked third, but
it ranked sixth in quasi-static strain rate compression

and fifth in intermediate strain rate compression. At
lower strain rates for tension and compression, strain
is less sensitive to brain matter composition than to
other testing condition parameters. Further, mixed
brain matter composition may have a varied mechan-
ical response at the interface between brain white and
gray matter relative to within them.

The FCM results show that two of the five clusters in
the tension data contained quasi-static strain rates, but
the diameters are quite different, at 14 mm for the first
cluster and 30 mm for the second cluster, suggesting
that diameter has a more significant effect on the stress
response of brain tissue under tension in general com-
pared to other parameters (Figure 3(a)). In each of the
quasi-static strain rate datasets, diameter ranked last.
This may be because the specimens were cut with an
optimal diameter for each deformation condition. The
intermediate and high strain rate data were more sen-
sitive to diameter, however, indicating that the speci-
men diameter must be controlled carefully by the
researcher under intermediate and high strain rates.

Thickness ranked first for the intermediate strain rate
compression and quasi-static strain rate tension data,
but ranked middle or last for the remaining datasets.
Thickness ranked last in compression, third in high
strain rate compression, and fifth in quasi-static strain
rate compression; this coincides with previous work on
changing specimen thickness under compression
(Rashid et al. 2012c). Thickness ranked last in tension,
presumably because most specimens were 10.0 mm
thick or greater, which may reduce the effect of inho-
mogeneous deformation under tension (Rashid et al.
2012e). However, thickness ranked first in quasi-static
strain rate tension and second in intermediate strain
rate tension. The quasi-static strain rate tension data
had thicknesses of 10 mm or 14 mm, indicating
a significant change in stress response with this rela-
tively small change in specimen thickness. The thick-
nesses in the intermediate tension data ranged from
3 mm to 14 mm, corresponding with a significant
change in brain tissue stiffness due to thickness
(Rashid et al. 2012a).

Post-mortem preservation time ranked seventh in
the quasi-static strain rate compression data
and second in the intermediate strain rate compression
data. The majority of specimens in the quasi-static
strain rate compression data were stored for 7 h or
less, while the intermediate strain rate compression
data contained specimens stored for 3–8 h. Post-
mortem preservation time ranked first in the tension
dataset, likely because the specimens in these data
were stored between 3–16.5 hours. Post-mortem pre-
servation time ranked sixth in the compression data;
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this might be because its effect on stress response was
overshadowed by testing temperature, age, and brain
matter composition. Though there is disagreement in
the literature on the effect of post-mortem preservation
time on brain tissue stress response, the strain is sensi-
tive to post-mortem preservation times over 7 h.

Specimens in the quasi-static strain rate compression
dataset were relatively evenly split between those stored
at 4–5°C and those stored at 37°C, which may explain the
data were more sensitive to storage temperature, which
ranked first. Storage temperature ranked fourth in inter-
mediate compression because all specimens were stored
at 4–5°C, and ranked last in the high strain rate compression
data, likely because most specimens were tested at 37°C
and because the effect of storage temperature on stress
response is decreased at higher strain rates (Zhang et al.
2011). In the tension dataset, storage temperature ranked
next to last because all specimens were stored in near-
freezing temperatures (4–5°C), the optimal storage tem-
perature for reducing post-mortem degradation effects
(Zhang et al. 2011). In the compression dataset, themajority
of specimens were stored at physiological temperature,
with only a few stored at room or near-freezing tempera-
tures, hence the data were not sensitive to storage
temperature.

In the compressiondata, the testing temperature ranked
first. The specimens included in the compression data were
tested at 22°C, 25°C, or 37°C, with previous work indicating
that the brain is stiffer at physiological temperature than at
room temperature (Hrapko et al. 2008). Testing tempera-
ture ranked third in the quasi-static and intermediate strain
rate compression datasets. Testing temperature ranked
third (next to last) in the high strain rate compression
data, as most specimens in this dataset were tested around
room temperature. Overall, themost significant parameters
were testing temperature, age, and brain matter
composition.

Strain rate dependency, across all compression and
tension data, was observed to play an influential role in
the stress state of the brain biomechanical dataset (Figure
1); be it tension or compression, or quasi-static or high
strain rate. Currently, experiments are conducted with
apparatuses that may be load-, displacement-, or strain-
controlled, whichmay lead to inconsistent strain rates and
non-uniform stress distribution. It would be beneficial to
investigate novel ways to ensure consistent strain rates
and uniform stress distribution during experiments. The
choice of brain specimen region and orientation is critical,
as there is great variability in the mechanical properties
throughout the brain. There are significant differences in
the properties of brain tissue due to age (Chatelin et al.
2012). Testing temperature also played a critical role in the
biomechanical response of the brain tissue. Physiological

temperature is 37°C, but the testing temperature varied
from 22°C to 37°C, and as such, the mechanical response
of the brain also varied with temperature. Since these
parameters have a substantial influence on the brain’s
mechanical response, brain constitutive material models
that are calibrated to these biomechanical data should
include these dependencies. Hence, it is pertinent to
develop brain constitutive models that are strain rate,
temperature, and heterogeneity (white vs. gray matter)
dependent. Additionally, the thermal process by which
the specimens are preserved and tested needs to be
accounted for in the constitutive modeling process of
the brain.

Conclusion

Applying the proposed clustering techniques, the wide-
ranging applications of data mining have been demon-
strated in the context of biomechanical engineering, spe-
cifically in the area of soft tissue in vitro testing. The results
from these datamining techniques contribute to a greater
understanding of brain tissue biomechanics, as well as
provide insight into the accuracy of brain tissue models.
Since mechanical testing conditions can vary greatly from
study to study, the results from each may be difficult to
compare and may cause confusion about what stresses
the brain is truly experiencing during TBI. The analysis
performed here allowed for comparison across studies to
determine the most salient conditions of brain tissue test-
ing but it cannot necessarily provide a transformation
function to correct for experimental condition differences
between two studies that wouldmake them truly compar-
able. Future work will focus on developing a multiple
regression model for the data to predict the brain’s mate-
rial properties under specific conditions. Further, the rela-
tionships determined here can improve the
computational modeling of TBI. Data analyses like these
may help experimentalists develop more consistent TBI
model testing or data collection procedures, so that dif-
ferent studies could be more easily compared which
might help the field achieve faster progress in biomecha-
nical injury analysis. It is anticipated that data mining and
machine learning methods will have wider relevance to
the biomedical research community.
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