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Simple Summary: Elastin-like Polypeptide (ELP) are widely applied in protein purification, drug
delivery, tissue engineering, and even tumor therapy. Recent studies show that usage of ELP has made
great progress in combination with peptide drugs or antibody drugs. The combination of ELP and
photosensitizer in cancer therapy or imaging has made more progress and needs to be summarized.
In this review, we summarize the specific application of ELP in cancer therapy, especially the latest
developments in the combined use of ELP with photosensitizers. We seek to provide the most recent
understanding of ELP and its new application in combination with Photosensitizer.

Abstract: Elastin-like polypeptides (ELPs) are stimulus-responsive artificially designed proteins syn-
thesized from the core amino acid sequence of human tropoelastin. ELPs have good biocompatibility
and biodegradability and do not systemically induce adverse immune responses, making them a
suitable module for drug delivery. Design strategies can equip ELPs with the ability to respond to
changes in temperature and pH or the capacity to self-assemble into nanoparticles. These unique
tunable biophysicochemical properties make ELPs among the most widely studied biopolymers
employed in protein purification, drug delivery, tissue engineering and even in tumor therapy. As
a module for drug delivery and as a carrier to target tumor cells, the combination of ELPs with
therapeutic drugs, antibodies and photo-oxidation molecules has been shown to result in improved
pharmacokinetic properties (prolonged half-life, drug targeting, cell penetration and controlled
release) while restricting the cytotoxicity of the drug to a confined infected site. In this review, we
summarize the latest developments in the application methods of ELP employed in tumor therapy,
with a focus on its conjugation with peptide drugs, antibodies and photosensitizers.

Keywords: elastin-like peptides; peptide drugs; temperature response; photosensitizer; tumor therapy

1. Introduction

Several decades ago, Urry et al. [1] isolated and characterized a polypeptide polymer
that was previously known to form the resilient component of arterial walls and ligaments,
in addition to providing elasticity. In aqueous solution, this polypeptide exhibits a unique
phase-transition property and thermally sensitive behavior whereby it coacervates and
settles from solution when the temperature reaches its critical limit, resolubilizing at a
temperature below the critical limit. This polypeptide protein known as tropoelastin, a
non-crosslinked precursor of elastin, is capable of forming ligaments upon coacervation.
The core amino acid sequence was found to be composed of valine, proline and glycine
arranged as (VPGVG)n, where n is the number of repetitive sequences of the precursor
unit [2]. Due to its elasticity the fact that its primary core sequence is derived from human
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tropoelastin, a precursor of elastin, this biosynthetic polypeptide was named elastin-like
polypeptide (ELP). Subsequently, other polypeptides, including collagen and resilin, ex-
hibiting similar stimulus-responsive behavior, such as coacervation and solubilization,
following changes in external factors were identified and characterized [3]. Since then,
elastin-like polypeptides, resilin-like polypeptides and collagen-like polypeptides have
attracted increasing research interest for use in various scientific and biomedical applica-
tions [4,5]. The intrinsic properties of these polypeptides allow them to be fine-tuned into
different targeted structures in the form of nanoparticles, nanofibers and other forms of
nanocomposites suitable for emerging novel applications, among which tissue engineering,
drug delivery, bioimaging, biosensors and protein purification are the most commonly
investigated [6–9]. Because the precursor units of these polypeptides (especially ELPs)
are largely of human origin, their systemic tolerance properties have been exploited for
use as modules for sustained drug delivery in localized anatomical regions of the body
and for the biodistribution of injectable proteins without provoking adverse autoimmune
responses [10,11].

Following the discovery of its amino acid sequence and an understanding of its
stimulus-responsiveness, the pentapeptide repeat units of ELPs were identified and modi-
fied to be composed of VPGXaaG (Xaa is a guest residue and can be substituted for any
amino acid except for Pro); replacing the guest residue with a specific amino acid can
change the physicochemical and biological properties of the ELP [12]. If the guest residue
Xaa is Pro, the conformation of the ELP chain is disrupted, which destroys the principal
characteristic and useful feature of the biopolymer, i.e., its inverse thermal transition prop-
erty [13]. Custom design of an ELP core sequence with specific amino acids and sequence
length with subsequent specialized modifications and functionalization can help to pre-
cisely control its environmental reactivity, mechanical properties and cellular metabolic
pathways [14–17].

Based on different application scenarios, ELPs can be endowed with specific suitable
properties for targeted application. The biological and scientific significance of ELPs re-
volves around their stimulus-responsiveness to temperature, pH and light. With respect to
temperature, ELPs exhibit lower critical solution temperature (LCST) behavior whereby the
ELP either solubilizes or coacervates in aqueous solutions in response to changes in temper-
ature below or above the critical transition limit [18,19]. Through precise adjustment of the
ELP sequence composition, order of amino acids and molecular weight (MW; the number of
pentapeptide repeat units), the phase transition temperature (Tt) can be significantly altered
to suit the intended purpose. That is, although the basic intrinsic properties of ELPs satisfy
the LCST principle, when the temperature is higher than the Tt, the hydrophobic regions of
ELPs shed water, aggregate and become insoluble in solution, and when the temperature is
lower than the Tt, the ELPs resolubilize [20]. This unique thermally responsive property of
ELPs coupled with inverse transition cycling (ITC) has been exploited for the purification
of recombinant proteins with considerable success without resorting to conventional chro-
matographic purification, achieving improved efficiency, quality, yield and recovery of the
target protein [21]. The number of pentapeptide repeat units commonly ranges from 10
to 330 and can be accurately adjusted to achieve an optimal Tt of ELPs—usually between
0 ◦C and 100 ◦C [14,22,23]. As an intrinsic parameter to precisely control the Tt, the MW of
ELPs is inversely related to the Tt, i.e., increasing the MW results in a decrease in the Tt.
Moreover, the type of guest residue Xaa used for the design of ELPs can also impact the
Tt. Whereas increasing hydrophilic guest residues (such as Gly) increases the Tt, replacing
the guest residue with hydrophobic Xaa (such as Val) decreases the Tt of ELPs [24,25]. In
general, ELPs with hydrophobic Xaa have a lower phase transition temperature than ELPs
with hydrophilic Xaa [10]. Although the Tt of ELPs may be largely controlled by intrinsic
parameters, such as the type of Xaa and the number pentapeptide units (MW) [26,27],
pH sensitivity, as an extrinsic factor, is also known to play an important role. When a
pH-sensitive acidic or basic amino acid is placed in the position of Xaa, the Tt of the ELP
becomes pH-dependent. In general, the Tt and solubility increase when the amino acid in
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ELPs is cationic or anionic (e.g., histidine under acidic conditions or glutamic acid under
basic conditions) [28]. For example, when the valine in position 4 of ELP (VPGVG)n is
replaced in one of five pentamers by a glutamic acid residue, the aggregation temperature
of the ELP becomes remarkably sensitive to pH, and the Tt shifts from 25 ◦C at both pH 2
and pH 7, to 25 ◦C at pH 2 and to 70 ◦C at pH 7 [29]. In addition to thermal responsiveness
and pH sensitivity, ELPs can be fine-tuned and endowed with the ability to effectively
respond to light by irradiation. Under excitation at a specific light intensity originating
from a laser or another source, ELP response to light can be used as an approach to improve
photodynamic therapy (PDT) with increased efficiency [30]. For instance, ELP(VPGXaaG)40
(Xaa = K) conjugated to a derivative of tetraphenylethene (TPE-COOH) via an amide bond
has been investigated as a potential bioprobe for cell imaging and was found to exhibit
lower cytotoxicity and stronger fluorescence than those of TPE-COOH alone [22]. Aside
from its potential in bioprobing and bioimaging, the emerging strategy of combining ELPs
and photosensitizers for tumor therapy has made promising progress toward improving
drug efficiency while reducing the risk of toxicity. Thus, owing to the numerous advanta-
geous properties of ELPs, such as biocompatibility, biodegradability, low immunogenicity
and stimulus-responsiveness, as well as its quintessential applications, including protein
purification, drug delivery, controlled drug release, micellar carrier construction, tissue
engineering and tumor treatment, investigation into its photosensitive behavior towards
tumor therapy is essential. In this review, we summarize the application of ELPs as a
delivery module in tumor therapy, especially when combined with photosensitizers and
therapeutic peptides.

2. Clinical Development of ELP-Based Therapeutic Drugs

In the field of tumor therapy, multiple strategies have been developed to manage or
treat tumors depending on the severity of the case. Although more sophisticated strategies
are available in the clinical phase, radiation therapy, chemotherapy (‘chemodrug’), surgical
removal and immunotherapy are currently widely employed. Although chemotherapy
often yields exciting results, its side effects consistently concern patient who may have to
undergo the process. Whereas chemodrugs efficiently target cancer cells, normal cells are
equally attacked and destroyed in the process [31,32]. To limit this unrestricted attack on
normal cells and redirect the drugs to target tumor cells, chemotherapeutic agents are mod-
ified by attaching them to secondary polymers and inoculated to a target site by localized
deposition. In this case, the cytotoxicity of the drug is largely restricted to the tumor site,
and translocation is limited due to the high molecular weight of the polymer to which it
is conjugated. As a thermally responsive biopolymer, ELPs have been shown to exhibit
a tunable property and can be designed to exhibit a determined biochemical behavior
suitable for an expected function. Designed to function as a module for drug delivery, ELPs
were conjugated with hydrophobic cancer drugs and aggregated into nanoparticles in the
vasculature of tumors under mild hyperthermic conditions [33]. Liu et al. [34] observed
that after implanting a conjugate of ELP and therapeutic radionuclide into the tumors
of xenograft mice and found that the conjugate drug, while showing a longer residence
time, also helped to delay tumor progression when compared to the control. In an attempt
to downregulate the expression of ovarian-cancer-promoting gene NT5C3, Ramamurthi
et al. [35] designed an ELP-gemcitabine conjugate for aggregation and accumulation at
the target site and a controlled release of gemcitabine in a pH-dependent manner for the
control of ovarian cancer. The results indicated a significant downregulation of the NT5C3
gene by the ELP-drug conjugate compared with the control and when the drug was used
alone. The cytotoxic nature of the conjugate drug may have improved pharmacokinetics,
enhanced cell penetration and accumulation, as well as decreased clearance. Moreover,
several studies have reported successful design of a complex of ELP-drug/peptide conju-
gates, such as ELPs conjugated with doxorubicin for efficient tumor or cancer targeting and
drug delivery, [36,37], ELPs with vascular endothelial growth factor (VEGF) for treatment
of preeclampsia [38] and renovascular disease [39], ELPs conjugated with paclitaxel for



Cancers 2022, 14, 3683 4 of 13

breast cancer treatment by inhibiting the proliferation of the MCF-7 cell line, stabilizing
microtubules structures, arresting cell division at the G2/M stage and inducing apopto-
sis [40]. Although successive experimental findings from both in vivo and in vitro studies
continue to present positive results of ELP-peptide/chemodrug conjugates, it is important
to examine the possibility of any adverse effect they may elicit should they be employed in
clinical trials.

3. ELPs Increase the Pharmacokinetic Properties of Therapeutic Drugs

Proteins have increasingly been recognized as attractive natural therapeutic macro-
molecules for the treatment of a wide variety of diseases. Although targeted therapeutic
proteins/peptides commonly referred to as peptide drugs (PDs) have high specificity and
activity toward diseases, a major limitation hindering their clinical application is their
short circulating half-life [41,42]. Protein/peptide-based drugs can be categorized into
two groups: antibody drugs (such as single-chain antibodies and heavy-chain antibody
fragments) and therapeutic peptides. Usually, the small size of PDs (such as antibody
drugs) results in increased clearance from circulation, limiting the drugs’ ability to pro-
duce the desired immune effect [43]. To extend the circulating half-life of protein-based
therapeutics, several site-specific modification studies have been conducted wherein target
proteins are either functionalized with large macromolecular compounds or genetically
fused with known polypeptides for heterogenous expression, purification and applica-
tion. The most commonly studied macromolecular polymer used to covalently bind to
proteins is polyethylene glycol (PEG) by a process known as PEGylation, which introduces
changes to the physicochemical properties of the protein molecule, thereby increasing its
molecular size and weight, hydrophilicity and intermolecular interactions, in addition
to changes in conformation. These changes introduced by the PEG help to decrease pro-
tein clearance while improving delivery to target sites and have been utilized to modify
several commercial and clinically available peptide drugs [44–46], for which the efficacy
and circulating half-life of PEGylated therapeutic proteins have been investigated [44,47].
Similar to PEG, human serum albumin (HSA) has been investigated and clinically tested as
a binding module to improve the pharmacokinetics and pharmacodynamics of therapeutic
proteins due to its low toxicity, high biocompatibility and apparently stable half-life within
the human system [48,49]. Despite the significant advantages and success achieved by
introducing PEG and HSA in target proteins, a highly efficient, cost-effective and reliable
precision genetically designed protein-polymer fusion complex with high yield, speci-
ficity, bioactivity and well sustained pharmacodynamics and pharmacokinetics is required.
The emergence of ELPs as a classical binding module to facilitate the fusion and deliv-
ery of therapeutic molecules or provide a surface site for the attachment and display of
PDs to increase pharmacokinetic properties has become the subject of intense research
focus [50,51]. Thus, by using ELPs as a delivery module, target molecular drugs or peptide
drugs can be encapsulated, attached or displayed on the surface of ELP nanoparticles.
The classical usage of ELPs in disease treatment takes full advantage of their temperature-
and pH-responsive characteristics. According to extensive reviews, ELPs are inherently
endowed with a tunable Tt property that allows them to self-assemble into nanoparticles
(or nanoworms) either by physical, chemical or genetic modification through conjugation
with molecular or peptide drugs [17,52,53].

Present studies have indicated that upon fusion with ELPs, the circulating half-life
of PDs, including single-chain antibodies (anti-CD20 scFv, anti-CD99 scFv, anti-FLT3 scFv
and anti-EGFR heavy-chain antibody) and therapeutic peptides (AP1 and p50), in the body
increased significantly while inducing enhanced cytotoxic damage to the target tumor site
or cell line [43,54,55]. As shown in a study by Vaikari et al. [55], the average residence time
of the bioengineered PD nanoworm α-CD99-ELP examined for its efficacy against leukemia
in mice was dramatically increased, with a circulating half-life of 16 h and a mean residence
time of 21.3 h and could reside in liver, spleen and kidney tissue for more than 96 h after
infiltration. Moreover, the leukemia burden was significantly reduced, with prolonged
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survival among the α-CD99-ELP-treated group compared with that of the control group. In
a similar study, Sarangthem et al. [54] evaluated the antitumor effect of double therapeutic
peptide-ELP conjugate by developing a chimeric polypeptide composed of interleukin-4
receptor-targeting peptide (AP1), the proapoptotic peptide (KLAKLAK) and ELPs for
targeted treatment of glioblastoma tumors. The AP1-ELP-KLAK-treated group showed a
cell death rate of up to 2~3 fold higher than that of the control group, with dramatically
reduced tumor growth as a result of inducing apoptosis in tumor-bearing mice. The study
further indicated that although AP1 and KLAK are targeting molecules in glioblastoma
and ELP improves the half-life of PD, the absence of any of these three peptides in a single
treatment results in a diminishing therapeutic effect against glioblastoma, as shown in the
group treated with PBS, ELP-KLAK and API-ELP. This effect may have been a result of
increased clearance of the peptides as compared with the AP1-ELP-KLAK-treated group,
where apoptosis could still be detected after 72–96 h, which indicates enhanced half-life.
Whereas improving the half-life and residence time is among the reasons for ELPs usage
as a drug delivery module, their eventual degradation and clearance from the system are
essential due to their non-biological significance. However, it must be noted that after the
drug has been released and its task is achieved, like all other drugs, it must be cleared
from the system. As such, clearance mechanisms, such as exposure to circulatory proteases,
altering the temperature of the location where the ELPs were deposited and coagulated
to lower the Tt for ELP solubilization or by introducing a biodegradable linker in the case
of localized hydrogel-forming photosensitive ELP-peptide-photosensitizer conjugate and
the generation of oxidants to disrupt disulfide bridges within the hydrogel, are among
the processes that may facilitate the metabolism, sera and renal clearance of used-up ELP
modules [27,56]. In summary, whereas fusion of proteins and peptide drugs with ELPs
eliminates limitations such as faster circulation clearance, offering a prolonged half-life
and residence time, the conjugate drug can also be fine-tuned to target specificity and
high cytotoxic potential. However, in the absence of antibody receptor molecules, the
therapeutic efficacy of the constructed ELP conjugate is significantly reduced.

4. ELPs Fused with Specific Peptides to Improve Antitumor Efficacy of Drugs

Aside from enhancing the circulating half-life of PDs, the second significant effect of
ELPs on PDs is their ability to increase the accumulation of targeted drugs at the tumor site
in a temperature-dependent manner. The most classic application of this strategy is fusion
of ELPs with cell-penetrating peptides (CPPs) or with a specific peptide that targets tumor
antigens (TPs) in combination with antibiotics or small-molecule drugs (Dox, PTX). ELP-
CPP or ELP-TP fusion protein complexes can improve cell penetration and drug targeting
and prolong the half-life and reduce the toxicity of small-molecule drugs to normal cells and
tissues. Compared to free drugs, ELP-CPP drug modules show significant cell penetration
and improved cancer-cell-killing efficacy [57]. Moreover, a combined ELP-TP drug module
has been reported to show a more efficient tumor-cell-targeting specificity compared to
free drugs [58,59]. Thus, the product formed by the fusion of two or more tumor-targeting
drugs, with the inclusion of ELPs as a delivery or carrier module, can significantly improve
drug distribution, homing to target site, cell penetration and pharmacokinetics, in addition
to demonstrating effective tumor cell cytotoxicity [40,57–60]. Whereas ELP-CPP/TP-drug
conjugates have improved targeting ability, ELPs alone or in combination with a drug (ELP-
drug conjugate) do not show unique binding or specificity for tumors, probably due to
the lack of antigen-antibody specificity. For example, as previously indicated, Sarangthem
et al. [54] suggested that whereas AP1-ELP-KLAK conjugate had significantly enhanced in-
tratumoral localization, prolonged retention time and significantly inhibited tumor growth,
ELP-KLAK without IL-4 receptor targeting (AP1) failed to induce apoptosis and exhibited
limited localization and retention at the tumor site. In a hyperthermic therapy scenario, at
an ELP phase transition temperature of 41~42 ◦C, fusion peptide drugs or encapsulated
drugs can passively accumulate and aggregate at the tumor site or on the tumor cell sur-
face [37,61]. Improved cell penetration and tissue accumulation were observed for the
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treatment of glioblastoma after a dominant negative Notch inhibitory peptide (dnMAML)
and ELP conjugate modified with cell penetrating peptide SynB1 were synthesized. The
enhanced cell penetration ability SynB1-ELP-dnMAML conjugate was found to induce
apoptosis and cell cycle arrest by inhibiting the growth of D54 and U251 glioblastoma cell
lines under hyperthermic conditions [62,63]. Similarly, to inhibit the growth of mammary
cancers, NFkB inhibiting peptide p50 conjugated with SynB1 and ELP also exhibited im-
proved tumor penetration while inducing apoptosis, inhibiting breast cancer cell growth
and blocking the intranuclear import of NFkB [64]. These studies clearly indicate that drug
accumulation at tumor sites and on tumor cell surfaces significantly increases internaliza-
tion and residence time when fused with ELPs under optimal conditions [62,64]. Moreover,
as shown by Thomas and Dragojevic [64], the concentration of ELP-fused therapeutic drugs
detected in cells of the hyperthermia-treated group was ~1.5 times higher than that of the
non-hyperthermia-treated group. The corresponding increase in drug efficacy among the
hyperthermia group compared to the non-hyperthermia group indicates targeted accu-
mulation of the therapeutic drug at the tumor cell sites. The above studies showed that
peptide drugs fused with ELPs can have improved pharmacokinetic properties, especially
when the drugs are largely accumulated at the treatment site, where they can be easily
internalized into cells. As observed by Ryu et al. [63], intravenously delivered ELP-CPP/TP
conjugates are quickly and easily cleared from the system under physiological conditions
but are accumulated at tumor sites when the temperature is increased to 42 ◦C, indicating
that ELP-CPP-TP conjugate accumulation occurs only under hyperthermic conditions. This
results in prolonged average residence time after uptake and accumulation according to
both in vitro and in vivo studies. Taken together, fusion of ELPs with specific peptides not
only improves drug penetration, delivery and homing to targeting sites but also prolongs
the half-life of the drug. ELPs also increase the accumulation and effective concentration of
the target drug at the pathological site, in addition to reducing non-specific diffusion of the
drug and reducing toxicity (Table 1).

Table 1. Fusion methods of ELPs with specific peptides.

Specific Peptides Peptides or
Molecular Drugs Functionalization References

anti-CD20 scFV/anti-FLT3
scFV/anti-CD99 scFV CD20, FLT3, CD99 Targeting, delivery, safety [65–67]

SynB1/CPP dnMAML, p50 Penetration, delivery, safety, accumulation,
persistence [62–64]

AP1 KLAK Targeting, accumulation [54]

SynB1/CPP/mmpL Dox Penetration, delivery, reduced toxicity,
fixed-point release, accumulation [40,57,58]

EGF/SynB1 PTX/dnMAML and PTX Penetration, targeting, reservoir,
accumulation, controlled release [59,63]

DR5/DRA A-1331852, BV6 Targeting, accumulation, controlled release [68]

5. Conjugation of ELPs and Peptide/Antibody Drugs with Photosensitizers

Photodynamic therapy (PDT) is a clinically recognized non-invasive treatment ap-
proach that can be used to treat series of cancers and non-malignant diseases by triggering
a series of cell death mechanisms [69–71]. Generally, PDT relies on three basic ingredients:
photosensitizer (PS), oxygen and light [72]. Photosensitizers used for PDT are specialized
photosensitive molecules that localize to a target cell or tissue and transfer energy from
light to an oxygen molecule to generate reactive oxygen species (ROS). The reactions that
occur in PDT are restricted to the immediate locale of the light-absorbing photosensitizer,
indicating that all biological responses emanating from this reactive process are only acti-
vated in specific areas of the tissue exposed to light-limiting collateral damage to healthy,
unaffected regions [73]. The main mechanisms by which PDT mediates tumor destruction
have been described as occurring in three main pathways [73]. (1) The ROS generated
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from the reaction between photosensitizers and light can kill tumor cells directly. However,
complete tumor eradication is often not achieved due to non-homogenous distribution of
photosensitizers within the tumor. (2) Tumor infarction induced by vasculature shutdown
has been studied in some PDT procedures. The formation of new blood vessels to facilitate
the supply of nutrients and oxygen is the main lifeline of tumor growth and sustenance.
However, limiting these processes and shutting down oxygen and nutrient supply through
the destruction of blood vessels significantly delays tumor growth. (3) The induction of
immune response at PDT-treated sites is another observed mechanism of tumor destruction.
Infiltration of immune response cells and biomarkers at PDT-treated tumor sites indicates
the activation of immune response, which allows for the augmentation of T cells, lympho-
cytes and macrophages to be accumulated, followed by the release of cytotoxic cytokines to
speed up tumor death [69,74].

Taking advantage of the phase-transition property of ELPs, their amino acid sequence,
composition and molecular weight can be fine-tuned to either solubilize or coacervate
according to the conditions of the tumor microenvironment. Because tumors are highly
vascularized, ELPs can take advantage of this medium to be transported and deposited
at target sites in order to achieve highly homogenous tissue infiltration while limiting
their clearance rate. Thus, combining ELPs with PSs endows the PSs with enhanced tissue
permeation and increased half-life without affecting their ability to respond to light and to
generate ROS [75]. For more efficient drug delivery and sustained specific activity over a
prolonged period, researchers have evaluated the incorporation of photosensitizers, ELPs
and peptide/antibody drugs into a single conjugate and examined their pharmacokinetic
and pharmacodynamic behaviors (See Figure 1).

Figure 1. Schematic representation of photodynamic therapy using ELP-PS in combination with
ELP-PD. T > Tt indicates that ELP aggregation occurs when the temperature is higher than the Tt;
when stimulated by light, the aggregated ELPs release the drug.

For example, according to a report by Mukerji et al. [76], the photosensitizer chlorine e6
(Ce6) was chemically conjugated to a cysteine-functionalized ELP by N-terminal carboxyl-
amine conjugation in the presence of dicyclohexylcarbodiimide and N-hydroxysuccinimide.
Ce6, which is activated by near-infrared light at 660 nm, was used to generate a high-yield
singlet oxygen (1O2), which induced the formation of disulfide bridges between the cysteine
to form a stable hydrogel both in vitro and in vivo. The stable hydrogel formed by cysteine
crosslinking served as a reliable therapeutic depot for a sustained release of ROS, resulting
in significant tumor growth inhibition when compared with either Ce6 or cELP alone. (See
Figure 2 for an illustration of the formation of disulfide bridges by photoirradiation).
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Figure 2. Ce6-ELP crosslinked through disulfide bonds under near-infrared wavelengths.

Similarly, Phill et al. [43] decorated the nanoparticles of ELP-modified Illama heavy-
chain antibody fragment (VHH), targeting the epidermal growth factor receptor (EGFR)
overexpressed in various cancers with the photosensitizer IRDye 700 by conjugation and
determined its cell-killing efficiency. The study indicated that the PS-ELP-VHH con-
jugate/micelle demonstrated tumor-cell-killing efficiency in a light-dependent manner,
indicating an efficient binding between the antibody (VHH) and the antigen (EGFR), as
well as a sustained release of ROS generated by the light and the PS in the presence of oxy-
gen. Ibrahimova et al. [30] also examined the photo-oxidative response of ELP conjugates
for application in PDT. In their study, TT1, a peripherally substituted carboxy-Zn(II)-
phthalocyanine derivative, was selected as photosensitizer (PS), acting as a photo-oxidation
catalyst at around 680nm. The TT1 was conjugated to the N terminal of the ELPs modified
with an alkyne group [77]. Under specific photoirradiation conditions, the hydrophobic
TT1-ELP[M1V3-40] (large micellar) turned into an amphiphilic TT1-ELP[M(O)1V3-40] and
self-assembled into small micelles at physiological body temperature, which diffuse more
easily into dense tumor surroundings and permit a second photoirradiation, which subse-
quently leads to more efficient PDT [30]. In another study by Sun et al. [78], a cysteine-rich
ELP was genetically fused with human high-mobility group protein 2 (F3) chemoselectively
conjugated with polypyrrole (PPy) nanoparticles, after which doxorubicin (DOX) was
physically adsorbed onto the PPy-ELP-F3 nanoparticle. The multifunctional non-histone
chromosome-binding F3 protein, which has binding specificity for nucleolin, expressed on
the membrane of tumor cells can be internalized into the targeted cells and translocated
to the nucleus upon binding to the nucleolin. Under laser irradiation, DOX/PPy-ELP-F3
showed enhanced cytotoxicity, which was attributed to the synergistic photothermal and
chemical effect of the DOX/PPy-ELP-F3. The ease of cellular penetration offered by F3, the
solubility of ELP nanoparticle formation by PPy and the photo-oxidation effect of DOX all
contributed to specific nucleus homing and the generation of ROS required to initiate cell
death (Figure 3). Narayan et al. [79] reported the synthesis of engineered photo-responsive
silk-elastin-like polypeptide polymerized with the monomeric photoreceptor C-terminal
adenosylcobalamin binding domain (CarHC) using SpyTag-SpyCatcher chemistry. The
resulting hydrogel after photostimulation showed a significantly improved encapsulation
and controlled-release performance for L929 murine fibroblast cells in 3D culture, sug-
gesting a potential use of the CarHC-sELP conjugate hydrogel as a potential carrier for
the controlled delivery of tumor-killing therapeutic agents. In summary, although it has
been shown that photodynamic therapy using a sensitizer as a lone treatment material is
effective, conjugation with ELPs and tumor-specific, site-directed target antibodies offers
profound advantages, including improved solubility and target homing, effective infiltra-
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tion and binding, crosslinking at the target site to ensure prolonged residence duration
and the controlled generation of cytotoxic ROS required for apoptosis initiation within
tumor cells.

Figure 3. Photosensitizer-assisted photothermal and chemical synergistic cancer therapy.

6. Limitations and Future Perspectives for ELP-Drug Conjugates

Although the combination of surgery and chemotherapy remains a reliable go-to
choice in many tumor management cases, the search for an improved therapeutic strat-
egy with little to no life-threatening effect continues to be pursued. Hence, improving
the therapeutic potency of polypeptide-mediated and ELP-based drug delivery systems
could represent the next-generation advancement in healthcare in terms of improving
the wellbeing of patients. Nonetheless, due to present limitations of such a therapeutic
approach, prospective studies could consider addressing some identified issues to improve
the efficacy of this polymer-based drug delivery system. Tumors are highly susceptible
to extravasation, which accounts for most cases of metastasis and is also the cause of loss
of inoculated drug conjugates. Although conjugation of ELPs with photosensitizers may
induce crosslinking of ELPs to form a stable hydrogel, nanoparticles or micelles to improve
their residence time, the pore size of the vasculature at the tumor site and the size of the
ELP-transformed micelles, nanoparticles or hydrogel requires investigation to establish
the formation of stable conjugates in tumors resistant to extravasation in the event of fluid
leakage. Aside from leakage, it has been demonstrated by multiple studies, including
those by Moktan and Raucher [80] and Sarangthem et al. [54], that ELPs have a limited
effect on target tissue infiltration in the absence of cell-penetrating peptides. As such, cells
treated with ELPs and cytotoxic peptides with CPPs do not have the same tumor-inhibiting
effect when compared with groups treated with combined ELP-peptide-CPP conjugates.
However, it appears that ELP-peptide drug infiltration and internalization may be cell- or
tissue-specific. Iglesias and Koria [81] reported that KLAK-ELP and keratinocyte growth
factor (KGF)-ELP can form nanoparticles and be internalized via micropinocytosis through
an interaction of the ELP domain with cell-surface heparin sulfate proteoglycans in lung
cancer cells.

It is now established that ELP sequence, chain length, guest residue, protein concen-
tration, salt type and concentration and solution pH are all important factors that affect
the Tt of ELPs [82]. Hence, when ELPs are fused with other proteins (e.g., CPPs or peptide
drugs), the ELP-based fusion proteins may demonstrate a change in Tt [20]. Charged amino
acids from non-ELP proteins in a fused ELP-peptide polymer conjugate have the most
significant effect on the Tt of ELP-based fusion proteins [20,83]. Therefore, these effects
of non-ELP protein residues should be considered when designing ELP-fused protein
drugs in order to achieve effective infiltration and coagulation for maximum cytotoxic
impact. Although it has been confirmed that hyperthermic conditions are required for
localized ELP aggregation, it should be noted that temperature is not the only external
factor that can influence aggregation. Increasing ELP MW, altering the guest residue with
an amino acid more susceptible to aggregation and changing pH and solute are among the
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changes that can be introduced to influence ELP coacervation at physiological temperatures.
Notwithstanding, it must be noted that temperature-responsive ELPs can serve as a drug
reservoir at the tumor site, effectively increasing the drug concentration at the patholog-
ical site upon aggregation and reducing the concentration of drugs at non-pathological
sites. This process has been examined by modifying ELP-peptide drug conjugates with
cell-penetrating peptides, as reported for SynB1-ELP-DOX and SynB1-ELP1-dnMAML,
which specifically targeted and infiltrated infected cells [62,63], prolonged the half-life of
the drug and had a sustained release effect (such as SynB1-ELP-DOX) [40]. As has been
shown, the cell penetration and aggregation of ELP-peptide drug conjugates is effective
largely under hyperthermic conditions.

Moreover, combination of ELPs and photosensitizers provides route to develop opti-
cally responsive ELPs. At present, light-responsive hydrogels prepared by the combination
of ELPs and photosensitizers have the advantages of long-term structural stability and
no adverse immune responses in animals [84]. Reversible light-responsive SELP-CarHC
hydrogels are another solution in terms of cell encapsulation and release [79]. Although
photodynamic therapy is reported to be a highly efficient strategy for treatment of tumors,
the use of visible light hinders deep-tissue penetration to target internal tumors, largely
restricting the application of this process to external tumors. Self-excitation polypeptides
that use an internal light source for excitation were recently investigated [85]. Thus, geneti-
cally encoded peptides with chemiluminescence, bioluminescence and Cerenkov radiation
potentials in the presence of an internal light source can be used as a photosensitizer and
conjugated with ELPs for efficient tumor infiltration.

7. Conclusions

In general, ELPs show low to no toxicity but improve the pharmacokinetic properties
of the drug to which they are conjugated, indicating that ELPs as a biomaterial have merits
and high potential as a module for drug delivery but require improvement to be accepted
and utilized for the purposes of drug delivery without the fear of inducing inflammation
or adverse immune responses. Combining drugs with ELPs could not only significantly
improve the therapeutic effect of conventional drugs but also increase targeting specificity
and reduce toxicity to normal cells or tissues.
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